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Completeness theorem for classical logic

@ Suppose that T € Th(CL) and ¢ ¢ T (T t/cL ). We want to
show that T |~ ¢ in some meaningful semantics.

O T = (Fmp.1) P- 1st completeness theorem

@ (o, ) € Q) iff a <» 5 € T (congruence relation on Fm
compatible with 7 if « € T and («, 5) € Q(T), then 5 € T).

@ Lindenbaum-Tarski algebra: Fm /Q(T) is a Boolean

algebra and T' W& g . j(1),1/9(T)) %-
2nd completeness theorem

@ Lindenbaum Lemma: If ¢ ¢ T, then there is a maximal
consistent 77 € Th(CL) such that 7 C 7" and ¢ ¢ T".

@ Fm,/QT') = 2 (subdirectly irreducible Boolean algebra)
and T [=p (1}) - 3rd completeness theorem
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Leibniz congruence — 1

Definition 2.1

Let A = (A, F) be an L-matrix. We define:
@ the matrix preorder <, of A as

a<ab iff a—2beF

@ the Leibniz congruence Q4 (F) of A as

(a,b) € Qa(F) iff  a<ab and b<,a.

A congruence 0 of A is logical in a matrix (A, F) if for each
a,be Aifae Fand (a,b) € 0,thenb € F.
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Leibniz congruence — 2
Theorem 2.2

Let A = (A, F) be an L-matrix. Then:

@ <. is apreorder.
Q@ Q4 (F) is the largest logical congruence of A.
Q (a,b) € Qu(F) iff for each x € Fm, and each A-evaluation e:

elp—al(x) € F iff  e[p—Db|(x) € F.

1. Take A-evaluation e such that e(p) = a, e(q) = b, and e(r) = c.
Recall that in L we have: . p - pandp — gq,q > rkLp — r.
As A = MOD(L) we have: e(p — p) € F, i.e., a <5 a and

ife(p — q),e(q - r) € F,thene(p — r) € Fi.e., ifa <a band
b <\ c,thena <, c.
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Leibniz congruence — 2
Theorem 2.2

Let A = (A, F) be an L-matrix. Then:

@ <. is apreorder.
Q@ Q4 (F) is the largest logical congruence of A.
Q (a,b) € Qu(F) iff for each x € Fm, and each A-evaluation e:

elp—al(x) € F iff  e[p—Db|(x) € F.

2. Q4 (F) is obviously an equivalence relation. It is a congruence
due to (sCng) and logical due to (MP).

Take a logical congruence 6 and (a,b) € 6. Since (a,a) € 0, we
have (a =4 a,a =4 b) € 6. As a —4 a € F and @ is logical we
geta =4 b € F,i.e., a <a b. The proof of b <4 a is analogous.

Petr Cintula and Carles Noguera Abstract Algebraic Logic — 2nd lesson



Leibniz congruence — 2
Theorem 2.2

Let A = (A, F) be an L-matrix. Then:

@ <. is apreorder.
Q@ Q4 (F) is the largest logical congruence of A.
Q (a,b) € Qu(F) iff for each x € Fm, and each A-evaluation e:

elp—al(x) € F iff  e[p—Db|(x) € F.

3. One direction is a corollary of Theorem 1.16 and (MP).

The converse one: set x =p — gand e(q) = b: thena -4 b c F
iff b -4 b € F, thus a <s b. The proof of b <4 a is analogous
(using e(q) = a). N
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Algebraic counterpart

Definition 2.3

An L-matrix A = (A, F) is reduced, A € MOD* (L) in symbols, if
Q4 (F) is the identity relation Id,.

An algebra A is L-algebra, A € ALG*(L) in symbols, if there is
aset F C A such that (A, F) € MOD*(L).

Note that Q4 (A) = A2. Thus from Fip,(A) = {A} we obtain:

A € ALG"(Inc) iff  Ais asingleton
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Examples: classical logic CL and logic BCI

Classical logic: prove that for any Boolean algebra A:
Q4({1})=1d4 i.e., A e ALG*(CL).

On the other hand, show that:

Q({a,1}) =1da U{(1,a),(0,—a)} i.e. (4,{a,1}) ¢ MOD*(CL).

BCI: recall the algebra M defined via:

M t f L
T T 1 1 1
t T t f 1
f T L t L
1 T T T T

Show that:

Ou({, TH = Qu({t.f, T}) =1dy  i.e. M e ALG*(BCI).
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Factorizing matrices — 1

Let us take A = (A, F) € MOD(L). We write:
@ A* for A/ (F)
@ [-|r for the canonical epimorphism of A onto A* defined as:
lalr = {b € A {a,b) € Qa(F)}

o A*for (A*, [F]).

