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Abstract Algebraic Logic

AAL is the evolution of Algebraic Logic that wants to:

understand the several ways by which a logic can be given
an algebraic semantics

build a general and abstract theory of non-classical logics
based on their relation to algebras

understand the r6le of connectives in (non-)classical logics
classify non-classical logics

find general results connecting logical and algebraic
properties (bridge theorems)

generalize properties from syntax to semantics (transfer
theorems)

advance the study of particular (families of) non-classical
logics by using the abstract notions and results
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Abstract Algebraic Logic

What have we done so far?
@ understand the several ways by which a logic can be given
an algebraic semantics

@ build a general and abstract theory of non-classical logics
based on their relation to algebras

@ understand the réle of connectives in (non-)classical
logics: implication, equivalence, disjunction,...

@ classify non-classical logics

@ find general results connecting logical and algebraic
properties (bridge theorems)

@ generalize properties from syntax to semantics (transfer
theorems)

@ advance the study of particular (families of) non-classical
logics by using the abstract notions and results
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Bridge theorems vs. transfer theorems

Theorem 4.1 (Bloom)

LetL be a logic. Then: Py(MOD(L)) = MOD(L) iff L is finitary.

It is a brigde theorem, relating a logical property with an
algebraic (or matricial) one.

Theorem 4.2

Given a logic L in a language L, the following conditions are
equivalent:

@ L /s finitary, i.e. Thy is a finitary closure operator.
@ Fi! is afinitary closure operator for any L-algebra A.

It is a transfer theorem, transfering a property of Fm, to a
formally equal property of all £-algebras.
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Deduction theorems — 1

A logic L has the parameterized local deduction-detachment
theorem if there is a family of sets of formulae ¥ C P(Fm,) in
two variables (and possible parameters) such that for all

rv {90711}} C Fmg,

F’ ¥ FL Y iff HA(XL))? 7) € Y suchthat I’ FL U7€Fm/; A(S‘O/ /l/}v 7)

Theorem 4.3

A logic L is protoalgebraic iff it has the parameterized local
deduction-detachment theorem.
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Deduction theorems — 2

A logic L has the local deduction-detachment theorem (LDDT)

if it has the parameterized local deduction-detachment theorem
with an empty set of parameters, i.e. there is a family of sets of
formulae ¥ C P(Fm,) in two variables such that for all

ry {%Tﬁ} - Fm[ls

I Ly iff 3A(x,y) € ¥ such that I' F, A(e, 9).

Logic | ©
L (infinitely-valued tukasiewicz logic) | {p =" ¢ | n > 0}
global modal logic T | {O0"p — g | n > 0}

Petr Cintula and Carles Noguera Abstract Algebraic Logic — 4th lesson



Deduction theorems — 3

A class of models of a logic K € MOD(L) has the
L-filter-extension-property iff for all (A, F), (B, G) € K such that
(A,F) C (B,G) and every F' € Fi.(A) such F C F' and

(A, F') € K, there exists a G’ € Fir(B) such that G C G,
(B,G") e K,andG'nA=F".

Theorem 4.4 (Czelakowski, Blok-Pigozzi)

LetL be a finitary protoalgebraic logic. TFAE:

@ L has the LDDT.

© MOD(L) has the L-filter-extension-property.
© MOD*(L) has the L-filter-extension-property.
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Deduction theorems — 4

A logic L has the global deduction-detachment theorem
(GDDT) if it has the local deduction-detachment theorem with a
set X consisting of just one finite set of formulae i.e. there is a
finite A(x,y) € Fmg in two variables such that for all

1NV {90’1!}} C Fmg,

T, by o iff T o A, ¥).

Logic | A
CL, IL, local modal logics | {p — ¢}
L, (n-valued tukasiewicz logic) | {p —" ¢}
global S4 and S5 | {Op — ¢}
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Deduction theorems — 5

A class of models of a logic K € MOD(L) has
formula-definable principal L-filters if there is a finite set of
formulae A(x,y) = {di(x,y) | i < n} of formulae in two variables
such that, for every (A, F) € K and every a € A,

Fif(FU{a})={bcA|Y5ec A (a,b)c F}.

