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Sequent Calculus for Int [Gentzen 1935]
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⇒ B︸︷︷︸
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Structural rules:

Exchange . . . ,A,B, . . . ⇒ C

. . . ,B,A, . . . ⇒ C

Contraction . . . ,A,A, . . . ⇒ B
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Weakening . . . , . . . ⇒ B

. . . ,A, . . . ⇒ B

. . . ⇒
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Algebraic semantics

Theorem:
A sequent A⇒ B is provable in FLc iff A ≤ B holds in
FLc -algebras.

FLc -algebras = square-increasing pointed residuated lattices

A = 〈A,∧,∨, ·, \, /, 0, 1〉

Facts:

1. 〈A,∧,∨〉 – lattice
2. 〈A, ·, 1〉 – monoid
3. a ≤ a2

4. a(a\b) ≤ b

5. a(b ∨ c)d = abd ∨ acd
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Strategy

Reachability problem
for SRS

Reachability problem
for atomic conditional SRS

Equational theory of FLc



String rewriting systems (SRS)

Σ = {a, b} – alphabet, R = {ab → ba, aa→ ε} – set of rules

abba→R baba→R bbaa→R bb

L(bb) = {w ∈ Σ∗ | w →∗R bb} = {akbalbam | k + l + m is even}

Theorem [RH]:
There is an SRS 〈Σ,R〉 and w0 ∈ Σ∗ such that

L(w0) = {w ∈ Σ∗ | w →∗R w0}

is undecidable and L(w0) consists only of square-free words.
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Conditional string rewriting systems (CSRS)

Σ = {a, b} – alphabet

R = {〈ab → ba, Σ∗ , Σ∗ 〉, 〈aa→ ε, Σ∗b , a∗ 〉} – cond. rules

left contexts right contexts

For example

εaab 6→R b but aab →R aba→R baa = baaε→R b

If all the rules are of the form 〈x → a, L`, Lr 〉 for a ∈ Σ, we
call the CSRS atomic.
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Reduction SRS → atomic CSRS
Let 〈Σ,R〉 be an SRS.

Define an atomic CSRS 〈Σ ∪ Σ′ ∪ Σ′′,R ′〉 as follows

1. Σ′ = {a′ | a ∈ Σ}, Σ′′ = {a′′ | a ∈ Σ} – disjoint copies of Σ

2. Replace x → ab by atomic cond. rules:

〈ε→ b′′,Σ∗,Σ∗〉
〈x → a′,Σ∗, b′′Σ∗〉
〈b′′ → b,Σ∗a′,Σ∗〉
〈a′ → a,Σ∗,Σ∗〉

Lemma: Let w ,w0 ∈ Σ∗. Then w →∗R w0 iff w →∗R′ w0

uxv →R uabv is simulated by

uxv →R′ uxb′′v →R′ ua′b′′v →R′ ua′bv →R′ uabv
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Regular languages

L = ab∗a can be generated by a right-linear CFG G :

S → aB

B → bB

B → a

Define δG = 1 ∧ (aB\S) ∧ (bB\B) ∧ (a\B)

Note that δ2G = δG ≤ 1

Lemma: w ∈ L iff wδG ≤ S holds in FLc -algebras

aba ∈ L is simulated by

abaδG ≤ abaδ2G ≤ aba(a\B)δG ≤ abBδG ≤
≤ abB(bB\B)δG ≤ aBδG ≤ aB(aB\S) ≤ S
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Reduction atomic CSRS → Eq. theory of FLc

Let 〈Σ,R〉 be an atomic CSRS and w0 ∈ Σ∗ such that L(w0) is
undecidable

Consider an atomic cond. rule 〈x → a, L`, Lr 〉

Define
1. θ = 1 ∧ x\(a ∨ q), q a fresh variable
2. the regular language L = L`qLr gen. by a grammar G ,

i.e., w ∈ L iff wδG ≤ S holds in FLc -algebras

Lemma: w ∈ L(w0) iff wθδG ≤ w0 ∨ S holds in FLc -algebras

uxv →R uav for u ∈ L`, v ∈ Lr is simulated as follows:

(uxv)θ ≤ uθxθvθ ≤ uθx(x\a ∨ q)θvθ ≤ (uav)θ ∨ (uqv)θ

(uxv)θδG ≤ ((uav)θ ∨ (uqv)θ)δG ≤ (uav)θ ∨ uqvδG ≤ (uav)θ ∨ S
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Main result

Theorem:
The equational theory of FLc -algebras is undecidable.

Corollary:
The set of provable formulas in FLc is undecidable.



Final remarks

1. Our encoding does not need 0 and /.

2. We can also eliminate 1 and multiplication.

3. Our undecidability proof can be modified for xm ≤ xn

for 1 ≤ m < n.

4. Algorithmic deduction theorem:

Let T ∪ {A} be a finite set of formulae. Then there is an
algorithm which produces a formula B (given the input
T and A) such that `FLc B iff T `FLc A.
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Thank you!


