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Completeness theorem for classical logic

Suppose that T ∈ Th(CPC) and ϕ /∈ T (T 6`CPC ϕ). We want
to show that T 6|= ϕ in some meaningful semantics.
T 6|=〈FmL,T〉 ϕ. 1st completeness theorem

〈α, β〉 ∈ Ω(T) iff α↔ β ∈ T (congruence relation on FmL
compatible with T: if α ∈ T and 〈α, β〉 ∈ Ω(T), then β ∈ T).
Lindenbaum-Tarski algebra: FmL/Ω(T) is a Boolean
algebra and T 6|=〈FmL/Ω(T),T/Ω(T)〉 ϕ.

2nd completeness theorem

Lindenbaum Lemma: If ϕ /∈ T, then there is a maximal
consistent T ′ ∈ Th(CPC) such that T ⊆ T ′ and ϕ /∈ T ′.
FmL/Ω(T ′) ∼= 2 (subdirectly irreducible Boolean algebra)
and T 6|=〈2,{1}〉 ϕ. 3rd completeness theorem
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The scope restriction for this lecture

Unless said otherwise, any logic L is weakly implicative in a
language L with an implication→.
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Order and Leibniz congruence

Recall
Let A = 〈A,F〉 be an L-matrix. We define:

the matrix preorder ≤A of A as

a ≤A b iff a→A b ∈ F

the Leibniz congruence ΩA(F) of A as

〈a, b〉 ∈ ΩA(F) iff a ≤A b and b ≤A a.

Observation
The Leibniz congruence of A is the identity iff ≤A is an order.
Thus all reduced matrices of L are ordered by ≤A.

Weakly implicative logics are the logics of
ordered matrices.
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Linear filters

Definition 5.1
Let A = 〈A,F〉 ∈MOD(L). Then

F is linear if ≤A is a total preorder, i.e. for every a, b ∈ A,
a→A b ∈ F or b→A a ∈ F

A is a linearly ordered model (or just a linear model) if ≤A
is a linear order (equivalently: F is linear and A is reduced).

We denote the class of all linear models as MOD`(L).

A theory T is linear in L if T `L ϕ→ ψ or T `L ψ → ϕ, for all ϕ,ψ

Lemma 5.2
Let A ∈MOD(L). Then F is linear iff A∗ ∈MOD`(L). In
particular: a theory T is linear iff LindTT ∈MOD`(L)

For proof just recall that: [a]F ≤A∗ [b]F iff a→A b ∈ F.
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Semilinear implications and semilinear logics

Definition 5.3
We say that→ is semilinear if

`L = |=MOD`(L).

We say that L is semilinear if it has a semilinear implication.

(Weakly implicative) semilinear logics are the
logics of linearly ordered matrices.
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Characterization of semilinearity via the Linear
Extension Property LEP

Definition 5.4
We say that a L has the Linear Extension Property LEP if linear
theories form a base of Th(L), i.e. for every theory T ∈ Th(L)
and every formula ϕ ∈ FmL \ T, there is a linear theory T ′ ⊇ T
such that ϕ /∈ T ′.

Theorem 5.5
Let L be a weakly implicative logic. TFAE:

1 L is semilinear.
2 L has the LEP.
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The proof

1→2: If T 0L χ, then there is a B = 〈A,F〉 ∈MOD`(L) and a
B-evaluation e s.t. e[T] ⊆ F and e(χ) 6∈ F. We define
T ′ = e−1[F]: it is a theory (due to Lemma 1.5), T ⊆ T ′, and
T ′ 0L χ. Take ϕ,ψ and assume w.l.o.g. that e(ϕ) ≤B e(ψ), thus
e(ϕ→ ψ) ∈ F, i.e. ϕ→ ψ ∈ T ′.

2→1: assume that Γ 0L ϕ and set T = ThL(Γ). Then there is a
linear theory T ′ ⊇ T such that T ′ 0L ϕ.

Take Lindenbaum–Tarski matrix LindTT′ and note that
LindTT′ ∈MOD`(L) (due to Lemma 5.2). Then take evaluation
e(v) = [v]T′ and observe that e[Γ] ⊆ e[T ′] = [T ′]T′ and as ϕ /∈ T ′

we get e(ϕ) /∈ [T ′]T′ (due to Lemma 1.15).

