Full Lambek Calculus with Contraction is Undecidable

Rostislav Horčík & Karel Chvalovský

 $\underbrace{A_1, A_2, \dots, A_n}_{B} \quad \Rightarrow \quad \underbrace{B}_{A_1, A_2}$

 $\underbrace{A_1, A_2, \dots, A_n}_{B} \quad \Rightarrow \quad \underbrace{B}_{A_1, A_2, \dots, A_n}$

Structural rules:

 $\frac{\ldots, A, B, \ldots \Rightarrow C}{\ldots, B, A, \ldots \Rightarrow C}$ Exchange

 $\underbrace{A_1, A_2, \ldots, A_n}_{A_1, A_2, \ldots, A_n} \quad \Rightarrow \quad \$

Structural rules:

Exchange	$\ldots, A, B, \ldots \Rightarrow C$
	$\ldots, \mathbf{B}, \mathbf{A}, \ldots \Rightarrow \mathbf{C}$
Contraction	$\ldots, A, A, \ldots \Rightarrow B$
	$\dots, A, \dots \Rightarrow B$

 $\underbrace{A_1, A_2, \ldots, A_n}_{B} \quad \Rightarrow \quad \underbrace{B}_{A_1, A_2, \ldots, A_n}$

Structural rules:

A DRUNKARD'S PROCRESS

TIPSY

DRUNKEN

LEGLESS

DRUNK (BY STRICT NAUTICAL STANDARD): immobile

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_c iff $A \le B$ holds in FL_c -algebras.

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_c iff $A \le B$ holds in FL_c -algebras.

 FL_c -algebras = square-increasing pointed residuated lattices

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_c iff $A \le B$ holds in FL_c -algebras.

 FL_c -algebras = square-increasing pointed residuated lattices

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \backslash, /, 0, 1 \rangle$

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_c iff $A \le B$ holds in FL_c -algebras.

 FL_c -algebras = square-increasing pointed residuated lattices

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \backslash, /, 0, 1 \rangle$

Facts:

1. $\langle A, \wedge, \vee \rangle$ - lattice 2. $\langle A, \cdot, 1 \rangle$ - monoid 3. $a \le a^2$ 4. $a(a \setminus b) \le b$ 5. $a(b \lor c)d = abd \lor acd$ Strategy

Reachability problem for SRS

> Reachability problem for atomic conditional SRS

> > Equational theory of FL_c

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $abba \rightarrow_R baba$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $abba \rightarrow_R baba \rightarrow_R bbaa$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $abba \rightarrow_R baba \rightarrow_R bbaa \rightarrow_R bb$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $abba \rightarrow_R baba \rightarrow_R bbaa \rightarrow_R bb$

 $L(bb) = \{w \in \Sigma^* \mid w \to_R^* bb\}$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $abba \rightarrow_R baba \rightarrow_R bbaa \rightarrow_R bb$

 $L(bb) = \{ w \in \Sigma^* \mid w \to_R^* bb \} = \{ a^k b a^l b a^m \mid k + l + m \text{ is even} \}$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow ba, aa \rightarrow \varepsilon\}$ – set of rules

 $abba \rightarrow_R baba \rightarrow_R bbaa \rightarrow_R bb$

 $\overline{L(bb)} = \{ w \in \Sigma^* \mid w \to_R^* bb \} = \{ a^k b a^l b a^m \mid k + l + m \text{ is even} \}$

Theorem [RH]: There is an SRS $\langle \Sigma, R \rangle$ and $w_0 \in \Sigma^*$ such that $L(w_0) = \{ w \in \Sigma^* \mid w \to_R^* w_0 \}$

is undecidable and $L(w_0)$ consists only of square-free words.

