Universal Theory of Residuated Distributive Lattice-Ordered Groupoids and Its Complexity

Rostislav Horčík, Zuzana Haniková

Institute of Computer Science Academy of Sciences of the Czech Republic

ALgebra and COalgebra Meet Proof Theory Utrecht, 18–20 April 2013

• Consider a class of algebras $\mathbb K$ of the same type which is finitely axiomatizable.

- Consider a class of algebras $\mathbb K$ of the same type which is finitely axiomatizable.
- $\operatorname{Th}_{\forall}(\mathbb{K})$ denotes the universal theory of \mathbb{K} .

- Consider a class of algebras $\mathbb K$ of the same type which is finitely axiomatizable.
- $\operatorname{Th}_{\forall}(\mathbb{K})$ denotes the universal theory of \mathbb{K} .
- A usual way how to prove decidability of Th_∀(K) is to establish the finite embeddability property for K.

- Consider a class of algebras $\mathbb K$ of the same type which is finitely axiomatizable.
- $\operatorname{Th}_{\forall}(\mathbb{K})$ denotes the universal theory of \mathbb{K} .
- A usual way how to prove decidability of Th_∀(K) is to establish the finite embeddability property for K.

Definition

A class of algebras \mathbb{K} has the finite embeddability property (FEP) if every finite partial subalgebra **B** of any algebra $\mathbf{A} \in \mathbb{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathbb{K}$.

 $\textbf{A} \not\models \Phi \implies \textbf{B} = \text{eval. of subterms} \implies \textbf{D} \not\models \Phi.$

• McKinsey and Tarski 1946 - FEP for Heyting algebras

- McKinsey and Tarski 1946 FEP for Heyting algebras
- Evans 1969 definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.

- McKinsey and Tarski 1946 FEP for Heyting algebras
- Evans 1969 definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.
- Blok, van Alten 2002 FEP <=> SFMP, FEP for pocrims, integral commutative residuated lattices

- McKinsey and Tarski 1946 FEP for Heyting algebras
- Evans 1969 definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.
- Blok, van Alten 2002 FEP <=> SFMP, FEP for pocrims, integral commutative residuated lattices
- Blok, van Alten 2005 FEP for integral residuated ordered groupoids

- McKinsey and Tarski 1946 FEP for Heyting algebras
- Evans 1969 definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.
- Blok, van Alten 2002 FEP <=> SFMP, FEP for pocrims, integral commutative residuated lattices
- Blok, van Alten 2005 FEP for integral residuated ordered groupoids

Problem

Does \mathbb{ROG} have the FEP?

• An affirmative answer was given by Farulewski 2008.

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.
- Farulewski's proof uses methods from proof-theory and also from algebra.

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.
- Farulewski's proof uses methods from proof-theory and also from algebra.
- \bullet Recall that \mathbb{ROG} forms an algebraic semantics for nonassociative Lambek calculus NL.

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.
- Farulewski's proof uses methods from proof-theory and also from algebra.
- \bullet Recall that \mathbb{ROG} forms an algebraic semantics for nonassociative Lambek calculus NL.

Lemma (Buszkowski 2005)

Let $S \cup \{X[Z] \Rightarrow C\}$ be a finite set of sequents and T the set of all subformulas occuring in $S \cup \{X[Z] \Rightarrow C\}$. If $S \vdash_{NL} X[Z] \Rightarrow C$, then there exists an interpolant $D \in T$ such that $S \vdash_{NL} X[D] \Rightarrow C$ and $S \vdash_{NL} Z \Rightarrow D$.

Note that Z is a tree of formulas unlike D which is a single formula.

Definition

A structure $\mathbf{A} = \langle A, \cdot, \backslash, / \leq \rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot \rangle$ is a groupoid and for all $a, b, c \in A$:

$$ab \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

Definition

A structure $\mathbf{A} = \langle A, \cdot, \backslash, / \leq \rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot \rangle$ is a groupoid and for all $a, b, c \in A$:

$$ab \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

A residuated distributive lattice-ordered groupoid (rdlog) $\mathbf{A} = \langle A, \land, \lor, \cdot, \backslash, \rangle$ is a rog such that $\langle A, \land, \lor \rangle$ is a distributive lattice.