Petr Cintula and Carles Noguera Abstract Algebraic Logic – 5th lesson



Semilinearity Property SLP and its transfer

Definition 5.6
We say that a L has the Semilinearity Property SLP if the
following meta-rule is valid:

Γ, ϕ→ ψ `L χ Γ, ψ → ϕ `L χ

Γ `L χ
.

Theorem 5.7
Assume that L satisfies the SLP. Then for each L-algebra A
and each set X ∪ {a, b} ⊆ A we have:

Fi(X, a→ b) ∩ Fi(X, b→ a) = Fi(X).

To prove the non-trivial direction we show that for each t /∈ Fi(X)
we have t /∈ Fi(X, a→ b) or t /∈ Fi(X, b→ a). We distinguish two
cases:
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1. proof of the transfer when A is countable.

Assume, w.l.o.g. that Var contains {vz | z ∈ A} and define:

Γ = {vz | z ∈ Fi(X)} ∪
⋃
〈c,n〉∈L

{c(vz1 , . . . , vzn)↔ vcA(z1,...,zn) | zi ∈ A}.

Clearly, Γ 0L vt (because for the A-evaluation e(vz) = z:
e[Γ] ⊆ Fi(X) and e(vt) 6∈ Fi(X)). Thus by the SLP (w.l.o.g.):
Γ, va → vb 0L vt. We define a theory T ′ = ThL(Γ, va → vb) and a
mapping h : A→ FmL/ΩT ′ as h(z) = [vz]T′ . We show that h is a
homomorphism:

h(cA(z1, . . . , zn)) = [vcA(z1,...,zn)]T′ = [c(vz1 , . . . , vzn)]T′

= cFmL/ΩT′([vz1 ]T′ , . . . , [vzn ]T′)

= cFmL/ΩT′(h(z1), . . . , h(zn)).

Thus F = h−1([T ′]T′) ∈ F iL(A) (via Lemma 1.5) and
X ∪ {a→ b} ⊆ F and t 6∈ F, i.e. t /∈ Fi(X, a→ b).
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2. proof of the transfer when A is uncountable – 1

Set Var′ = {vz | z ∈ A} ⊇ Var; we define a logic L′ in L′ with the
same connectives as L and variables from Var′. If we show that
L′ has the SLP we can repeat the constructions from the first
part of this proof to complete the proof.

Let AS be a presentation of L (note that each rule of AS has
countably many premises) and define:

AS ′ = {σ[X]�σ(ϕ) | X�ϕ ∈ AS and σ is an L′-subst.} L′ = `AS′

Observe that Γ `L′ ϕ iff there is a countable set Γ′ ⊆ Γ st.
Γ′ `L′ ϕ (clearly any proof in AS ′ has countably many leaves,
because all of its rules have countably many premises). Next
observe that L′ is a conservative expansion of L (consider the
substitution σ sending all variables from Var to themselves and
the rest to a fixed p ∈ Var, take any proof of ϕ from Γ in AS ′ and
observe that the same tree with labels ψ replaced by σψ is a
proof of ϕ from Γ in L).
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2. proof of the transfer when A is uncountable – 2

Now we show that L′ has the SLP: assume that Γ, ϕ→ ψ `L′ χ
and Γ, ψ → ϕ `L′ χ.

Then there is a countable subset Γ′ ⊆ Γ st. Γ′, ϕ→ ψ `L′ χ and
Γ′, ψ → ϕ `L′ χ. Let Var0 be the variables occurring in
Γ′ ∪ {ϕ,ψ, χ} and g a bijection on Var′ st. g[Var0] ⊆ Var

Let σ be the L′-substitution induced by g and σ−1 its inverse.
Note that: σ[Γ′] ∪ {σϕ, σψ, σχ} ⊆ FmL, σ[Γ′], σϕ→ σψ `L′ σχ
and σ[Γ′], σψ → σϕ `L′ σχ.

As L′ expands L conservatively, we have σ[Γ′], σϕ→ σψ `L σχ
and σ[Γ′], σψ → σϕ `L σχ. Thus σ[Γ′] `L σχ (by SLP of L).

