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Motivation

Complexity issues

Proving a complexity of the decision problem of a (substructural)
logic is often a tedious task usually based on a detailed inspection
of the underlying (sequent) calculus.

Such results often rely on proof theoretic methods and
presuppose that the logic under consideration possesses a good
sequent calculus for which cut-elimination holds.

A typical example is MALL which is known to be
PSPACE-complete (Lincoln et al.). The proof is very long and
technical.

Can we have uniform methods which work for wider classes of
substructural logics?
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Substructural logics

Base logic

Our base logic is the full Lambek calculus FL
(multiplicative-additive fragment of noncommutative intuitionistic
linear logic).

Multiplicative connectives: ·, \, /,1,0,
Additive connectives: ∨,∧,⊥,>.
FL is given by a single-conclusion sequent calculus:

α⇒ α ⇒ 1 0⇒

Γ⇒ α Π, α,Σ⇒ ϕ
(cut)

Π, Γ,Σ⇒ ϕ

Γ, α,Σ⇒ ϕ Γ, β,Σ⇒ ϕ
(∨⇒)

Γ, α ∨ β,Σ⇒ ϕ

Γ⇒ ϕ
(⇒∨)

Γ⇒ ϕ ∨ ψ
Γ⇒ ψ

(⇒∨)
Γ⇒ ϕ ∨ ψ

...
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Substructural logics

Substructural logics

Definition
A substructural logic is an extension of FL by a set of rules (axioms)
closed under substitutions having the form:

Γ1 ⇒ ϕ1 · · · Γn ⇒ ϕn

Γ0 ⇒ ϕ0

Example
Γ, α, α,∆⇒ ϕ

(c)
Γ, α,∆⇒ ϕ

Γ, α, β,∆⇒ ϕ
(e)

Γ, β, α,∆⇒ ϕ

Γ,∆⇒ ϕ
(i)

Γ, α,∆⇒ ϕ
Γ⇒ (o)

Γ⇒ α

MALL = InFLe = FL+(e)+(α \0) \0⇒ α,
Int = FL+(e)+(c)+(i)+(o).
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Substructural logics

Algebraic semantics

Definition
An FL-algebra is an algebra A = 〈A,∧,∨, ·, /, \,0,1〉, where
〈A,∧,∨〉 is a lattice,
〈A, ·,1〉 is a monoid,
0 is an arbitrary element and
the following condition holds:

x · y ≤ z iff x ≤ z/y iff y ≤ x \ z .

Fact
The class of FL-algebras form a variety (i.e., an equational class).
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Substructural logics

Algebraizability

FL is algebraizable and its equivalent algebraic semantics is the
variety of FL-algebras.

Thus there is a dual isomorphism Q between the lattice of
substructural logics and the sub-quasivariety lattice of
FL-algebras.

Let L be a substructural logic. Then we have the following
equivalences:

`L ϕ iff |=Q(L) 1 = 1 ∧ ϕ [1 ≤ ϕ] .

|=Q(L) ϕ = ψ iff `L (ϕ \ψ) ∧ (ψ \ϕ) .

By complexity of a substructural logic L we mean the complexity
of its set of theorems. Due to algebraizability it is the same as the
complexity of the equational theory for Q(L).
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Substructural logics

Correspondence between logic and algebra

Logic Algebra
logic FL variety FL
axiom ϕ identity 1 ≤ ϕ

inference rule (r ) quasi-identity (r ·)
axiomatic extension L of FL subvariety V(L) of FL

rule extension L of FL subquasivariety Q(L) of FL
consistent nontrivial

A logic L is consistent if there ϕ such that 6`L ϕ.
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Disjunction property (DP)

Disjunction Property

Definition
Let L be a substructural logic. Then L satisfies the disjunction property
(DP) if for all formulas ϕ,ψ

`L ϕ ∨ ψ implies `L ϕ or `L ψ.

Analogously, we say the a quasivariety K of FL-algebras has the DP if

|=K 1 ≤ ϕ ∨ ψ implies |=K 1 ≤ ϕ or |=K 1 ≤ ψ.
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Why is the DP interesting?