 $\Sigma = \{a, b\}$ – alphabet

 $R = \{ \langle ab \rightarrow ba, \overline{\Sigma^*}, \overline{\Sigma^*} \rangle, \langle aa \rightarrow \varepsilon, \overline{\Sigma^*b}, \overline{a^*} \rangle \} - \underline{\text{cond. rules}}$

 $\Sigma = \{a, b\}$ – alphabet

 $R = \{ \langle ab \rightarrow ba, \Sigma^*, \Sigma^* \rangle, \langle aa \rightarrow \varepsilon, \Sigma^*b, a^* \rangle \} - \underline{\text{cond. rules}}$

left contexts

 $\Sigma = \{a, b\} - \underline{\text{alphabet}}$ $R = \{\langle ab \rightarrow ba, \Sigma^*, \Sigma^* \rangle, \langle aa \rightarrow \varepsilon, \Sigma^*b, a^* \rangle\} - \underline{\text{cond. rules}}$ $| eft \text{ contexts} \quad right \text{ contexts}}$

 $\Sigma = \{a, b\} - \underline{\text{alphabet}}$ $R = \{\langle ab \rightarrow ba, \Sigma^*, \Sigma^* \rangle, \langle aa \rightarrow \varepsilon, \Sigma^*b, a^* \rangle\} - \underline{\text{cond. rules}}$ $| eft \text{ contexts} \quad right \text{ contexts}}$

For example

$$\varepsilon$$
aab $\not\rightarrow_R b$

 $\Sigma = \{a, b\} - \underline{alphabet}$ $R = \{ \langle ab \rightarrow ba, \Sigma^*, \Sigma^* \rangle, \langle aa \rightarrow \varepsilon, \Sigma^*b, a^* \rangle \} - \underline{cond. rules}$ | eft contexts right contexts|

For example

 ε aab $earrow_R b$ but aab \rightarrow_R aba $\rightarrow_R b$ aa = baa $\varepsilon \rightarrow_R b$

 $\Sigma = \{a, b\} - \underline{alphabet}$ $R = \{ \langle ab \rightarrow ba, \Sigma^*, \Sigma^* \rangle, \langle aa \rightarrow \varepsilon, \Sigma^*b, a^* \rangle \} - \underline{cond. rules}$ $left contexts \qquad right contexts$

For example

arepsilon aab $ightarrow_R$ aba $ightarrow_R$ baa = baa $arepsilon
ightarrow_R$ b

If all the rules are of the form $\langle x \rightarrow a, L_{\ell}, L_r \rangle$ for $a \in \Sigma$, we call the CSRS atomic.

Let $\langle \Sigma, R \rangle$ be an SRS.

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows

1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\}$ – disjoint copies of Σ

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\} - \underline{\text{disjoint}}$ copies of Σ

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \to b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \to a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \to b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \to a, \Sigma^*, \Sigma^* \rangle \end{array}$

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\} - \underline{\text{disjoint}}$ copies of Σ

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \rightarrow b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \rightarrow a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \rightarrow b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \rightarrow a, \Sigma^*, \Sigma^* \rangle \end{array}$

Lemma: Let $w, w_0 \in \Sigma^*$. Then $w \to_R^* w_0$ iff $w \to_{R'}^* w_0$

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\}$ – disjoint copies of Σ

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \to b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \to a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \to b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \to a, \Sigma^*, \Sigma^* \rangle \end{array}$

Lemma: Let $w, w_0 \in \Sigma^*$. Then $w \to_R^* w_0$ iff $w \to_{R'}^* w_0$ $uxv \to_R uabv$ is simulated by

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\}$ – disjoint copies of Σ

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \to b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \to a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \to b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \to a, \Sigma^*, \Sigma^* \rangle \end{array}$

Lemma: Let $w, w_0 \in \Sigma^*$. Then $w \to_R^* w_0$ iff $w \to_{R'}^* w_0$ $uxv \to_R uabv$ is simulated by

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\} - \underline{\text{disjoint copies of } \Sigma$