Thus also σ[Γ′] `L′ σχ; σ−1[σ[Γ′]] `L′ σ
−1(σχ) i.e., Γ′ `L′ χ.
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Properties of linear filters

Lemma 5.8
Let A an L-algebra and F a linear filter. Then the set
[F,A] = {G ∈ F iL(A) | F ⊆ G} is linearly ordered by inclusion.

Proof.
Take G1,G2 ∈ [F,A] and elements a1 ∈ G1 \G2 and a2 ∈ G2 \G1.
Assume w.l.o.g. that a1 ≤〈A,F〉 a2. Thus also a1 →A a2 ∈ F ⊆ G1
and so by (MP) also a2 ∈ G1—a contradiction.

Lemma 5.9
Linear filters are finitely ∩-irred. i.e. MOD`(L) ⊆MOD∗(L)RFSI.

Proof.
Let F ∈ F iL(A) be a linear filter and F = G1 ∩G2. Then G1,G2 ∈
[F,A] which is linearly ordered by inclusion, therefore F = G1 or
F = G2. The second claim follows from Theorem 2.6.
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Characterization of semilinear logics

Theorem 5.10
Let L be a weakly implicative logic. TFAE:

1 L is semilinear.
2 L has the LEP.

If L is finitary the list can be expanded by:

3 L has the SLP.
4 L has the transferred SLP.
5 Linear filters coincide with finitely ∩-irreducible ones in

each L-algebra.
6 MOD∗(L)RFSI = MOD`(L).
7 MOD∗(L)RSI ⊆MOD`(L).

(Every semilinear logic enjoys properties 3.–7.)
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The proof

1↔2: Theorem 5.5

2→3: assume that T 0L χ, let T ′ ⊇ T be a linear theory s.t.
T ′ 0L χ. Assume w.l.o.g. that T ′ `L ϕ→ ψ, then obviously
T, ϕ→ ψ 0L χ.

3→4: Theorem 5.7.

4→5: let A be an L-algebra. One direction is Lemma 5.9.
Converse one: assume that F is not linear, i.e., there are
a, b ∈ A st. a→ b /∈ F and b→ a /∈ F. Thus F ( Fi(F, a→ b)
and F ( Fi(F, b→ a) and so Fi(F, a→ b) ∩ Fi(F, b→ a) =
Fi(F) = F, i.e., F is finitely ∩-reducible.

5→6: due to Theorem 2.6.

6→7: trivial consequence.

7→1: due to Theorem 2.8. Note only here we need finitarity
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Classes of semilinear logics

Corollary 5.11
Every regularly implicative semilinear logic is also
Rasiowa-implicative.

Proof.
Trivially: ϕ,ψ → ϕ ` ψ → ϕ and from regularity also:
ϕ,ϕ→ ψ ` ψ → ϕ. Thus, by the SLP, we derive ϕ ` ψ → ϕ.

Example 5.12

�
≤
3 (the degree-preserving version of �3) is is weakly implicative

semilinear logic but it is not algebraically implicative.

Example 5.13
Logic of linear residuated lattices is algebraically implicative
semilinear logic but it is not regularly implicative.
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Intuitionistic logic is not semilinear

Example 5.14
Intuitionistic logic is not semilinear w.r.t. any implication.

Corollary 5.15
All axiomatic extensions of a semilinear logic are semilinear too.

If L can be axiomatically extended to IPC, then it is not
semilinear.
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The least semilinear extension

Corollary 5.16
The intersection of a family of semilinear logics in the same
language is a semilinear logic.

As Inc is trivially semilinear we can soundly define:

Definition 5.17 (Logic L`)

Given a weakly implicative logic L, we denote by L` the least
semilinear logic extending L.

Proposition 5.18

If L is a finitary weakly implicative logic, then so is L`.
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The least semilinear extension—semantics

Proposition 5.19

Let L be a weakly implicative logic. Then L` = |=MOD`(L) and
MOD`(L`) = MOD`(L).

Proof.