LetA = (A,F) e MOD(L) and a,b € A. Then:

Q a < Fiff [dr € [F]r.

@ A* c MOD(L).

Q [a]r <a- [b]r iffa A b e F.
Q A* ¢ MOD*(L).
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Factorizing matrices — 2

@ One direction is trivial. Conversely: [a]r € [F]r implies that
[a]r = [b]F for some b € F;thus (a,b) € Q4(F) and, since
Q4 (F) is a logical congruence, we obtain a € F.

© Recall that the second claim of Lemma 1.12 says that for a
surjective g: A — B and F € Fir(A) we get g[F] € FiL(B),
whenever g(x) € g[F] implies x € F.

Q [d]r <~ [b]F iff [a]r =27 [b]F € [F]F iff [a =4 b]r € [F]F iff
a—2becF.

o Assume that <[a]p, [b]p> S QA*([F]F), i.e., [a]p <aAx* [b]p and
[blr <a+ |a]r. Thereforea A b c Fandb <4 ac F,i.e.,
(a,b) € Q4 (F). Thus [a]r = [b]F. O
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Lindenbaum—Tarski matrix

Let L be a weakly implicative logic in £ and T € Th(L). For
every formula ¢, we define the set

lolr ={Y € Fmg | p < CT}.

The Lindenbaum-—Tarski matrix with respectto L and T,
LindT7, has the filter {[¢]r | ¢ € T} and algebraic reduct with
the domain {[¢]r | ¢ € Fm,} and operations:

CLindTT([(Pl]Ta e [(Pn]T) = [c((pl, ceey (Pn)]T

Clearly, for every T € Th(L) we have:
LindT; = (Fm,,T)".
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The second completeness theorem

Let L be a weakly implicative logic. Then for any set T" of
formulae and any formula ¢ the following holds:

Lo iff T Ewmop) ¢

Using just the soundness part of the first completeness
theorem it remains to prove:

I' Emop+) ¢ implies T'kp ¢.

Take Lindenbaum—Tarski matrix LindTry, )y = (Fm., Thy ("))
and evaluation e(v)) = [¢]th, (). As clearly

e[l'] € e[Thy(T")] = [Thy(I")}ty, (), then, as Lind T, (1 is an
L-model, we have: e(¢) = [¢]rh, (1) € [ThL(T)]n, (1), @nd so

(NS ThL(P) i.e., I' L ©. L]
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Closure systems and closure operators — 1

Closure system over a set A: a collection of subsets C C P(A)
closed under arbitrary intersections and such that A € C. The
elements of C are called closed sets.

Closure operator over a set A: a mapping C: P(A) — P(A)
such that for every X, Y C A:

Q@ X CC(X),
Q C(X) = C(C(X)), and
@ ifX C v, then C(X) C C(Y).

If Cis a closure operator, {X C A | C(X) = X} is a closure
system.

If C is closure system, C(X) = (|{Y € C | X C Y} is a closure
operator.
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Closure systems and closure operators — 2

A closure operator C is finitary if for every X C A,
C(X)=U{C(Y) | Y C X and Y is finite}.

A closure system C is called inductive if it is closed under
unions of upwards directed families (i.e. families D # () such
that for every A, B € D, there is C € D such that AU B C C).

Theorem 2.6 (Schmidt Theorem)

A closure operator C is finitary if, and only if, its associated
closure system C is inductive.
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Closure systems and closure operators — 3

Each logic L determines a closure system Th(L) and a closure
operator Thy .

Conversely, given a structural closure operator C over Fm (for
every o, if o € C(T'), then o(p) € C(o[I'])), there is a logic L
such that C = Thy..

L is a finitary logic iff Thy, is a finitary closure operator.

The set of all L-filters over a given algebra A, FiL(A) is a
closure system over A. lts associated closure operator is Fi'.
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Transfer theorem for finitarity

Corollary 2.7

Given a logic L in a language L, the following conditions are
equivalent:

@ L is finitary.
@ Fi! is afinitary closure operator for any L-algebra A.
© FiL(A) is an inductive closure system for any L-algebra A.
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Closure systems and closure operators — 4

A base of a closure system C over A is any B C C satisfying one
of the following equivalent conditions:

@ C is the coarsest closure system containing 5.

© Forevery T €C\ {A}, thereisa D C Bsuchthat T = D.

©Q ForeveryTeC\{A}, T=N{BeB|TC B}

©Q ForeveryY eCandac A\ Y thereis Z € B such that
YCZanda ¢ Z.

Show that the four definitions are equivalent.

An element X of a closure system C over A is called (finitely)
N-irreducible if for each (finite non-empty) set ) C C such that
X = ﬂyey Y, thereisY € Y suchthat X =Y.