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \rightarrow b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \rightarrow a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \rightarrow b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \rightarrow a, \Sigma^*, \Sigma^* \rangle \end{array}$

Lemma: Let $w, w_0 \in \Sigma^*$. Then $w \to_R^* w_0$ iff $w \to_{R'}^* w_0$ $uxv \to_R uabv$ is simulated by

 $uxv \rightarrow_{R'} uxb''v$
Reduction SRS \rightarrow atomic CSRS

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\}$ – disjoint copies of Σ

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \to b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \to a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \to b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \to a, \Sigma^*, \Sigma^* \rangle \end{array}$

Lemma: Let $w, w_0 \in \Sigma^*$. Then $w \to_R^* w_0$ iff $w \to_{R'}^* w_0$ $uxv \to_R uabv$ is simulated by

 $uxv \rightarrow_{R'} uxb''v \rightarrow_{R'} ua'b''v$

Reduction SRS \rightarrow atomic CSRS

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\}$ – disjoint copies of Σ

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \rightarrow b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \rightarrow a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \rightarrow b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \rightarrow a, \Sigma^*, \Sigma^* \rangle \end{array}$

Lemma: Let $w, w_0 \in \Sigma^*$. Then $w \to_R^* w_0$ iff $w \to_{R'}^* w_0$ $uxv \to_R uabv$ is simulated by

$$uxv \to_{R'} uxb''v \to_{R'} ua'b''v \to_{R'} ua'bv$$

Reduction SRS \rightarrow atomic CSRS

Let $\langle \Sigma, R \rangle$ be an SRS. Define an atomic CSRS $\langle \Sigma \cup \Sigma' \cup \Sigma'', R' \rangle$ as follows 1. $\Sigma' = \{a' \mid a \in \Sigma\}, \Sigma'' = \{a'' \mid a \in \Sigma\}$ – disjoint copies of Σ

2. Replace $x \rightarrow ab$ by atomic cond. rules:

 $\begin{array}{l} \langle \varepsilon \rightarrow b'', \Sigma^*, \Sigma^* \rangle \\ \langle x \rightarrow a', \Sigma^*, b'' \Sigma^* \rangle \\ \langle b'' \rightarrow b, \Sigma^* a', \Sigma^* \rangle \\ \langle a' \rightarrow a, \Sigma^*, \Sigma^* \rangle \end{array}$

Lemma: Let $w, w_0 \in \Sigma^*$. Then $w \to_R^* w_0$ iff $w \to_{R'}^* w_0$ $uxv \to_R uabv$ is simulated by

$$uxv \rightarrow_{R'} uxb''v \rightarrow_{R'} ua'b''v \rightarrow_{R'} ua'bv \rightarrow_{R'} uabv$$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

 $L = ab^*a$ can be generated by a right-linear CFG G:

 $S \rightarrow aB$ $B \rightarrow bB$ $B \rightarrow a$

Define $\delta_G = 1 \wedge (aB \setminus S) \wedge (bB \setminus B) \wedge (a \setminus B)$

 $L = ab^*a$ can be generated by a right-linear CFG G:

 $S \rightarrow aB$ $B \rightarrow bB$ $B \rightarrow a$

Define $\delta_G = 1 \land (aB \backslash S) \land (bB \backslash B) \land (a \backslash B)$ Note that $\delta_G^2 = \delta_G \le 1$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

Define $\delta_G = 1 \land (aB \setminus S) \land (bB \setminus B) \land (a \setminus B)$ Note that $\delta_G^2 = \delta_G \leq 1$ Lemma: $w \in L$ iff $w \delta_G \leq S$ holds in FL_c-algebras

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

```
Define \delta_G = 1 \land (aB \setminus S) \land (bB \setminus B) \land (a \setminus B)
Note that \delta_G^2 = \delta_G \leq 1
Lemma: w \in L iff w\delta_G \leq S holds in FL<sub>c</sub>-algebras
```