Let L′ be any extension of L, then MOD`(L′) ⊆MOD`(L). Thus
in particular:

MOD`(L`) ⊆MOD`(L) and so |=MOD`(L) ⊆ |=MOD`(L`) = L`

As |=MOD`(L) is clearly semilinear we have the first claim.
The second inclusion of the second claim is trivial

(as K ⊆MOD∗(|=K))
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The least semilinear extension—axiomatization

Theorem 5.20 (Axiomatization of L`)
Let L be a finitary p-disjunctional weakly implicative logic. Then
L` is the extension of L with the axiom(s):

(P∇) `L (ϕ→ ψ)∇ (ψ → ϕ).

Proof.

Using the previous proposition we know that L` = |=MOD`(L).
The proof is completed by Theorem 4.37; we only need to
observe that a matrix A ∈MOD`(L) iff A |= P, where P is the
positive clause F(ϕ→ ψ) ∨ F(ψ → ϕ).

The axiom(s) (P∇) is (are) called the prelinearity axiom(s).

Petr Cintula and Carles Noguera Abstract Algebraic Logic – 5th lesson



Semilinearity and (generalized) disjunction

How to proceed if we do not know any p-disjunction of L?

Idea: choose a suitable p-protodisjunction ∇, extend L to L∇,
and proceed as above.

Problem: what if L∇ 6⊆ L`? To overcome it, we define:

(MP∇) ϕ→ ψ,ϕ∇ ψ `L ψ and ϕ→ ψ,ψ ∇ ϕ `L ψ.

Proposition 5.21
Let ∇ be a p-protodisjunction in L.

1 If L is p-disjunctional, than (MP∇) is satisfied.
2 If L is semilinear, than (P∇) is satisfied.

Proof.
1. Using PCP for ϕ,ϕ→ ψ ` ψ and ψ,ϕ→ ψ ` ψ.
2. Using SLP for ϕ→ ψ `L (ϕ→ ψ)∇ (ψ → ϕ) and

ψ → ϕ `L (ϕ→ ψ)∇ (ψ → ϕ)).
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(P∇) and (MP∇): natural binding conditions – 1

Lemma 5.22
Let ∇ be a p-protodisjunction and A an L-algebra.

1 If L fulfils (MP∇), then each linear filter in A is ∇-prime.

2 If L fulfils (P∇), then each ∇-prime filter in A is linear.

Proof.

1. Assume that F is linear (a→A b ∈ F or b→A a ∈ F) and
a∇A b ⊆ F. Thus from (MP∇) we obtain: b ∈ F or a ∈ F.

2. Assume that F is not linear, i.e. there are elements a, b st.
x = a→A b 6∈ F and y = b→A a 6∈ F. From (P∇) we obtain
x∇A y = (a→A b)∇A (b→A a) ⊆ F, i.e., F is not ∇-prime.
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(P∇) and (MP∇): natural binding conditions – 2

Theorem 5.23 (Interplay of p-disjunctions and semilinearity)
Let L be a finitary and ∇ a p-protodisjunction. TFAE:

1 L is p-disjunctional and satisfies (P∇).
2 L is semilinear and satisfies (MP∇).

Thus in particular:
If L satisfies (P∇) and (MP∇): L is semilinear iff it is
p-disjunctional.
If L is p-disjunctional: L is semilinear iff L satisfies (P∇).
If L is semilinear: L is p-disjunctional iff L satisfies (MP∇).

Proof.
(MP∇) follows from Proposition 5.21. From (P∇) we know that
∇-prime theories are linear and as we have PEP, we get LEP.
The converse direction is analogous.
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Corollaries

Corollary 5.24
Let L be a finitary logic and ∇ a p-protodisjunction satisfying
(MP∇). Then L` is the extension of L∇ by (P∇).

Proof.

Since L∇ + (P∇) is an axiomatic extension of L∇, ∇ remains a
p-disjunction there. Thus, by Theorem 5.23, it is a semilinear
logic.

Let L′ be a finitary semilinear extension of L. Clearly L′ satisfies
(MP∇) as well and thus by Theorem 5.23 it is a p-disjunctional
logic and satisfies (P∇). Thus L∇ ⊆ L′ and so

L∇ + (P∇) ⊆ L′ + (P∇) = L′.
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Axiomatization of expansions

Corollary 5.25
Let L1 be a semilinear logic with a p-protodisjunction which
satisfies (MP∇) and L2 its finitary weakly implicative expansion
by a set of consecutions C. TFAE:

L2 is semilinear.