Theorem 4.5 (Blok-Pigozzi)

LetL be a finitary protoalgebraic logic. TFAE:
@ L has the GDDT.
@ MOD(L) has formula-definable principal L-filters.
© MOD*(L) has formula-definable principal L-filters.
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Deduction theorems — 6

A dual Brouwerian semilattice is an algebra A = (A, ¥4, vA, T4)
such that (A, v4, T4) is a bounded join-semilattice and, for

a,b € A, there exists a x4 b, the smallest element ¢ such that

a < b VA c. Hence for every a, b, c € A:

axdb<ciffa<bVvAc.

Theorem 4.6 (Czelakowski)
LetL be a finitary protoalgebraic logic. TFAE:

@ L has the GDDT.

@ The join-semilattice of finitely axiomatizable theories of L is
dually Brouwerian.

© Forevery A, the join-semilattice of finitely generated
L-filters of A is dually Brouwerian.
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Deduction theorems — 7

A quasivariety K has equationally definable principal relative
congruences (EDPRQC) if there is a finite set of equations in at
most four variables {e;(xo, x1, yo,y1) = di(x0,x1,v0,¥1) | i < n}
such that for every algebraA € K and all a,b,c,d € A,

(c,d) € ©4(a,b) iff Vi < net(a,b,c,d) = 64(a,b,c,d),

where ©4 (a, b) denotes the relative congruence generated by
(a,b).

Theorem 4.7 (Blok-Pigozzi)

Let L be a finitary and finitely algebraizable logic. TFAE:
@ L has the GDDT.
@ ALG*(L) has EDPRC.
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Deduction theorems — 8

A quasivariety K has the relative congruence extension
property (RCEP) if, only if, for every A, B € K such that B C A
and every 6 € Conx(B), there exists 6’ € Conk(A) such that
o' NB?=4.

Theorem 4.8 (Blok-Pigozzi, Czelakowski-Dziobiak)

LetL be a finitary and finitely algebraizable logic. TFAE:

@ L has the LDDT.
@ ALG*(L) has the RCEP.
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Beth property — 1

Let L be a logic and P,R C Var, PANR =0, I'(P, 7) C Fmy,

7 € P, 7 €R. Wesay that (7, 7) defines R explicitly in
terms of P if for every r € R there is ¢, € Fm, with variables in P
such that (r, ¢,) € Q(FifYR(T")) (filter generated in the
subalgebra of formulae in variables P U R).

We say that I'(7, 7) defines R implicitly in terms of P if for
every R' C Var, R" N (PUR) =0, |R'| = |R|, and every bijection f
between R and R’, we have that for every r € R,

(r.f(r)) € QERR(T)),

L has the Beth property if for all disjoint sets of variables P and

R, each set (7, 7) C Fm, that defines R implicitly in terms of
P, defines also R explicitly in terms of P.
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Beth property — 2

Let K be a class of algebras of the same type, A, B € K, and
h: A — B a homomorphism. 4 is an epimorphism in K if for
everyC c Kandeachg,g': B— C,ifgoh=g' oh,theng=¢.

A class K of algebras has the property that epimorphisms are
surjective (ES) if every epimorphism between algebras of K is a
surjective mapping.

Theorem 4.9 (Hoogland)

LetL be an algebraizable logic. TFAE:
@ L has the Beth property.
@ ALG*(L) has the ES.
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Craig interpolation

A logic L has the Craig interpolation property for consequence
if for every I' U {¢} C Fm, such that T b ¢, thereisT' C Fm,
with variables in Var(T') N Var(y) such that T k- TV and T k.

A class of algebras K has the amalgamation property if for any
A,B,C € K and any embeddings f: C — A and g: C — B, there
is D € K and embeddings 2: A — D and ¢t: B — D such that
hof=tog.

