Universal Theory of Residuated Distributive Lattice-Ordered Groupoids and Its Complexity

Rostislav Horčík, Zuzana Haniková

Institute of Computer Science
Academy of Sciences of the Czech Republic

ALgebra and COalgebra Meet Proof Theory
Utrecht, 18-20 April 2013

Introduction

- Consider a class of algebras \mathbb{K} of the same type which is finitely axiomatizable.

Introduction

- Consider a class of algebras \mathbb{K} of the same type which is finitely axiomatizable.
- $\operatorname{Th}_{\forall}(\mathbb{K})$ denotes the universal theory of \mathbb{K}.

Introduction

- Consider a class of algebras \mathbb{K} of the same type which is finitely axiomatizable.
- $\operatorname{Th}_{\forall}(\mathbb{K})$ denotes the universal theory of \mathbb{K}.
- A usual way how to prove decidability of $\operatorname{Th}_{\forall}(\mathbb{K})$ is to establish the finite embeddability property for \mathbb{K}.

Introduction

- Consider a class of algebras \mathbb{K} of the same type which is finitely axiomatizable.
- $\operatorname{Th}_{\forall}(\mathbb{K})$ denotes the universal theory of \mathbb{K}.
- A usual way how to prove decidability of $\operatorname{Th}_{\forall}(\mathbb{K})$ is to establish the finite embeddability property for \mathbb{K}.

Definition

A class of algebras \mathbb{K} has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathbb{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathbb{K}$.

FEP

FEP

FEP

FEP

FEP

FEP

$\mathbf{A} \not \models \Phi \Longrightarrow \mathbf{B}=$ eval. of subterms $\Longrightarrow \mathbf{D} \not \vDash \Phi$.

A bit of history

- McKinsey and Tarski 1946 - FEP for Heyting algebras

A bit of history

- McKinsey and Tarski 1946 - FEP for Heyting algebras
- Evans 1969 - definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.

A bit of history

- McKinsey and Tarski 1946 - FEP for Heyting algebras
- Evans 1969 - definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.
- Blok, van Alten 2002 - FEP $<=>$ SFMP, FEP for pocrims, integral commutative residuated lattices

A bit of history

- McKinsey and Tarski 1946 - FEP for Heyting algebras
- Evans 1969 - definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.
- Blok, van Alten 2002 - FEP $<=>$ SFMP, FEP for pocrims, integral commutative residuated lattices
- Blok, van Alten 2005 - FEP for integral residuated ordered groupoids

A bit of history

- McKinsey and Tarski 1946 - FEP for Heyting algebras
- Evans 1969 - definition of FEP, a variety has the FEP iff its finitely presented members are residually finite.
- Blok, van Alten 2002 - FEP <=> SFMP, FEP for pocrims, integral commutative residuated lattices
- Blok, van Alten 2005 - FEP for integral residuated ordered groupoids

Problem

Does $\mathbb{R O G}$ have the FEP?

Answer

- An affirmative answer was given by Farulewski 2008.

Answer

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.

Answer

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.
- Farulewski's proof uses methods from proof-theory and also from algebra.

Answer

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.
- Farulewski's proof uses methods from proof-theory and also from algebra.
- Recall that $\mathbb{R O G}$ forms an algebraic semantics for nonassociative Lambek calculus NL.

Answer

- An affirmative answer was given by Farulewski 2008.
- He also proved that the class of residuated distributive lattice-ordered groupoids has the FEP.
- Farulewski's proof uses methods from proof-theory and also from algebra.
- Recall that $\mathbb{R O G}$ forms an algebraic semantics for nonassociative Lambek calculus NL.

```
Lemma (Buszkowski 2005)
Let }\mathcal{S}\cup{X[Z]=>C} be a finite set of sequents and T the set of all
subformulas occuring in S}\cup{X[Z]=>C}. If S F FNL X[Z]=>C, then ther
exists an interpolant D\inT such that }\mathcal{S}\mp@subsup{\vdash}{NL}{}X[D]=>C an
S }\mp@subsup{\vdash}{\textrm{NL}}{}Z=>D
```

Note that Z is a tree of formulas unlike D which is a single formula.