Petr Cintula and Carles Noguera Abstract Algebraic Logic — 2nd lesson



Abstract Lindenbaum Lemma

An element X of a closure system C over A is called maximal
w.r.t. an element « if it is a maximal element of the set
{Y € C|a ¢ Y} w.rt. the order given by inclusion.

Proposition 2.8

LetC be a closure system over a setA andT € C. Then, T is
maximal w.r.t. an element if, and only if, T is N-irreducible.

Let C be a finitary closure operator and C its corresponding
closure system. If T € C anda ¢ T, then there is T' € C such
that T C T" and T’ is maximal with respect to a. N-irreducible
closed sets form a base.
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Operations on matrices — 1

(A, F): first-order structure in the equality-free predicate
language with function symbols from £ and a unique unary
predicate symbol interpreted by F.

Submatrix: (A, F) C (B,G) if A C Band F = AN G. Operator:
S((A, F)) is the class of all subalgebras of (A, F) .
Homomorphic image: (B, G) is a homomorphic image of (A, F)
if it exists h: A — B homomorphism of algebras such that

h[F] C G. Operator H.

Strict homomorphic image: (B, G) is a strict homomorphic
image of (A, F) if it exists h: A — B homomorphism of algebras
such that A[F] € G and h[A \ F] C B\ G. Operator Hs.
Isomorphic image: Image by a bijective strict homomorphism.
Operator 1.
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Operations on matrices — 2

Direct product: Given matrices {(A;, F;) | i € I}, their direct
product is (A, F), where A =[], A;,

fAar, ... an) (i) = fA(ar(i),. .. an(i). F =T, Fi- m: A — A,
Operator P.

Let L be a weakly implicative logic. Then:

@ SP(MOD(L)) C MOD(L).
@ SP(MOD*(L)) C MOD*(L).
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Subdirect products and subdirect irreducibility

A matrix A is said to be representable as a subdirect product of
the family of matrices {A; | i € I} if there is an embedding
homomorphism o from A into the direct product [[;.; A; such
that for every i € I, the composition of « with the i-th projection,
m; o @, IS a surjective homomorphism. In this case, « is called a
subdirect representation, and it is called finite if 1 is finite.

Operator Pgp (K).

A matrix A € K is (finitely) subdirectly irreducible relative to K if
for every (finite non-empty) subdirect representation « of A with
afamily {A; | i €I} CKthereisi e Isuchthatmoaisan
isomorphism. The class of all (finitely) subdirectly irreducible
matrices relative to K is denoted as Kgg)sr-

Krst € Kgrsi.
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Characterization of RSI and RFSI reduced models

Theorem 2.10
Given a weakly implicative logicL and A = (A, F) € MOD*(L),
we have:

@ A € MOD*(L)gg; iff F is N-irreducible in Fip(A).

©Q A € MOD*(L)ggs; iff F is finitely N-irreducible in Fiy.(A).
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Subdirect representation

Theorem 2.11
If L is a finitary weakly implicative logic, then

MOD*(L) = Psp(MOD*(L)gsi),

in particular every matrix in MOD* (L) is representable as a
subdirect product of matrices in MOD*(L)gs;.
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The third completeness theorem

LetL be a finitary weakly implicative logic. Then

FL = FMOD* (L)gs:-
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Leibniz operator

Leibniz operator: the function giving for each F € Fi;(A) the
Leibniz congruence Q4 (F).

Proposition 2.13

Let L be a weakly implicative logic L and A an L-algebra. Then

Q@ Q4 is monotone: if F C G then Q4 (F) C Q4(G).

@ Q4 commutes with inverse images by homomorphisms: for
every L-algebra B, homomorphismh: A — B, and
F e Fip (B ) N

Qu(h~'[F]) = i~ [2(F)] = {{a,b) | (h(a), (b)) € Qp(F)}.

Q QU[FiL(A)] = Conpyrg1)(A).

Conapg+(1)(A) is the set ordered by inclusion of congruences of
A giving a quotient in ALG*(L).

Petr Cintula and Carles Noguera Abstract Algebraic Logic — 2nd lesson



Recall that for the algebra M € ALG*(BCI) defined via:

M T e f L
T |T L1 1 1
t T t f L
f T 1L t 1
LT T T T

we have

Qu({t, T}) = Qu({t.f, T}) = Idy i.e., (Y is not injective
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Interesting equivalence

Theorem 2.14

Given any weakly implicative logic L, TFAE:

@ Forevery L-algebra A, the Leibniz operator Q4 is a lattice
isomorphism from Fi(A) to Conapg+()(A)-

@ Forevery (A,F) e MOD*(L), F is the least L-filter on A.