DP and complexity

Theorem (Chagrov, Zakharyaschev)
Every consistent superintuitionistic logic having the DP is
PSPACE-hard.

Theorem
Every consistent substructural logic having the DP is PSPACE-hard.

Proof.
By reduction from the set of true quantified Boolean formulas.

Remark
One cannot use the coding of quantifiers from MALL. It does not work
for some logics having the DP, e.g. FL + αβ ∧ αγ ⇒ α(β ∧ γ).
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How to prove the DP?

Proof-theoretic proof of DP

How to prove the DP?

If our logic L enjoys the cut-elimination then one can use the
following.

The very last rule in every cut-free proof of ⇒ ϕ ∨ ψ has to be
(⇒∨). Thus either ⇒ ϕ or ⇒ ψ is provable.

What can we do if our logic does not have a cut-free presentation?
E.g. if L is the extension of FL by α \αβ ⇒ β and βα/α⇒ β.
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Rostislav Horčík (ICS) ALCOP 2011 11 / 23



How to prove the DP?

Proof-theoretic proof of DP

How to prove the DP?

If our logic L enjoys the cut-elimination then one can use the
following.

The very last rule in every cut-free proof of ⇒ ϕ ∨ ψ has to be
(⇒∨). Thus either ⇒ ϕ or ⇒ ψ is provable.

What can we do if our logic does not have a cut-free presentation?
E.g. if L is the extension of FL by α \αβ ⇒ β and βα/α⇒ β.
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How to prove the DP?

Algebraic characterization of the DP

Definition
An FL-algebra A is called well-connected if for all x , y ∈ A, x ∨ y ≥ 1
implies x ≥ 1 or y ≥ 1.

Theorem
Let L be a substructural logic. Then L has the DP iff the following
condition holds:
(*) for every A ∈ Q(L) there is a well-connected FL-algebra C ∈ Q(L)

such that A is a homomorphic image of C.

Using this theorem we would like to find a large class of quasi-varieties
of FL-algebras having the DP.

Rostislav Horčík (ICS) ALCOP 2011 12 / 23
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How to prove the DP?

`-monoidal quasi-identities (rules)

Definition
An `-monoidal quasi-identity is a quasi-identity

t1 ≤ u1 and . . . and tn ≤ un =⇒ t0 ≤ u0 ,

where ti is in the language {·,∧,∨,1} and ui is either 0 or in the
language {·,∧,∨,1}.

Accordingly, an `-monoidal rule is a rule

Γ1 ⇒ ϕ1 · · · Γn ⇒ ϕn

Γ0 ⇒ ϕ0

where Γi is a sequence of formulas in the language {·,∧,∨,1} and ϕi
is either empty or a formula in the language {·,∧,∨,1}.
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How to prove the DP?

Useful algebra

Fix a quasivariety K of FL-algebras defined by `-monoidal
quasi-identities.

Lemma

For any nontrivial algebra A ∈ K, there is an integral FL-algebra B ∈ K
which has a unique subcover of 1.

Proof.
Let a ∈ A such that a < 1 and B = {an | n ≥ 0}. The submonoid B
gives rise to an FL-algebra B by setting

x → y =
∨
{z ∈ B | xz ≤ y}

0B = 1 or a (depending whether |=A 1 ≤ 0 or not).
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How to prove the DP?

Construction of a well-connected algebra

1A

A

s

1B

B
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How to prove the DP?

Construction of a well-connected algebra

A× B belongs to K.

σ[A× B] is forms a subalgebra of A× B with respect to the
language {·,∧,∨,1,0}

σ[A× B] is an image of an interior operator σ.

Moreover, we have σ(x)σ(y) ≤ σ(xy), i.e., σ is a conucleus.

Thus σ[A× B] is an FL-algebra (x \σ y = σ(x \ y)).

σ[A× B] is well-connected.

A is a homomorphic image of σ[A× B].
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Thus σ[A× B] is an FL-algebra (x \σ y = σ(x \ y)).

σ[A× B] is well-connected.

A is a homomorphic image of σ[A× B].
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How to prove the DP?

DP for `-monoidal extensions

Theorem
Every quasivariety of FL-algebras defined by `-monoidal
quasi-identities has the DP.
Every extension of FL by `-monoidal rules has the DP.