Residuated distributive lattice-ordered groupoids

Definition

A structure $\mathbf{A}=\langle A, \cdot, \backslash, / \leq\rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot\rangle$ is a groupoid and for all $a, b, c \in A$:

$$
a b \leq c \text { iff } b \leq a \backslash c \text { iff } a \leq c / b .
$$

Residuated distributive lattice-ordered groupoids

Definition

A structure $\mathbf{A}=\langle A, \cdot, \backslash, / \leq\rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot\rangle$ is a groupoid and for all $a, b, c \in A$:

$$
a b \leq c \text { iff } b \leq a \backslash c \text { iff } a \leq c / b .
$$

A residuated distributive lattice-ordered groupoid (rdlog)
$\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /\rangle$ is a rog such that $\langle A, \wedge, \vee\rangle$ is a distributive lattice.

Residuated distributive lattice-ordered groupoids

Definition

A structure $\mathbf{A}=\langle A, \cdot, \backslash, / \leq\rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot\rangle$ is a groupoid and for all $a, b, c \in A$:

$$
a b \leq c \quad \text { iff } \quad b \leq a \backslash c \text { iff } a \leq c / b
$$

A residuated distributive lattice-ordered groupoid (rdlog)
$\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /\rangle$ is a rog such that $\langle A, \wedge, \vee\rangle$ is a distributive lattice.

Theorem
Every rog \mathbf{A} embeds into a rdlog $\mathcal{O}(\mathbf{A})$ via $x \mapsto \downarrow\{x\}$.

Residuated distributive lattice-ordered groupoids

Definition

A structure $\mathbf{A}=\langle A, \cdot, \backslash, / \leq\rangle$ is called residuated ordered groupoid (rog) if $\langle A, \cdot\rangle$ is a groupoid and for all $a, b, c \in A$:

$$
a b \leq c \quad \text { iff } \quad b \leq a \backslash c \text { iff } a \leq c / b
$$

A residuated distributive lattice-ordered groupoid (rdlog)
$\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /\rangle$ is a rog such that $\langle A, \wedge, \vee\rangle$ is a distributive lattice.

Theorem
Every rog A embeds into a rdlog $\mathcal{O}(\mathbf{A})$ via $x \mapsto \downarrow\{x\}$.

Corollary
FEP for rdlogs \Longrightarrow FEP for rogs.

FEP for rdlogs

FEP for rdlogs

FEP for rdlogs

$$
\begin{aligned}
\gamma(x) & =\bigwedge\{y \in D \mid x \leq y\} \\
\sigma(x) & =\bigvee\{y \in D \mid y \leq x\} \\
\gamma[A] & =\sigma[A]=D
\end{aligned}
$$

FEP for rdlogs

$$
\begin{aligned}
\gamma(x) & =\bigwedge\{y \in D \mid x \leq y\} \\
\sigma(x) & =\bigvee\{y \in D \mid y \leq x\} \\
\gamma[A] & =\sigma[A]=D
\end{aligned}
$$

FEP for rdlogs

$$
\begin{aligned}
\gamma(x) & =\bigwedge\{y \in D \mid x \leq y\} \\
\sigma(x) & =\bigvee\{y \in D \mid y \leq x\} \\
\gamma[A] & =\sigma[A]=D \\
x \circ y & =\gamma(x y) \\
x \| y & =\sigma(x \backslash y) \\
x / / y & =\sigma(x / y)
\end{aligned}
$$