Definition

A structure $\mathbf{A} = \langle A, \cdot, \backslash, / \leq \rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot \rangle$ is a groupoid and for all $a, b, c \in A$:

$$ab \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

A residuated distributive lattice-ordered groupoid (rdlog) $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle \rangle$ is a rog such that $\langle A, \wedge, \vee \rangle$ is a distributive lattice.

Theorem

Every rog **A** embeds into a rdlog $\mathcal{O}(\mathbf{A})$ via $x \mapsto \downarrow \{x\}$.

Definition

A structure $\mathbf{A} = \langle A, \cdot, \backslash, / \leq \rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot \rangle$ is a groupoid and for all $a, b, c \in A$:

$$ab \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

A residuated distributive lattice-ordered groupoid (rdlog) $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, \rangle$ is a rog such that $\langle A, \wedge, \vee \rangle$ is a distributive lattice.

Theorem

Every rog **A** embeds into a rdlog $\mathcal{O}(\mathbf{A})$ via $x \mapsto \downarrow \{x\}$.

Corollary

FEP for rdlogs \implies FEP for rogs.

$$\gamma(x) = \bigwedge \{ y \in D \mid x \le y \}$$

$$\sigma(x) = \bigvee \{ y \in D \mid y \le x \}$$

$$\gamma[A] = \sigma[A] = D$$

 $\gamma(x) = \bigwedge \{ y \in D \mid x \leq y \}$ $\sigma(x) = \bigvee \{y \in D \mid y \le x\}$ $\gamma[A] = \sigma[A] = D$

$$\gamma(x) = \bigwedge \{ y \in D \mid x \le y \}$$

$$\sigma(x) = \bigvee \{ y \in D \mid y \le x \}$$

$$\gamma[A] = \sigma[A] = D$$

$$x \circ y = \gamma(xy)$$

$$x ||y| = \sigma(x \setminus y)$$

$$x /|y| = \sigma(x/y)$$

FEP for rdlogs Α $\gamma(x)$ D X • $\sigma(x)$

$$\gamma(x) = \bigwedge \{ y \in D \mid x \le y \}$$

$$\sigma(x) = \bigvee \{ y \in D \mid y \le x \}$$

$$\gamma[A] = \sigma[A] = D$$

$$x \circ y = \gamma(xy)$$

$$x \backslash y = \sigma(x \setminus y)$$

$$x / \! / y = \sigma(x \setminus y)$$

 $\mathbf{D} = \langle D, \wedge, \lor, \circ, \mathbb{N}, /\!\!/ \rangle$ is a rdlog.

$$\gamma(x) = \bigwedge \{ y \in D \mid x \le y \}$$

$$\sigma(x) = \bigvee \{ y \in D \mid y \le x \}$$

$$\gamma[A] = \sigma[A] = D$$

$$x \circ y = \gamma(xy)$$

$$x \backslash y = \sigma(x \setminus y)$$

$$x / y = \sigma(x \setminus y)$$

 $\mathbf{D} = \langle D, \wedge, \lor, \circ, \mathbb{N}, /\!\!/ \rangle$ is a rdlog.

 $x \circ y = \gamma(xy) \le z$ iff $xy \le z$ iff $y \le x \setminus z$ iff $y \le \sigma(x \setminus z) = x \setminus z$.

Theorem

Let \mathbb{RDLOG} be the class of rdlogs. Then \mathbb{RDLOG} has the FEP. The same holds for \mathbb{ROG} .

Theorem

Let \mathbb{RDLOG} be the class of rdlogs. Then \mathbb{RDLOG} has the FEP. The same holds for \mathbb{ROG} .

Corollary

The universal theories $\operatorname{Th}_{\forall}(\mathbb{RDLOG})$, $\operatorname{Th}_{\forall}(\mathbb{ROG})$ are decidable.