 $aba \in \overline{L}$ is simulated by

 $aba\delta_G$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

Define $\delta_G = 1 \land (aB \setminus S) \land (bB \setminus B) \land (a \setminus B)$ Note that $\delta_G^2 = \delta_G \le 1$ Lemma: $w \in L$ iff $w\delta_G \le S$ holds in FL_c-algebras $aba \in L$ is simulated by

 $aba\delta_G \leq aba\delta_G^2$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

```
Define \delta_G = 1 \land (aB \backslash S) \land (bB \backslash B) \land (a \backslash B)
Note that \delta_G^2 = \delta_G \leq 1
Lemma: w \in L iff w\delta_G \leq S holds in FL<sub>c</sub>-algebras
```

 $aba \in L$ is simulated by

 $aba\delta_G \leq aba\delta_G^2 \leq aba(a \setminus B)\delta_G$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

Define $\delta_G = 1 \land (aB \setminus S) \land (bB \setminus B) \land (a \setminus B)$ Note that $\delta_G^2 = \delta_G \leq 1$ Lemma: $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras $aba \in L$ is simulated by

 $aba\delta_G \leq aba\delta_G^2 \leq aba(a \setminus B)\delta_G \leq abB\delta_G$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

Define $\delta_G = 1 \land (aB \setminus S) \land (bB \setminus B) \land (a \setminus B)$ Note that $\delta_G^2 = \delta_G \leq 1$ Lemma: $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras $aba \in L$ is simulated by

 $aba\delta_G \leq aba\delta_G^2 \leq aba(a ackslash B)\delta_G \leq abB\delta_G \leq \\ \leq abB(bB ackslash B)\delta_G$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

Define $\delta_G = 1 \land (aB \setminus S) \land (bB \setminus B) \land (a \setminus B)$ Note that $\delta_G^2 = \delta_G \leq 1$ Lemma: $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras $aba \in L$ is simulated by

 $egin{aligned} \mathsf{aba}\delta_G &\leq \mathsf{aba}\delta_G^2 \leq \mathsf{aba}(\mathsf{a}ackslash B)\delta_G \leq \mathsf{abB}\delta_G \leq &\leq \mathsf{abB}(\mathsf{bB}ackslash B)\delta_G \leq \mathsf{aB}\delta_G \end{aligned}$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

Define $\delta_G = 1 \land (aB \backslash S) \land (bB \backslash B) \land (a \backslash B)$ Note that $\delta_G^2 = \delta_G \le 1$ Lemma: $w \in L$ iff $w\delta_G \le S$ holds in FL_c-algebras

 $aba \in L$ is simulated by

 $\mathsf{A}\mathsf{b}\mathsf{a}\delta_{\mathsf{G}} \leq \overline{\mathsf{a}\mathsf{b}\mathsf{a}\delta_{\mathsf{G}}^2 \leq \mathsf{a}\mathsf{b}\mathsf{a}(\mathsf{a}ackslash B)\delta_{\mathsf{G}} \leq \mathsf{a}\mathsf{b}\mathsf{B}\delta_{\mathsf{G}} \leq \mathbf{a}\mathsf{B}\delta_{\mathsf{G}} \leq \mathbf{a}\mathsf{B}(\mathsf{a}\mathsf{B}ackslash S)} \leq \mathsf{a}\mathsf{b}\mathsf{B}(\mathsf{b}\mathsf{B}ackslash B)\delta_{\mathsf{G}} \leq \mathsf{a}\mathsf{B}\delta_{\mathsf{G}} \leq \mathsf{a}\mathsf{B}(\mathsf{a}\mathsf{B}ackslash S)$

 $L = ab^*a$ can be generated by a right-linear CFG G:

S
ightarrow aBB
ightarrow bBB
ightarrow a

```
Define \delta_G = 1 \land (aB \setminus S) \land (bB \setminus B) \land (a \setminus B)
Note that \delta_G^2 = \delta_G \le 1
Lemma: w \in L iff w\delta_G \le S holds in FL<sub>c</sub>-algebras
```