FEP for rdlogs

$$
\begin{aligned}
& \gamma(x)=\bigwedge\{y \in D \mid x \leq y\} \\
& \sigma(x)=\bigvee\{y \in D \mid y \leq x\} \\
& \gamma[A]=\sigma[A]=D \\
& x \circ y=\gamma(x y) \\
& x \backslash y=\sigma(x \backslash y) \\
& x / / y=\sigma(x / y) \\
& \mathbf{D}=\langle D, \wedge, \vee, \circ, \|, / /\rangle \text { is a rdlog. }
\end{aligned}
$$

FEP for rdlogs

$$
\begin{aligned}
\gamma(x) & =\bigwedge\{y \in D \mid x \leq y\} \\
\sigma(x) & =\bigvee\{y \in D \mid y \leq x\} \\
\gamma[A] & =\sigma[A]=D \\
x \circ y & =\gamma(x y) \\
x \| y & =\sigma(x \backslash y) \\
x / / y & =\sigma(x / y)
\end{aligned}
$$

$$
\mathbf{D}=\langle D, \wedge, \vee, \circ, \|, / /\rangle \text { is a rdlog. }
$$

$$
x \circ y=\gamma(x y) \leq z \quad \text { iff } \quad x y \leq z \quad \text { iff } \quad y \leq x \backslash z \quad \text { iff } \quad y \leq \sigma(x \backslash z)=x \backslash z
$$

FEP for rdlogs

Theorem
Let $\mathbb{R D L O G}$ be the class of rdlogs. Then $\mathbb{R D L O G}$ has the FEP. The same holds for $\mathbb{R} \mathbb{G}$.

FEP for rdlogs

Theorem
Let $\mathbb{R D L D G}$ be the class of rdlogs. Then $\mathbb{R} D \mathrm{LOG}$ has the FEP. The same holds for $\mathbb{R O G}$.

Corollary

The universal theories $\mathrm{Th}_{\forall}(\mathbb{R} \mathbb{R L O G}), \mathrm{Th}_{\forall}(\mathbb{R O G})$ are decidable.

FEP for rdlogs

Theorem
Let $\mathbb{R D L D G}$ be the class of rdlogs. Then $\mathbb{R D L D G G}$ has the FEP. The same holds for $\mathbb{R O G}$.

Corollary

The universal theories $\mathrm{Th}_{\forall}(\mathbb{R} \mathbb{D L O G}), \mathrm{Th}_{\forall}(\mathbb{R O G})$ are decidable.

- What about computational complexity of $\operatorname{Th}_{\forall}(\mathbb{R D L O G})$?

FEP for rdlogs

Theorem
Let $\mathbb{R D L D G}$ be the class of rdlogs. Then $\mathbb{R} D \mathrm{LOG}$ has the FEP. The same holds for $\mathbb{R O G}$.

Corollary

The universal theories $\mathrm{Th}_{\forall}(\mathbb{R D L O G}), \mathrm{Th}_{\forall}(\mathbb{R O G})$ are decidable.

- What about computational complexity of $\mathrm{Th}_{\forall}(\mathbb{R} \mathbb{R} L \mathbb{O})$?
- Buszkowski 2005 proved that the set of quasi-inequalities valid in ROG is in PTIME.

FEP for rdlogs

Theorem

Let $\mathbb{R D L D G}$ be the class of rdlogs. Then $\mathbb{R} D \mathrm{LOG}$ has the FEP. The same holds for $\mathbb{R O G}$.

Corollary

The universal theories $\mathrm{Th}_{\forall}(\mathbb{R D L O G}), \mathrm{Th}_{\forall}(\mathbb{R O G})$ are decidable.

- What about computational complexity of $\mathrm{Th}_{\forall}(\mathbb{R} \mathbb{R L D G})$?
- Buszkowski 2005 proved that the set of quasi-inequalities valid in $\mathbb{R O G}$ is in PTIME.
- Buszkowski, Farulewski 2008 claim that the quasi-equational theory of $\mathbb{R D L Q} \mathbb{G}$ is in 2-EXPTIME.