© The Leibniz operator Qg - Is a lattice isomorphism from
Th(L) to Conayg+()(Fm.).

©Q There is a set of equations T in one variable such that

(Alg) p e {ulp) © vip) |p~veTh
© There is a set of equations T in one variable such that for

eachA = (A,F) e MOD*(L) and eacha € A holds: a € F
if, and only if, yA(a) = 1A (a) forevery u~v € T.

In the last two items the sets T can be taken the same.
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Algebraically implicative logics

Definition 2.15

We say that a logic L is algebraically implicative if it is weakly
implicative and satisfies one of the equivalent conditions from
the previous theorem.

In this case, ALG*(L) is called an equivalent algebraic
semantics for L and the set 7 is called a truth definition.

Example 2.16

In many cases, one equation is enough for the truth definition.
For instance, in classical logic, intuitionism, t-norm based fuzzy
logics, etc. the truth definition is {p ~ 1}. Linear logic is
algebraically implicative with 7 = {p A 1T ~ 1}.
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Different logics with the same algebras

Exercise 7

L = {~,—}. Algebra A with domain {0, 1, 1} and operations:

01 01 1 1

1 1 1

2|2 2 |2 11

1|0 1|0 § 1
Ls = =uan [three-valued tukasiewicz logic]
I3 = |:<A,{%11}> [Da Costa, D’Ottaviano]

Defined connectives: 1 =p — p,op = —p — p
b3 and J; are both algebraically implicative with

L [ALG*(L) | T(p)
bs Q(A) 1
J3 Q(A)
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Equational consequence

An equation in the language £ is a formal expression of the
form ¢ = 1, where p, ¢ € Fm,.

We say that an equation ¢ ~ 1 is a consequence of a set of
equations IT w.r.t. a class K of £-algebras if for each A € K and
each A-evaluation e we have e(p) = e(1)) whenever e(a) = e(53)
for each a ~ g € II; we denote it by 1T =k ¢ ~ 1.

Proposition 2.17

Let L be a weakly implicative logic and 1 U {¢ ~ v} a set of
equations. Then

M e~ iff {oeopflanfel}lbLeo .

Alternatively, using translation p[Il] = e (@ <> B):

II Eargrq) ¢ = v iff plll] L p(p = ¢).
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Characterizations of algebraically implicative logics

We have defined a translation p from (sets of) equations to sets
of formulae using «.

Analogously we define a translation 7 from (sets of) formulae to
sets of equations using the truth definition 7

T[] ={a(p) = B(y) |[peTanda~ € T}

Theorem 2.18
Given any weakly implicative logic L, TFAE:
@ L is algebraically implicative with the truth definition T .
© There is a set of equations T in one variable such that:
QI ':ALG*(L) o = iff p[ll] FL p(p = )
@ p kv plr(p)]
© There is a set of equations T in one variable such that:
Q T'kL w iff T[] FaLg=w) T(¥)
@ p~q=Fac-u) Tl =~ q)]
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Finitary algebraically implicative logics and

quasivarieties

A quasivariety is a class of algebras described by
quasiequations, formal expressions of the form
N, oi = B = ¢ =1, where ay,...,an, B1,..., 00 ¢, 0 € Fmg.

Proposition 2.19

If L is a finitary algebraically implicative logic, then it has a finite
truth definition and ALG* (L) is a quasivariety.

Petr Cintula and Carles Noguera Abstract Algebraic Logic — 2nd lesson



Rasiowa-implicative and regularly implicative logics

We say that a weakly implicative logic L is
@ regularly implicative if:
(Reg) @, Ly — .
@ Rasiowa-implicative if:
(W) kLY — . |
A weakly implicative logic L is regularly implicative iff all the
filters of the matrices in MOD*(L) are singletons.

Proposition 2.22
A regularly implicative logic L is Rasiowa-implicative iff for each
A = (A, {t}) € MOD* (L) the elementt is the maximum of <,.
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Hierarchy of weakly implicative logics

Proposition 2.23

Each Rasiowa-implicative logic is regularly implicative and each
regularly implicative logic is algebraically implicative.
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The following logics are Rasiowa-implicative:
@ classical logic
@ global modal logics
@ intuitionistic and superintuitionistic logics

@ many fuzzy logics (Lukasiewicz, Gédel-Dummett, product
logics, HL, MTL, ...)

substructural logics with weakening
inconsistent logic

Example 2.24

@ The equivalence fragment of classical logic is a regularly
implicative but not Rasiowa-implicative logic.

@ Linear logic is algebraically, but not regularly, implicative.
@ The logic BCI is weakly, but not algebraically, implicative.
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