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Introduction

Consider a class of algebras K of the same type which is finitely
axiomatizable.

Th∀(K) denotes the universal theory of K.

A usual way how to prove decidability of Th∀(K) is to establish the
finite embeddability property for K.

Definition
A class of algebras K has the finite embeddability property (FEP) if every
finite partial subalgebra B of any algebra A ∈ K is embeddable into a
finite algebra D ∈ K.
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FEP
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A 6|= Φ =⇒ B = eval. of subterms =⇒ D 6|= Φ .
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A bit of history

McKinsey and Tarski 1946 – FEP for Heyting algebras

Evans 1969 – definition of FEP, a variety has the FEP iff its finitely
presented members are residually finite.

Blok, van Alten 2002 – FEP <=> SFMP, FEP for pocrims, integral
commutative residuated lattices

Blok, van Alten 2005 – FEP for integral residuated ordered groupoids

Problem
Does ROG have the FEP?
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Answer
An affirmative answer was given by Farulewski 2008.

He also proved that the class of residuated distributive lattice-ordered
groupoids has the FEP.

Farulewski’s proof uses methods from proof-theory and also from
algebra.

Recall that ROG forms an algebraic semantics for nonassociative
Lambek calculus NL.

Lemma (Buszkowski 2005)
Let S ∪ {X [Z ]⇒ C} be a finite set of sequents and T the set of all
subformulas occuring in S ∪ {X [Z ]⇒ C}. If S `NL X [Z ]⇒ C, then there
exists an interpolant D ∈ T such that S `NL X [D]⇒ C and
S `NL Z ⇒ D.

Note that Z is a tree of formulas unlike D which is a single formula.
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Residuated distributive lattice-ordered groupoids

Definition
A structure A = 〈A, ·, \, / ≤〉 is called residuated ordered groupoid (rog) if
〈A, ·〉 is a groupoid and for all a, b, c ∈ A:

ab ≤ c iff b ≤ a \ c iff a ≤ c/b .

A residuated distributive lattice-ordered groupoid (rdlog)
A = 〈A,∧,∨, ·, \, /〉 is a rog such that 〈A,∧,∨〉 is a distributive lattice.

Theorem
Every rog A embeds into a rdlog O(A) via x 7→ ↓{x}.

Corollary
FEP for rdlogs =⇒ FEP for rogs.
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FEP for rdlogs
A>

⊥

Dx

γ(x)

σ(x)

γ(x) =
∧
{y ∈ D | x ≤ y}

σ(x) =
∨
{y ∈ D | y ≤ x}

γ[A] = σ[A] = D
x ◦ y = γ(xy)

x
y = σ(x \ y)

x�y = σ(x/y)

D = 〈D,∧,∨, ◦,
,�〉 is a rdlog.

x◦y = γ(xy) ≤ z iff xy ≤ z iff y ≤ x \ z iff y ≤ σ(x \ z) = x
z .
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FEP for rdlogs

Theorem
Let RDLOG be the class of rdlogs. Then RDLOG has the FEP. The
same holds for ROG.

Corollary
The universal theories Th∀(RDLOG), Th∀(ROG) are decidable.

What about computational complexity of Th∀(RDLOG)?

Buszkowski 2005 proved that the set of quasi-inequalities valid in
ROG is in PTIME.

Buszkowski, Farulewski 2008 claim that the quasi-equational theory
of RDLOG is in 2-EXPTIME.

Rostislav Horčík, Zuzana Haniková (ICS) FEP for Residuated Groupoids ALCOP 2013 8 / 16
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Duality for finite bounded distributive lattices

Size of countermodel is doubly exponential in n = |B|.

To represent a finite n-generated distributive lattice L, it suffices to
store its poset of join-irreducibles J (L).

FBDL FPOSop
Stone

Pred

Thus |J (L)| is bounded by 2n − 2 (the number of join-irreducibles in
the free n-generated distributive lattice).
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Relational frames

Definition

A frame is a structure W = 〈W ,≤,R◦〉 where 〈W ,≤〉 is a finite poset and
R◦ ⊆W 3 such that for all x , y , z , x ′, y ′, z ′ ∈W we have

x ≤ x ′ and R◦xyz implies R◦x ′yz ,
y ≤ y ′ and R◦xyz implies R◦xy ′z ,
z ′ ≤ z and R◦xyz implies R◦xyz ′.

Having a finite rdlog A, we define Stone(A) = 〈J (A),≤,R◦〉, where

R◦xyz iff z ≤ xy .

Then Stone(A) is a frame.
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From frames to algebras

Having a frame W, we define Pred(W) = 〈O(W),∩,∪, ·, \, /〉, where

A · B = {z ∈ P | ∃x ∈ A, ∃y ∈ B, R◦xyz} ,
A \C = {y ∈ P | ∀z ∈ P, ∀x ∈ A, R◦xyz =⇒ z ∈ C} ,
C/B = {x ∈ P | ∀z ∈ P, ∀y ∈ B, R◦xyz =⇒ z ∈ C} .

Then Pred(W) is a rdlog.

Theorem
A finite rdlog A is isomorphic to PredStone(A) via µ : A→ PredStone(A)
given by µ(x) = J (A) ∩ ↓{x} for x ∈ A.

To represent an n-generated rdlog A, it suffices to store J (A) of
cardinality m ≤ 2n − 2 and a relation R◦ of size m3.
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To represent an n-generated rdlog A, it suffices to store J (A) of
cardinality m ≤ 2n − 2 and a relation R◦ of size m3.
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NEXPTIME

A problem P is in NEXPTIME if

P = {x | ∃y : 〈x , y〉 ∈ R}

for some binary relation R such that
〈u, v〉 ∈ R implies |v | ≤ 2p(|u|) for some polynomial p,
R is decidable in time polynomial in the size of the given tuple.

Define R as a set of pairs 〈Φ, C〉, where the universal formula Φ is not
valid in RDLOG and C is a frame W together with an evaluation e such
that Pred(W) 6|= Φ[e].

Theorem
The universal theory Th∀(RDLOG) is in coNEXPTIME.
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Modifications

One may add into the signature a unit 1. Then every frame W have
to be endowed with a unary relation U ⊆W such that for all
x , y , z ∈W :

I z ≤ x iff there is u ∈ U such that R◦xuz ,
I z ≤ y iff there is u ∈ U such that R◦uyz .

Any combination of the following structural rules is preserved:

I weakening (x ≤ 1),
I contraction (x ≤ x2),
I exchange (xy = yx).
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Semilinear rdlogs

Definition
A rdlog is semilinear if it is a subdirect product of totally ordered rdlogs.

Theorem

The universal theory of totally ordered algebras in RDLOG is
coNP-complete.

Corollary
The quasi-equational theory of semilinear rdlogs is coNP-complete.
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Open problems

Problem
Is Th∀(RDLOG) coNEXPTIME-complete?

Problem
Does the class of residuated lattice-ordered groupoids have the FEP?
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Thank you!
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