Duality for finite bounded distributive lattices

- Size of countermodel is doubly exponential in $n=|B|$.

Duality for finite bounded distributive lattices

- Size of countermodel is doubly exponential in $n=|B|$.
- To represent a finite n-generated distributive lattice \mathbf{L}, it suffices to store its poset of join-irreducibles $\mathcal{J}(\mathbf{L})$.

Duality for finite bounded distributive lattices

- Size of countermodel is doubly exponential in $n=|B|$.
- To represent a finite n-generated distributive lattice \mathbf{L}, it suffices to store its poset of join-irreducibles $\mathcal{J}(\mathbf{L})$.

Duality for finite bounded distributive lattices

- Size of countermodel is doubly exponential in $n=|B|$.
- To represent a finite n-generated distributive lattice \mathbf{L}, it suffices to store its poset of join-irreducibles $\mathcal{J}(\mathbf{L})$.

- Thus $|\mathcal{J}(\mathbf{L})|$ is bounded by $2^{n}-2$ (the number of join-irreducibles in the free n-generated distributive lattice).

Relational frames

Definition

A frame is a structure $\mathbf{W}=\left\langle W, \leq, R_{\circ}\right\rangle$ where $\langle W, \leq\rangle$ is a finite poset and $R_{\circ} \subseteq W^{3}$ such that for all $x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in W$ we have

- $x \leq x^{\prime}$ and $R_{\circ} x y z$ implies $R_{\circ} x^{\prime} y z$,
- $y \leq y^{\prime}$ and $R_{0} x y z$ implies $R_{\circ} x y^{\prime} z$,
- $z^{\prime} \leq z$ and $R_{\circ} x y z$ implies $R_{\circ} x y z^{\prime}$.

Relational frames

Definition

A frame is a structure $\mathbf{W}=\left\langle W, \leq, R_{\circ}\right\rangle$ where $\langle W, \leq\rangle$ is a finite poset and $R_{\circ} \subseteq W^{3}$ such that for all $x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in W$ we have

- $x \leq x^{\prime}$ and $R_{\circ} x y z$ implies $R_{\circ} x^{\prime} y z$,
- $y \leq y^{\prime}$ and $R_{0} x y z$ implies $R_{\circ} x y^{\prime} z$,
- $z^{\prime} \leq z$ and $R_{0} x y z$ implies $R_{0} x y z^{\prime}$.

Having a finite rdlog \mathbf{A}, we define $\operatorname{Stone}(\mathbf{A})=\left\langle\mathcal{J}(\mathbf{A}), \leq, R_{\circ}\right\rangle$, where

$$
R_{\circ} x y z \quad \text { iff } \quad z \leq x y .
$$

Then Stone (\mathbf{A}) is a frame.

From frames to algebras

Having a frame \mathbf{W}, we define $\operatorname{Pred}(\mathbf{W})=\langle\mathcal{O}(\mathbf{W}), \cap, \cup, \cdot, \backslash, /\rangle$, where

$$
\begin{aligned}
A \cdot B & =\left\{z \in P \mid \exists x \in A, \exists y \in B, R_{\circ} x y z\right\}, \\
A \backslash C & =\left\{y \in P \mid \forall z \in P, \forall x \in A, R_{\circ} x y z \Longrightarrow z \in C\right\}, \\
C / B & =\left\{x \in P \mid \forall z \in P, \forall y \in B, R_{\circ} x y z \Longrightarrow z \in C\right\} .
\end{aligned}
$$

Then $\operatorname{Pred}(\mathbf{W})$ is a rdlog.