Theorem

Let \mathbb{RDLOG} be the class of rdlogs. Then \mathbb{RDLOG} has the FEP. The same holds for $\mathbb{ROG}.$

Corollary

The universal theories $\operatorname{Th}_{\forall}(\mathbb{RDLOG})$, $\operatorname{Th}_{\forall}(\mathbb{ROG})$ are decidable.

• What about computational complexity of $Th_{\forall}(\mathbb{RDLOG})$?

Theorem

Let \mathbb{RDLOG} be the class of rdlogs. Then \mathbb{RDLOG} has the FEP. The same holds for \mathbb{ROG} .

Corollary

The universal theories $\operatorname{Th}_{\forall}(\mathbb{RDLOG})$, $\operatorname{Th}_{\forall}(\mathbb{ROG})$ are decidable.

- What about computational complexity of $\mathrm{Th}_\forall(\mathbb{RDLOG})$?
- Buszkowski 2005 proved that the set of quasi-inequalities valid in \mathbb{ROG} is in PTIME.

FEP for rdlogs

Theorem

Let \mathbb{RDLOG} be the class of rdlogs. Then \mathbb{RDLOG} has the FEP. The same holds for \mathbb{ROG} .

Corollary

The universal theories $\operatorname{Th}_{\forall}(\mathbb{RDLOG})$, $\operatorname{Th}_{\forall}(\mathbb{ROG})$ are decidable.

- What about computational complexity of $\mathrm{Th}_{\forall}(\mathbb{RDLOG})$?
- Buszkowski 2005 proved that the set of quasi-inequalities valid in \mathbb{ROG} is in PTIME.
- Buszkowski, Farulewski 2008 claim that the quasi-equational theory of \mathbb{RDLOG} is in 2-EXPTIME.

• Size of countermodel is doubly exponential in n = |B|.

- Size of countermodel is doubly exponential in n = |B|.
- To represent a finite *n*-generated distributive lattice **L**, it suffices to store its poset of join-irreducibles $\mathcal{J}(\mathbf{L})$.

- Size of countermodel is doubly exponential in n = |B|.
- To represent a finite *n*-generated distributive lattice L, it suffices to store its poset of join-irreducibles *J*(L).

- Size of countermodel is doubly exponential in n = |B|.
- To represent a finite *n*-generated distributive lattice **L**, it suffices to store its poset of join-irreducibles $\mathcal{J}(\mathbf{L})$.

 Thus |J(L)| is bounded by 2ⁿ - 2 (the number of join-irreducibles in the free n-generated distributive lattice).

Relational frames

Definition

A *frame* is a structure $\mathbf{W} = \langle W, \leq, R_{\circ} \rangle$ where $\langle W, \leq \rangle$ is a finite poset and $R_{\circ} \subseteq W^3$ such that for all $x, y, z, x', y', z' \in W$ we have

- $x \le x'$ and $R_{\circ}xyz$ implies $R_{\circ}x'yz$,
- $y \leq y'$ and $R_{\circ}xyz$ implies $R_{\circ}xy'z$,
- $z' \leq z$ and $R_{\circ}xyz$ implies $R_{\circ}xyz'$.

Relational frames

Definition

A frame is a structure $\mathbf{W} = \langle W, \leq, R_{\circ} \rangle$ where $\langle W, \leq \rangle$ is a finite poset and $R_{\circ} \subseteq W^3$ such that for all $x, y, z, x', y', z' \in W$ we have

- x ≤ x' and R_oxyz implies R_ox'yz,
 y ≤ y' and R_oxyz implies R_oxy'z,
- $z' \leq z$ and $R_{\circ}xyz$ implies $R_{\circ}xyz'$.

Having a finite rdlog **A**, we define $Stone(\mathbf{A}) = \langle \mathcal{J}(\mathbf{A}), \leq, R_{\circ} \rangle$, where

$$R_{\circ}xyz$$
 iff $z \leq xy$.

Then $Stone(\mathbf{A})$ is a frame.