Theorem 4.10 (Czelakowski)

LetL be an algebraizable logic with GDDT. TFAE:
@ L has the Craig interpolation property for consequence.
@ ALG*(L) has the amalgamation property.
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A non-protoalgebraic logic — 1

CPC,v is defined as the {A, V}-fragment of classical logic.
Gentzen presentation [Font and Verdu, 1991]

Hilbert presentation [Dyrda and Prucnal, 1980]:

PAPD> @ eV (VB (pV)VE
PAYD> YN (V) VE> @V (P VE)
O P> PAY eV (WA (pVP)A(pVE)
>V (V)N (pVE >V (YAE)
eVYP>Y Ve PANWVE > (pAY)V(pAE)

eV(eVY)>pVYy Ve

It is a logic without theorems, not almost inconsistent, and
hence not protoalgebraic.
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A non-protoalgebraic logic — 2

25 v {A, V}-reduct of the two-element Boolean algebra 2

CPChy = =2,
V(25,v) = D (variety of distributive lattices)

Is D the algebraic semantics of CPCx,,?
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A non-protoalgebraic logic — 3

Theorem 4.11

ALG*(CPC,y) = {A € D | A has a maximum element 1 and for
everya,b € A ifa < b then there is c € A such thataV c # 1 and
bV ¢ =1} (a proper subclass of D, not even quasivariety).

Theorem 4.12

D is not the equivalent algebraic semantics of any algebraizable
logic.

ALG(CPC,y) = D [Font-dansana] (alternative AAL theory
based on generalized models)

@ If L is protoalgebraic, then ALG(L) = ALG*(L).
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Frege hierarchy — 1

Proposition 4.13

A logic L in a language L is protoalgebraic iff for every
TU {SD: ¢} CF mge

(a, B) € Qpm,(T) implies Thy (T, o) = Thy (T, B).

Frege relation: (p,9) € Ap iff o L ¢ and ¥ . .
Selfextensional logic: L is selfextensional iff A;, € Con(Fm).

Frege relation w.r.t. a theory: (¢, v) € AL(T) iff T, ¢ kL ¢ and
T,y .

Fregean logic: L is Fregean iff AL(T) € Con(Fm/,) for every
T € Th(L).
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Frege hierarchy — 2

Inc, Alnc, CL, IL, CPC,, are Fregean.
Dumb is selfextensional but not Fregean.

.3 is not selfextensional (¢ - v does not imply = -+ —); take
p=pand ¢ =-(p = —p), e(p) = 3).

Theorem 4.14

@ Every protoalgebraic Fregean logic with theorems is
regularly algebraizable.

@ Every finitary and protoalgebraic Fregean logic with
theorems is regularly, finitely algebraizable.

Linear logic is not Fregean.
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Infinitely-valued tukasiewicz logics

A=(0,1],—,7),a—b=min{l,] —a+b}and ~a =1 —a.

@ Infinitary version Lo =4 (11
@ Finitary version L.: finitary companion of .o,
' b, @ iff there is afinite To C T' s.t. To 4,11} @

@ Degree-preserving version L.=: o1, ..., p, Fp< o iff for
each A-evaluation e, min{e(p1),...,e(vn)} < e(p).

They all have the same theorems.

L. is Rasiowa-implicative (but ALG* (L) is not quasivariety)
and not selfextensional (counterexample as in L3).

L. is Rasiowa-implicative (and strongly BP-algebraizable) and
not selfextensional (counterexample as in L.3).

L= is selfextensional (not Fregean) and not protoalgebraic.
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Disjunction in Classical Logic

(PD) ¢lcLpVy and  ¢PlcLp Ve
PCP I, ptcL xand T, ¢ oL x, then T, o V) e x.

The same holds for many other logics: IL, &, FL,,,, HL, ...

(PD) and PCP could be equivalently formulated as:

I, ) Feor x and 'Y e x, if and onIy if, T, eV ¥ FeL x-
Dummett in ‘The Logical Basis of Metaphysics, HUP, 1991’ says
about (a weaker variant of) PCP:

If this law does not hold, the operator \/ could not
legitimately be called disjunction operator.
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A problem

Theorem 4.15

In FL,., the lattice connective \/ does not satisfy the PCP (it
would entail p V= (o A1)V (1 A T)).