From frames to algebras

Having a frame \mathbf{W}, we define $\operatorname{Pred}(\mathbf{W})=\langle\mathcal{O}(\mathbf{W}), \cap, \cup, \cdot, \backslash, /\rangle$, where

$$
\begin{aligned}
A \cdot B & =\left\{z \in P \mid \exists x \in A, \exists y \in B, R_{\circ} x y z\right\}, \\
A \backslash C & =\left\{y \in P \mid \forall z \in P, \forall x \in A, R_{\circ} x y z \Longrightarrow z \in C\right\}, \\
C / B & =\left\{x \in P \mid \forall z \in P, \forall y \in B, R_{\circ} x y z \Longrightarrow z \in C\right\} .
\end{aligned}
$$

Then $\operatorname{Pred}(\mathbf{W})$ is a rdlog.

Theorem

A finite rdlog \mathbf{A} is isomorphic to $\operatorname{PredStone}(\mathbf{A})$ via $\mu: \mathbf{A} \rightarrow \operatorname{PredStone}(\mathbf{A})$ given by $\mu(x)=\mathcal{J}(\mathbf{A}) \cap \downarrow\{x\}$ for $x \in A$.

From frames to algebras

Having a frame \mathbf{W}, we define $\operatorname{Pred}(\mathbf{W})=\langle\mathcal{O}(\mathbf{W}), \cap, \cup, \cdot, \backslash, /\rangle$, where

$$
\begin{aligned}
A \cdot B & =\left\{z \in P \mid \exists x \in A, \exists y \in B, R_{\circ} x y z\right\}, \\
A \backslash C & =\left\{y \in P \mid \forall z \in P, \forall x \in A, R_{\circ} x y z \Longrightarrow z \in C\right\}, \\
C / B & =\left\{x \in P \mid \forall z \in P, \forall y \in B, R_{\circ} x y z \Longrightarrow z \in C\right\}
\end{aligned}
$$

Then $\operatorname{Pred}(\mathbf{W})$ is a rdlog.

Theorem
 A finite rdlog \mathbf{A} is isomorphic to $\operatorname{PredStone}(\mathbf{A})$ via $\mu: \mathbf{A} \rightarrow \operatorname{PredStone}(\mathbf{A})$ given by $\mu(x)=\mathcal{J}(\mathbf{A}) \cap \downarrow\{x\}$ for $x \in A$.

To represent an n-generated rdlog \mathbf{A}, it suffices to store $\mathcal{J}(\mathbf{A})$ of cardinality $m \leq 2^{n}-2$ and a relation $R \circ$ of size m^{3}.

NEXPTIME

A problem P is in NEXPTIME if

$$
P=\{x \mid \exists y:\langle x, y\rangle \in R\}
$$

for some binary relation R such that

- $\langle u, v\rangle \in R$ implies $|v| \leq 2^{p(|u|)}$ for some polynomial p,
- R is decidable in time polynomial in the size of the given tuple.

NEXPTIME

A problem P is in NEXPTIME if

$$
P=\{x \mid \exists y:\langle x, y\rangle \in R\}
$$

for some binary relation R such that

- $\langle u, v\rangle \in R$ implies $|v| \leq 2^{p(|u|)}$ for some polynomial p,
- R is decidable in time polynomial in the size of the given tuple.

Define R as a set of pairs $\langle\Phi, \mathcal{C}\rangle$, where the universal formula Φ is not valid in $\mathbb{R} \mathbb{D L O G}$ and \mathcal{C} is a frame \mathbf{W} together with an evaluation e such that $\operatorname{Pred}(\mathbf{W}) \not \vDash \Phi[e]$.

NEXPTIME

A problem P is in NEXPTIME if

$$
P=\{x \mid \exists y:\langle x, y\rangle \in R\}
$$

for some binary relation R such that

- $\langle u, v\rangle \in R$ implies $|v| \leq 2^{p(|u|)}$ for some polynomial p,
- R is decidable in time polynomial in the size of the given tuple.

Define R as a set of pairs $\langle\Phi, \mathcal{C}\rangle$, where the universal formula Φ is not valid in $\mathbb{R D L O G}$ and \mathcal{C} is a frame \mathbf{W} together with an evaluation e such that $\operatorname{Pred}(\mathbf{W}) \not \vDash \Phi[e]$.