Γ∇ χ `L2 ϕ∇χ for each consecution Γ � ϕ ∈ C.

Corollary 5.26
Let L be a semilinear logic with a p-protodisjunction which
satisfies (MP∇). Then all its weakly implicative axiomatic
expansions are semilinear as well.
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Lattice-disjunctive logics

Definition 5.27
We say that L with connective ∨ in its language is
lattice-disjunctive if ∨ is a disjunction and:

(∨1) `L ϕ→ ϕ ∨ ψ
(∨2) `L ψ → ϕ ∨ ψ
(∨3) ϕ→ χ, ψ → χ `L ϕ ∨ ψ → χ.

Proposition 5.28

Let L be a finitary lattice-disjunctive logic. Then: L` is the
extension of L∨ by any of these axioms:

(P∨) `L (ϕ→ ψ) ∨ (ψ → ϕ)
(lin∨) `L (χ→ ϕ ∨ ψ)→ (χ→ ϕ) ∨ (χ→ ψ).
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Completeness w.r.t. densely ordered matrices

Definition 5.29 (Dense filter)
A filter F in A is dense if it is linear and for every a, b ∈ A if
a <A b there is z ∈ A st. a <A z and z <A b.
A matrix A is dense linear matrix, A ∈MODδ(L), if it is reduced
and F is dense (equivalently: if ≤A is a dense order).

Definition 5.30 (Density Property)
Logic L with has p-protodisjunction ∇ has

Density Property DP w.r.t. ∇ if for any set of formulae
Γ ∪ {ϕ,ψ, χ} and any variable p not occurring them:
Γ `L (ϕ→ p)∇ (p→ ψ)∇ χ implies Γ `L (ϕ→ ψ)∇ χ.
Dense Extension Property DEP if every set of formulae Γ
st. Γ 0L ϕ and there are infinitely many variables not
occurring in Γ can be extended into a dense theory T ⊇ Γ
st. T 0L ϕ.
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Characterization of dense completeness

Proposition 5.31
Any L with DEP:

1 is semilinear and
2 enjoys DP for any p-protodisjunction ∇ satisfying (MP∇)

Theorem 5.32 (Characterization of dense completeness)

Let L be a weakly implicative logic. TFAE
1 `L = |=MODδ(L).
2 L has the DEP.

If furthermore L is finitary semilinear disjunctional logic, then
we can add:

3 L has the DP.
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Completeness w.r.t. arbitrary class of chains

Convention
From now on assume that L is an algebraically implicative
semilinear logic and K a class of L-chains.

Definition 5.33 (Completeness properties)
We say that L has the property of:

Strong K-completeness, SKC for short, when for every set
of formulae Γ ∪ {ϕ}: Γ `L ϕ iff Γ |=K ϕ.

Finite strong K-completeness, FSKC for short, when for
every finite set of formulae Γ ∪ {ϕ}: Γ `L ϕ iff Γ |=K ϕ.

K-completeness, KC for short, when for every formula ϕ:
`L ϕ iff |=K ϕ.
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Algebraic characterization of completeness properties

Theorem 5.34
1 L has the KC if, and only if, V(ALG∗(L)) = V(K).

2 L has the FSKC if, and only if, Q(ALG∗(L)) = Q(K).

3 L has the SKC if, and only if, ALG∗(L) = ISPσ-f (K).

Proof.
1. ⇒: take an arbitrary equation ϕ ≈ ψ: then |=ALG∗(L) ϕ ≈ ψ
iff `L ϕ ↔ ψ iff |=K ϕ ↔ ψ iff |=K ϕ ≈ ψ. Therefore ALG∗(L)
and K satisfy the same equations and hence they generate the
same variety.
⇐: `L ϕ iff |=ALG∗(L) µ(ϕ) ≈ ν(ϕ) for each µ ≈ ν ∈ T iff
|=K µ(ϕ) ≈ ν(ϕ) for each µ ≈ ν ∈ T iff |=K ϕ.
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Algebraic characterization of completeness properties

Theorem 5.34
1 L has the KC if, and only if, V(ALG∗(L)) = V(K).