A solution of this problem:

Theorem 4.16

The connective V' defined as o V' 1 = (p A1) V (¢ A 1) satisfies

(PD) oF(eAD)V(pAT) and PF(eA1)V (HAT)

PCP IfT, o+ xandT v+ x, thenT, (o A1)V (¥ A1) F x.
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A bigger problem

Theorem 4.17

In the implication fragment of Gédel-Dummett logic we cannot
define any connective \ satisfying (PD) and PCP.

A solution of this problem:

Theorem 4.18
The ‘connective’ {(y — ) — ¢, (¢ — ) — ¢} satisfies

(PD), okF(p—=v)—=¢ and ok (Y —p) =
(PD)y YF(p—=¢)—=9Y and Y+ — ) =
PCP IfT, o+ xandT, vy x, then

L, =) =, (b = 9) =0k x.
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An even bigger problem

Theorem 4.19

In FL no finite set of formulae of two variables defines any
‘connective’ satisfying (PD) and PCP.

BUT there is still a solution of this problem:

Theorem 4.20

The following ‘connective’ satisfies both (PD) and PCP
{71(¢) V72(v) | where ~1,~, are iterated conjugates}.

An iterated conjugate of ¢ is a formula V4, (Va, (- - - Ya, () . . .)) Where
Yo = Aoy (0) = (@i\p&eai) A1 OF Yo, = pa,(0) = (cidep/ai) A1 for
some formulae «;.
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Definition and useful conventions

Let V(p,q, 7) be a set of formulae. We write

oV = | V(. v, @) | @ € Fm=+}.

v = J{eVe ¢ e 1,9 € 5}
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Generalized disjunctions

A (parameterized) set of formulae V is a (p-)protodisjunction if:
(PD) ¢hFL VY and L pVey
We will consider the following three properties:

wPCP o x and Yk x implies eV L x
PCP ok x and T,y bpx implies T,pVy b x
sPCP T''YFLx and T IIkpyx implies T X VIIkL x

Clearly: sPCP = PCP = wPCP

Theorem 4.21

For finitary logics: sPCP < PCP < wPCP
But in general: sPCP <« PCP

We define also transferred variants of these notions.
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A finitary logic with a V satisfying wPCP but not PCP

Example 4.22

Consider the non-distributive lattice diamond, with the domain
{L,a,b,t, T}, with r as central element, and the finitary logic
given by all matrices over this algebra with a lattice filter.

Observe: T' - ¢ iff A e[['] < e(p) for every evaluation e.
V is a protodisjunction with wPCP.

Assume now, for a contradiction, that it satisfies the PCP too.
Then from o, F (p A) V x and x, ¢ F (¢ A1) V x we obtain
eV x, ¥ (pAY)V x and thus also (applying the PCP again)
eV x, ¥V xFE(pAY)Vx (aform of distributivity). Then, we
reach a contradiction by observing thata Vb =tV b = T while
(ant)Vb=_1LVb=h.
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An infinitary logic with a V satisfying PCP but not sPCP

Example 4.23

Let A be a complete distributive lattice such that it is not a dual
frame, i.e. there are elements x; € A for i > 0 such that

/\(xo Vx;) £ xpV /\x,-

i>1 i>1

expand the lattice language by constants {¢; | i > 0} U {c¢} and
define algebra A’ in this language by setting cf" =x; and

¢ = A\~ xi- Then we define the logic L in this language
semantically given by the class of matrices

{(A’,F) | F is a principal lattice filter in A}.

Observe: T' - ¢ iff Ao e(¥) < e(p) for each A-evaluation e.
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An finitary logic with a V satisfying PCP but not sPCP

Example 4.24 (continuation)

First we show that \ enjoys the PCP: assume that for each e
evaluation holds (A e(d)) Ae(p) < e(x) and

(Asere(d)) Ne(¥) < e(x), thus

[(Aser e(0)) A e(@)] V [(Aser e(9)) Ae(d)] < e(x), the
distributivity of A completes the proof. Finally, by the way of

contradiction, assume that \V enjoys the sPCP. Observe that:
corFrLcoVeand {c;|i> 1} FL ¢V c. Using the sPCP we obtain
{coVci|i>1} kL co V c—a contradiction.
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Syntactical characterization

Theorem 4.25

Let V a commutative and idempotent p-protodisjunction. TFAE:

@ V satisfies sPCP,
@ wheneverT - ¢ we have also: T'Vx - ¢V for each x.