Example
Every extension of FL by structural rules (e), (c), (i), (o) enjoys the
DP.
The extension of FL by the rule

⇒ ϕ · ψ
⇒ ϕ

has the DP. It defines a proper subquasivariety of FL
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How to prove the DP?

M2-axioms

Note that xy/y = x = y \ yx are equivalent to xz = yz ⇒ x = y
and zx = zy ⇒ x = y .

Definition (ClassM2)

Let V be a set of variables. Given a set T of terms, let T ◦ be its closure
under the operations {·,∧,∨,1}. Likewise, let T • be its closure under
the following rules:

0 ∈ T •, V◦ ⊆ T •;
if t ,u ∈ T • then t ∧ u ∈ T •;
if t ∈ T ◦ and u ∈ T •, then t \u,u/t ∈ T •.

We defineM1 = V• andM2 =M•1. An identity t ≤ u belongs toM2 if
t ∈M◦1 and u ∈M2. Analogously, α⇒ β ∈M2 if α ∈M◦1 and
β ∈M2.
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How to prove the DP?

Examples ofM2-axioms

Axiom Name
αβ ⇒ βα exchange (e)
α⇒ 1 integrality, left weakening (i)
0⇒ α right weakening (o)
α⇒ αα contraction (c)
αn ⇒ αm knotted axioms (n,m ≥ 0)

α ∧ (α \0)⇒ no-contradiction
αβ/β ⇒ α, α \αβ ⇒ β cancellativity

α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ) distributivity
((α ∧ β) ∨ γ) ∧ β ⇒ (α ∧ β) ∨ (γ ∧ β) modularity

αβ ∧ αγ ⇒ α(β ∧ γ) (·,∧)-distributivity
α ∧ (βγ)⇒ (α ∧ β)(α ∧ γ) (∧, ·)-distributivity

Rostislav Horčík (ICS) ALCOP 2011 19 / 23



How to prove the DP?

DP for extensions byM2-axioms

Theorem
Every identity inM2 is equivalent in FL to a set of `-monoidal
quasi-identities.

Corollary
Every extension of FL byM2-axioms has the DP.
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How to prove the DP?

Involutive substructural logics

Negations: ∼ϕ = ϕ \0, −ϕ = 0/ϕ.

Double negation elimination laws (DN): ∼−ϕ⇒ ϕ , −∼ϕ⇒ ϕ .

Let L be a substructural logic. Then InL is L+(DN).

Theorem
Every extension of InFL and InFLe (MALL) by inference rules in the
language {∧,∨,1} has the DP.

Example
The distributive extension of InFLe has the DP. Thus the relevance
logic RW has the DP.
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Rostislav Horčík (ICS) ALCOP 2011 21 / 23



How to prove the DP?

Involutive substructural logics

Negations: ∼ϕ = ϕ \0, −ϕ = 0/ϕ.
Double negation elimination laws (DN): ∼−ϕ⇒ ϕ , −∼ϕ⇒ ϕ .

Let L be a substructural logic. Then InL is L+(DN).

Theorem
Every extension of InFL and InFLe (MALL) by inference rules in the
language {∧,∨,1} has the DP.

Example
The distributive extension of InFLe has the DP. Thus the relevance
logic RW has the DP.
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How to prove the DP?

Construction for involutive logics

〈1A, 1〉

〈0A, 1/2〉

〈1A, 1/2〉

〈0A, 0〉

Rostislav Horčík (ICS) ALCOP 2011 22 / 23



How to prove the DP?

Conclusions

Theorem
Let L be a consistent substructural logic. The decision problem for L is
coNP-hard. If L further satisfies the DP, then it is PSPACE-hard.

Corollary

Let L be a consistent extension of FL by `-monoidal inference rules
and/orM2-axioms. Then the decision problem for L is PSPACE-hard.
The same is true also for every consistent extension of InFL or InFLe
by inference rules in the language {∧,∨,1}.

The DP is a sufficient condition for PSPACE-hardness but not a
necessary one. A counterexample is LQ obtained by extending
intuitionistic logic with the law ¬α ∨ ¬¬α.
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