2 L has the FSKC if, and only if, Q(ALG∗(L)) = Q(K).

3 L has the SKC if, and only if, ALG∗(L) = ISPσ-f (K).

Proof.
The remaining points are proved analogously using that quasi-
varieties are characterized by quasiequations, and the classes
closed under the operator ISPσ-f are characterized by gener-
alized quasiequations with countably many premises (we can
omit this operator on the left side of the equation because that
ALG∗(L) is closed under ISPσ-f ).
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Characterization of strong completeness

Theorem 5.35 (Characterization of strong completeness)
Let L be a finitary lattice-disjunctive logic. TFAE:

1 L has the SKC.

2 Every non-trivial countable member of ALG∗(L)RFSI is
embeddable into some member of K.

3 Every countable member of ALG∗(L)RSI is embeddable
into some member of K.
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A technical lemma

Definition 5.36 (Directed set of formulae)
A set of formulae Ψ is directed if for each ϕ,ψ ∈ Ψ there is
χ ∈ Ψ such that both ϕ→ χ and ψ → χ are provable in L (we
call χ an upper bound of ϕ and ψ).

Lemma 5.37
Assume that L is finitary and has the SKC. Then for every set
of formulae Γ and every directed set of formulae Ψ the following
are equivalent:

Γ 0L ψ for each ψ ∈ Ψ.
There is a algebra A ∈ K and an A-evaluation e such that
e[Γ] ⊆ F and e[Ψ] ∩ F = ∅.
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Proof of 1→2

Take a countable A ∈ ALG∗(L)RFSI with filter F. Consider a set
of variables {va | a ∈ A} and sets of formulae:

Γ = {c(va1 , . . . , van)↔ vcA(a1,...,an) | 〈c, n〉 ∈ L and a1, . . . , an ∈ A},

Ψ = {va1 ∨ . . . ∨ van | n ∈ N and a1, . . . , an ∈ A \ F}.

Ψ is directed and Γ 0L ψ for each ψ ∈ Ψ (set e(va) = a: clearly
e[Γ] ⊆ F and if a1 ∨ . . . ∨ an ∈ F, then as F is prime we have:
ai ∈ F for some i—a contradiction).

Using Lemma 5.37 we get an algebra B ∈ K with filter G and a
B-evaluation e st. e[Γ] ⊆ G and e(ψ) /∈ G for each ψ ∈ Ψ.

Define homomorphism f : A→ B as f (a) = e(va). We show it is
one-one: take a, b ∈ A st. a 6= b and w.l.o.g. a→A b /∈ F. Thus
f (a)→B f (b) = e(va)→B e(vb) = e(va→Ab) /∈ G, i.e. f (a) 6= f (b).
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Proof of 3→1

Suppose that for some Γ and ϕ we have Γ 0L ϕ. Then, since L
is finitary, by Theorem 5.10, there are 〈A,F〉 ∈MOD∗(L)RSI and
e such that e[Γ] ⊆ F and e(ϕ) /∈ F. Let B be the countable
subalgebra of A generated by e[FmL]. Consider the submatrix
〈B,B ∩ F〉 ∈MOD`(L). B is not necessarily subdirectly
irreducible but it is representable as a subdirect product of a
family of {Ci | i ∈ I} ⊆ ALG∗(L)RSI; let Gi be their corresponding
filters and let α be the representation homomorphism. It is clear
that e[Γ] ⊆ B∩F and e(ϕ) /∈ B∩F. There is some j ∈ I such that
(πj ◦ α)(e(ϕ)) /∈ Gj. Cj is a countable member of ALG∗(L)RSI, so
by the assumption there is a matrix 〈C,G〉 ∈MOD`(L) with
C ∈ K and an embedding f : Cj ↪→ C, and hence, using this
model and the evaluation f ◦ πj ◦ α ◦ e, we obtain Γ 6|=K ϕ.
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Characterization of finite strong completeness – 1

Theorem 5.38 (Characterization of finite strong completeness)

If L is finitary, then the following are equivalent:
1 L satisfies the FSKC.
2 Every L-chain in embeddable into PU(K).

Corollary 5.39
Assume that L is finitary and enjoys the FSKC. Then L has the
SPU(K)C.
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Characterization of finite strong completeness – 2

A finite subset X of an L-algebra A is partially embeddable into
an L-algebra B if there is a one-to-one mapping f : X → B st. for
each 〈c, n〉 ∈ L and each a1, . . . , an ∈ X if cA(a1, . . . , an) ∈ X,
then f (cA(a1, . . . , an)) = cB(f (a1), . . . , f (an)).

