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Algebraic semantics

Theorem:

A sequent A = B is provable in FL. iff A < B holds in
FL.-algebras.

FL.-algebras = square-increasing pointed residuated lattices

A:<A7/\?\/7'7\7/7071>

1. (A, A, V) — lattice

2. (A,-,1) — monoid

S <ok

4. a(a\b) < b

5. a(bV c)d = abd V acd



Strategy

Reachability problem
for SRS

o

Reachability problem
for atomic conditional SRS

i

Equational theory of FL.
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String rewriting systems (SRS)

Y ={a, b} — alphabet, R = {ab — ba, aa — ¢} — set of rules
ba—>Rb a%Rbb —>Rbb

L(bb) = {w € T* | w =% bb} = {a¥ba'ba™ | k + | + m is even}

Theorem [RH]:
There is an SRS (X, R) and wy € ¥* such that

Liwg) ={we X |w—%w}

is and L(wp) consists only of words.
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Conditional string rewriting systems (CSRS)

Y = {a, b} — alphabet

R ={(ab— ba, ¥", ),(aa —» e, b, = )} — cond. rules

ot
o

left contexts

For example

caa’ /g b but aab —gr aba —g baa= baa —gr b

If all the rules are of the form (x — L, L,) for €%, we
call the CSRS atomic.
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Reduction SRS — atomic CSRS

Let (¥, R) be an SRS.
Define an atomic CSRS (X UY' U X" R’) as follows

1. ¥ ={d |ae X}, ¥/ ={3"| aec X} - disjoint copies of &

2. Replace x — ab by atomic cond. rules:

Lemma: Let w,wy € X*. Then w —% wy iff w =%, wp

uxv — g uabv is simulated by

uxv —pRrr ux =7y ua' b" = ua — R/ uabv
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L = ab*a can be generated by a right-linear CFG G:

S — aB
B — bB
B — a

Define 6 = 1 A (aB\S) A (bB\B) A (a\B)
Note that 6% = dg < 1
Lemma: w € L iff wig < S holds in FL.-algebras

aba € [ is simulated by

abadg < abad%: < aba(a\B)dg < abBi¢ <
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Define 6 = 1 A (ab\a) A (aa\b)

Note that 2 =6 < 1

0
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Main result

Theorem:

The equational theory of FL.-algebras is undecidable.

Corollary:

The set of provable formulas in FL. is undecidable.
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Final remarks

1. Our encoding does not need 0 and /.

2. We can also eliminate 1 and multiplication.

3. Our undecidability proof can be modified for x” < x”
forl < m<n.

4. Algorithmic deduction theorem:

Let T U {A} be a finite set of formulae. Then there is an
algorithm which produces a formula B (given the input
T and A) such that |—F[_c Biff T l_FLC A.



Thank you!