Theorem

The universal theory $\mathrm{Th}_{\forall}(\mathbb{R} \mathbb{D L O}(\mathbb{G})$ is in coNEXPTIME.

Modifications

- One may add into the signature a unit 1 . Then every frame \mathbf{W} have to be endowed with a unary relation $U \subseteq W$ such that for all $x, y, z \in W$:

Modifications

- One may add into the signature a unit 1 . Then every frame \mathbf{W} have to be endowed with a unary relation $U \subseteq W$ such that for all $x, y, z \in W$:
- $z \leq x$ iff there is $u \in U$ such that $R_{\circ} x u z$,

Modifications

- One may add into the signature a unit 1 . Then every frame \mathbf{W} have to be endowed with a unary relation $U \subseteq W$ such that for all $x, y, z \in W$:
- $z \leq x$ iff there is $u \in U$ such that $R_{0} x u z$,
- $z \leq y$ iff there is $u \in U$ such that $R_{0} u y z$.

Modifications

- One may add into the signature a unit 1 . Then every frame \mathbf{W} have to be endowed with a unary relation $U \subseteq W$ such that for all $x, y, z \in W$:
- $z \leq x$ iff there is $u \in U$ such that $R_{0} x u z$,
- $z \leq y$ iff there is $u \in U$ such that $R_{0} u y z$.
- Any combination of the following structural rules is preserved:

Modifications

- One may add into the signature a unit 1 . Then every frame \mathbf{W} have to be endowed with a unary relation $U \subseteq W$ such that for all $x, y, z \in W$:
- $z \leq x$ iff there is $u \in U$ such that $R_{0} x u z$,
- $z \leq y$ iff there is $u \in U$ such that $R_{0} u y z$.
- Any combination of the following structural rules is preserved:
- weakening $(x \leq 1)$,

Modifications

- One may add into the signature a unit 1 . Then every frame \mathbf{W} have to be endowed with a unary relation $U \subseteq W$ such that for all $x, y, z \in W$:
- $z \leq x$ iff there is $u \in U$ such that $R_{0} x u z$,
- $z \leq y$ iff there is $u \in U$ such that $R_{0} u y z$.
- Any combination of the following structural rules is preserved:
- weakening $(x \leq 1)$,
- contraction $\left(x \leq x^{2}\right)$,

Modifications

- One may add into the signature a unit 1 . Then every frame \mathbf{W} have to be endowed with a unary relation $U \subseteq W$ such that for all $x, y, z \in W$:
- $z \leq x$ iff there is $u \in U$ such that $R_{0} x u z$,
- $z \leq y$ iff there is $u \in U$ such that $R_{0} u y z$.
- Any combination of the following structural rules is preserved:
- weakening $(x \leq 1)$,
- contraction $\left(x \leq x^{2}\right)$,
- exchange $(x y=y x)$.

Semilinear rdlogs

Definition

A rdlog is semilinear if it is a subdirect product of totally ordered rdlogs.

Semilinear rdlogs

Definition

A rdlog is semilinear if it is a subdirect product of totally ordered rdlogs.

Theorem

The universal theory of totally ordered algebras in $\mathbb{R D L O G}$ is coNP-complete.

Semilinear rdlogs

Definition

A rdlog is semilinear if it is a subdirect product of totally ordered rdlogs.

Theorem

The universal theory of totally ordered algebras in $\mathbb{R D L O G}$ is coNP-complete.

Corollary
The quasi-equational theory of semilinear rdlogs is coNP-complete.

Open problems

Problem

Is $\mathrm{Th}_{\forall}(\mathbb{R} D L \mathbb{O})$ coNEXPTIME-complete?

Open problems

Problem

Is $\operatorname{Th}_{\forall}(\mathbb{R D L O G})$ coNEXPTIME-complete?

Problem
Does the class of residuated lattice-ordered groupoids have the FEP?

Thank you!