A class K is partially embeddable into K′ if every finite subset of
every member of K is partially embeddable into a member of K′

Theorem 5.40
Let L be a finitary lattice-disjunctive logic with a finite language
L. Then the following are equivalent:

1 L has the FSKC.
2 Every non-trivial member of ALG∗(L)RFSI is partially

embeddable into K.
3 Every countable member of ALG∗(L)RSI is partially

embeddable into K.
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The proof

Take a A ∈ ALG∗(L)RFSI with filter F and a finite set B ⊆ A and
define B′ = B ∪ {a→A b | a, b ∈ B}.
Consider a set of variables {va | a ∈ B′}, a formula ϕ and set Γ:

ϕ =
∨

a∈B′\F

va

Γ = {c(va1 , . . . , van)↔ vcA(a1,...,an) |〈c, n〉 ∈ L and

a1, . . . , an, cA(a1, . . . , an) ∈ B′}.

Observe that Γ is finite and Γ 0L ϕ.
Thus, by the FSKC, there is C ∈ K, with filter G, and a
C-evaluation e such that e[Γ] ⊆ G and e(ϕ) /∈ G.
Define a partial homomorphism f : B→ C as f (a) = e(va). We
show it is one-one in the same way as before.
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Completeness w.r.t. the class F of all finite L-chains

Proposition 5.41
Assume that L is finitary and lattice-disjunctive. TFAE:

1 L enjoys the SFC.
2 All L-chains are finite.
3 There is n ∈ N st. each L-chain has at most n elements.
4 There is n ∈ N st. `L

∨
i<n(xi → xi+1).

Proof.
1→2: From Theorem 5.35 we know that every countable
L-chain is embeddable into some member of F , thus there are
no infinite countable L-chains and so by the downward
Löwenheim–Skolem Theorem there are no infinite chains.
2→3: If all the algebras in ALG∗(L) are finite then there must a
bound for their length, because otherwise by means of an
ultraproduct we could build an infinite one.
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Completeness w.r.t. the class F of all finite L-chains

Proposition 5.41
Assume that L is finitary and lattice-disjunctive. TFAE:

1 L enjoys the SFC.
2 All L-chains are finite.
3 There is n ∈ N st. each L-chain has at most n elements.
4 There is n ∈ N st. `L

∨
i<n(xi → xi+1).

Proof.
3→4: Take an arbitrary L-chain A, with filter F, and elements
a0, . . . , an ∈ A. Since A has at most n elements it is impossible
that a0 > a1 > · · · > an, thus there is some k such that ak ≤ ak+1,
i.e. ak →A ak+1 ∈ F, and hence it satisfies the formula.
4→2: Take an L-chain A, with filter F and elements
a0, . . . , an ∈ A st. a0 > a1 > · · · > an. Then ai →A ai+1 /∈ F, for
every i < n, and as F is ∨-prime we get 6|=A

∨
i<n(xi → xi+1).
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Completeness w.r.t. the class F of all finite L-chains

Proposition 5.41
Assume that L is finitary and lattice-disjunctive. TFAE:

1 L enjoys the SFC.
2 All L-chains are finite.
3 There is n ∈ N st. each L-chain has at most n elements.
4 There is n ∈ N st. `L

∨
i<n(xi → xi+1).

Corollary 5.42
For a finitary lattice-disjunctive logic L and a natural number n,
the axiomatic extension L≤n obtained by adding the schema∨

i<n(xi → xi+1), is a semilinear logic which is strongly complete
with respect the L-chains of length less than or equal to n.
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Summary: Abstract Algebraic Logic

In this course we have tried to demonstrate that AAL provides
powerful tools to:

understand the several ways by which a logic can be given
an algebraic semantics
build a general and abstract theory of non-classical logics
based on their relation to algebras
understand the rôle of connectives in (non-)classical logics
classify non-classical logics
find general results connecting logical and algebraic
properties (bridge theorems)
generalize properties from syntax to semantics (transfer
theorems)
advance the study of particular (families of) non-classical
logics by using the abstract notions and results
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