From frames to algebras

Having a frame **W**, we define $Pred(\mathbf{W}) = \langle \mathcal{O}(\mathbf{W}), \cap, \cup, \cdot, \backslash, / \rangle$, where

$$\begin{aligned} A \cdot B &= \{ z \in P \mid \exists x \in A, \exists y \in B, \ R_{\circ} xyz \} , \\ A \setminus C &= \{ y \in P \mid \forall z \in P, \forall x \in A, \ R_{\circ} xyz \implies z \in C \} , \\ C/B &= \{ x \in P \mid \forall z \in P, \forall y \in B, \ R_{\circ} xyz \implies z \in C \} . \end{aligned}$$

Then $Pred(\mathbf{W})$ is a rdlog.

From frames to algebras

Having a frame W, we define $Pred(W) = \langle \mathcal{O}(W), \cap, \cup, \cdot, \backslash, / \rangle$, where

$$A \cdot B = \{ z \in P \mid \exists x \in A, \exists y \in B, R_{\circ}xyz \}, \\ A \setminus C = \{ y \in P \mid \forall z \in P, \forall x \in A, R_{\circ}xyz \implies z \in C \}, \\ C/B = \{ x \in P \mid \forall z \in P, \forall y \in B, R_{\circ}xyz \implies z \in C \}.$$

Then $Pred(\mathbf{W})$ is a rdlog.

Theorem

A finite rdlog **A** is isomorphic to $PredStone(\mathbf{A})$ via $\mu : \mathbf{A} \rightarrow PredStone(\mathbf{A})$ given by $\mu(x) = \mathcal{J}(\mathbf{A}) \cap \downarrow \{x\}$ for $x \in A$.

From frames to algebras

Having a frame W, we define $Pred(W) = \langle \mathcal{O}(W), \cap, \cup, \cdot, \backslash, / \rangle$, where

$$A \cdot B = \{ z \in P \mid \exists x \in A, \exists y \in B, R_{\circ}xyz \}, \\ A \setminus C = \{ y \in P \mid \forall z \in P, \forall x \in A, R_{\circ}xyz \implies z \in C \}, \\ C/B = \{ x \in P \mid \forall z \in P, \forall y \in B, R_{\circ}xyz \implies z \in C \}.$$

Then $Pred(\mathbf{W})$ is a rdlog.

Theorem

A finite rdlog **A** is isomorphic to $PredStone(\mathbf{A})$ via $\mu : \mathbf{A} \rightarrow PredStone(\mathbf{A})$ given by $\mu(x) = \mathcal{J}(\mathbf{A}) \cap \downarrow \{x\}$ for $x \in A$.

To represent an *n*-generated rdlog **A**, it suffices to store $\mathcal{J}(\mathbf{A})$ of cardinality $m \leq 2^n - 2$ and a relation R_\circ of size m^3 .

NEXPTIME

A problem P is in NEXPTIME if

$$P = \{x \mid \exists y \colon \langle x, y \rangle \in R\}$$

for some binary relation ${\boldsymbol{R}}$ such that

- $\langle u, v \rangle \in R$ implies $|v| \leq 2^{p(|u|)}$ for some polynomial p,
- *R* is decidable in time polynomial in the size of the given tuple.

NEXPTIME

A problem P is in NEXPTIME if

$$P = \{x \mid \exists y \colon \langle x, y \rangle \in R\}$$

for some binary relation R such that

- $\langle u, v \rangle \in R$ implies $|v| \leq 2^{p(|u|)}$ for some polynomial p,
- *R* is decidable in time polynomial in the size of the given tuple.

Define R as a set of pairs $\langle \Phi, C \rangle$, where the universal formula Φ is not valid in \mathbb{RDLOG} and C is a frame **W** together with an evaluation e such that $Pred(\mathbf{W}) \not\models \Phi[e]$.