This theorem was previously known for finitary logics and PCP.
Theorem 4.26

TFAE:

@ There is a (p-)protodisjunction satisfying wPCP.

© For each (surjective) substitution o and formulae o, ) :

Thy (0p) O Thy () = Th ([The (17) N The ()))-

If there is a (p-)protodisjunction satisfying wPCP, then
Thy (p) N Thy(q) is the largest.
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More definitions

Th(L) is both a closure system and a complete lattice. A theory
is intersection-prime if it is finitely N-irreducible in Th(L).

Definition 4.27
We say that L:
@ is distributive if Th(L) is a distributive lattice
@ is framal if Th(L) is a frame (meets distribute over arbitrary
joins)
@ has the IPEP (intersection-prime extension property) if
intersection-prime theories form a base of Th(L), i.e. if

T € Th(L) and ¢ ¢ T, there is an intersection-prime theory
T' D Tsuchthat p ¢ T'.

We define filter-distributivity/framality by demanding the
defining conditions for Fip.(A) for each L-algebra A.
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Finitary vs. IPEP logics

Theorem 4.28
Every finitary logic has IPEP and NOT vice versa.

Recall that L. If T ¥1,__ x, then there is an evaluation e such
that ¢[T] = {1} and e(x) # 1. We define T’ = e~ ![{1}].
Obviously 7" is a theory, T C T' and T’ ¥y x. Assume that 7’
is not intersection-prime; thus there are formulae ¢, ¢ T’ such
that 77 = Thy,__ (T, ¢) N Thy, (T, ). Assume without loss of
generality that e(y) < e(¢)), SO e(p — ¥) = 1 and so

o =Y eT.Thusy € Thy_ (T, ) (because v, — ¥ i 1)
and thus 1) € T'—a contradiction. Therefore, it has the IPEP.
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Definition 4.30

A theory T is V-prime if it is consistent and 7 - ¢V implies
TEHeorTHk .
V has the PEP if V-prime theories form a base of Th(L).

Theorem 4.31

IfV has PCP, then V-prime and intersection-prime theories
coincide.

Theorem 4.32

LetL be a logic satisfying the IPEP. TFAE:
@ V has the sPCP.
@ V has the PCP.
© V has the PEP.
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Disjunctions, distributivity, and framality

Theorem 4.33 (Characterizations of sPCP)
The following are equivalent:
@ V enjoys the sPCP,
© V enjoys the wPCP and the logic L is framal,
© V enjoys the wPCP and the logic L is filter-framal,
Q V enjoys the transferred sPCP.

Theorem 4.34 (Characterizations of PCP)
Let L have IPEP. The following are equivalent:
@ V enjoys the PCP,
@ V enjoys the wPCP and the logic L is distributive,
© V enjoys the wPCP and the logic L is filter-distributive,
@ V enjoys the transferred PCP.
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Protoalgebraic logics: stronger results

Theorem 4.35

Let L be a protoalgebraic logic.

@ L /s distributive/framal IFF there is a p-protodisjunction V
which has PCP/APCP.

@ /fL has IPEP and is distributive, then it is filter-framal.
@ /fV has PCP, then it has transferred PCP.

Petr Cintula and Carles Noguera Abstract Algebraic Logic — 4th lesson



Axiomatization of intersections of logics

Corollary 4.36

Let L be a logic with the IPEP, V a p-protodisjunction with PCP,
and let1,, L, be axiomatic extensions of L. by sets of axioms
Ay and A,, respectively. Then:

LiNnLy =L+ {oVy | p € A, ¢ € Ay}

Note: we can safely always assume that .A; and A, are written
in disjoint sets of variables.

Theorem 4.37

Let L be a logic with the IPEP, V a p-protodisjunction with PCP,
and C a set of positive clauses. Then:

Fiaemop* (L) | Ac} = L+ {Vyes ¢ | C € C}.
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