NEXPTIME

A problem P is in NEXPTIME if

$$P = \{x \mid \exists y \colon \langle x, y \rangle \in R\}$$

for some binary relation R such that

- $\langle u, v \rangle \in R$ implies $|v| \leq 2^{p(|u|)}$ for some polynomial p,
- *R* is decidable in time polynomial in the size of the given tuple.

Define R as a set of pairs $\langle \Phi, C \rangle$, where the universal formula Φ is not valid in \mathbb{RDLOG} and C is a frame **W** together with an evaluation e such that $Pred(\mathbf{W}) \not\models \Phi[e]$.

Theorem

The universal theory $Th_{\forall}(\mathbb{RDLOG})$ is in coNEXPTIME.

One may add into the signature a unit 1. Then every frame W have to be endowed with a unary relation U ⊆ W such that for all x, y, z ∈ W:

- One may add into the signature a unit 1. Then every frame W have to be endowed with a unary relation U ⊆ W such that for all x, y, z ∈ W:
 - $z \leq x$ iff there is $u \in U$ such that $R_{\circ}xuz$,

- One may add into the signature a unit 1. Then every frame W have to be endowed with a unary relation U ⊆ W such that for all x, y, z ∈ W:
 - $z \leq x$ iff there is $u \in U$ such that $R_{\circ}xuz$,
 - $z \leq y$ iff there is $u \in U$ such that $R_{\circ}uyz$.

- One may add into the signature a unit 1. Then every frame W have to be endowed with a unary relation U ⊆ W such that for all x, y, z ∈ W:
 - $z \leq x$ iff there is $u \in U$ such that $R_{\circ}xuz$,
 - $z \leq y$ iff there is $u \in U$ such that $R_{\circ}uyz$.
- Any combination of the following structural rules is preserved:

- One may add into the signature a unit 1. Then every frame W have to be endowed with a unary relation U ⊆ W such that for all x, y, z ∈ W:
 - $z \leq x$ iff there is $u \in U$ such that $R_{\circ}xuz$,
 - $z \leq y$ iff there is $u \in U$ such that $R_{\circ}uyz$.
- Any combination of the following structural rules is preserved:
 - weakening $(x \leq 1)$,

- One may add into the signature a unit 1. Then every frame W have to be endowed with a unary relation U ⊆ W such that for all x, y, z ∈ W:
 - $z \leq x$ iff there is $u \in U$ such that $R_{\circ}xuz$,
 - $z \leq y$ iff there is $u \in U$ such that $R_{\circ}uyz$.
- Any combination of the following structural rules is preserved:
 - weakening $(x \leq 1)$,
 - ▶ contraction (x ≤ x²),

- One may add into the signature a unit 1. Then every frame W have to be endowed with a unary relation U ⊆ W such that for all x, y, z ∈ W:
 - $z \leq x$ iff there is $u \in U$ such that $R_{\circ}xuz$,
 - $z \leq y$ iff there is $u \in U$ such that $R_{\circ}uyz$.
- Any combination of the following structural rules is preserved:
 - weakening $(x \leq 1)$,
 - ▶ contraction (x ≤ x²),
 - exchange (xy = yx).

Semilinear rdlogs

Definition

A rdlog is semilinear if it is a subdirect product of totally ordered rdlogs.

Semilinear rdlogs

Definition

A rdlog is semilinear if it is a subdirect product of totally ordered rdlogs.

Theorem

The universal theory of totally ordered algebras in \mathbb{RDLOG} is coNP-complete.

Semilinear rdlogs

Definition

A rdlog is semilinear if it is a subdirect product of totally ordered rdlogs.

Theorem

The universal theory of totally ordered algebras in \mathbb{RDLOG} is coNP-complete.

Corollary

The quasi-equational theory of semilinear rdlogs is coNP-complete.

Open problems

Problem

Is $Th_{\forall}(\mathbb{RDLOG})$ *coNEXPTIME-complete?*

Open problems

Problem

Is $\operatorname{Th}_{\forall}(\mathbb{RDLOG})$ coNEXPTIME-complete?

Problem

Does the class of residuated lattice-ordered groupoids have the FEP?

Thank you!