 $aba \in L$ is simulated by

 $egin{aligned} \mathsf{aba}\delta_G &\leq \mathsf{aba}\delta_G^2 \leq \mathsf{aba}(\mathsf{a}ackslash B)\delta_G \leq \mathsf{abB}\delta_G \leq &\leq \mathbf{ab}(\mathsf{ab}ackslash B)\delta_G \leq \mathsf{aB}\delta_G \leq \mathsf{ab}(\mathsf{ab}ackslash S) \leq S \end{aligned}$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

Note that $\theta^2 = \theta \leq 1$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $aba \rightarrow_R aa \rightarrow_R b$ is simulated by

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $aba \rightarrow_R aa \rightarrow_R b$ is simulated by

 $(aba)^{ heta} \leq ab heta a heta \leq ab(ab \setminus a) heta a heta$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $aba \rightarrow_R aa \rightarrow_R b$ is simulated by

 $(aba)^{ heta} \leq ab heta a heta \leq ab(ab ackslash a) heta a heta \leq a heta a heta$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $aba \rightarrow_R aa \rightarrow_R b$ is simulated by

 $(aba)^{ heta} \leq ab heta a heta \leq ab(abar a) heta a heta \leq a heta aa(aaar b)$

 $\Sigma = \{a, b\}$ – alphabet, $R = \{ab \rightarrow a, aa \rightarrow b\}$ – atomic rules

Define $\theta = 1 \land (ab \setminus a) \land (aa \setminus b)$

```
Note that \theta^2 = \theta \leq 1
```

Notation: $w^{\theta} = a_1 \theta a_2 \theta \dots a_n \theta$ for $w = a_1 a_2 \dots a_n$

 $aba \rightarrow_R aa \rightarrow_R b$ is simulated by

 $(aba)^{ heta} \leq ab heta a heta \leq ab(ab ackslash a) heta a heta \leq a heta a a heta \leq a a (aa ackslash b) \leq b$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Reduction atomic CSRS \rightarrow Eq. theory of FL_c

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{r}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_{G} \leq S$ holds in FL_c-algebras

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_r$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c-algebras

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{\ell}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras

 $uxv \rightarrow_R uav$ for $u \in L_\ell$, $v \in L_r$ is simulated as follows:

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_r$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \rightarrow_R u a v$ for $u \in L_\ell$, $v \in L_r$ is simulated as follows: $(u \times v)^{\theta}$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{r}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_{G} \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \to_R u a v$ for $u \in L_\ell$, $v \in L_r$ is simulated as follows: $(u \times v)^{\theta} \leq u^{\theta} \times \theta v^{\theta}$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{r}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_{G} \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \to_R u a v$ for $u \in L_\ell$, $v \in L_r$ is simulated as follows: $(u \times v)^{\theta} \leq u^{\theta} \times \theta v^{\theta} \leq u^{\theta} \times (x \setminus a \vee q) \theta v^{\theta}$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{r}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_{G} \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \to_R u a v$ for $u \in L_\ell$, $v \in L_r$ is simulated as follows: $(u \times v)^{\theta} \leq u^{\theta} \times \theta v^{\theta} \leq u^{\theta} \times (x \setminus a \vee q) \theta v^{\theta} \leq (u a v)^{\theta} \vee (u q v)^{\theta}$
Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{\ell}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \to_R u a v$ for $u \in L_{\ell}$, $v \in L_r$ is simulated as follows: $(u \times v)^{\theta} \leq u^{\theta} \times \theta v^{\theta} \leq u^{\theta} \times (x \setminus a \vee q) \theta v^{\theta} \leq (u a v)^{\theta} \vee (u q v)^{\theta}$ $(u \times v)^{\theta} \delta_G$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{\ell}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \to_R u a v$ for $u \in L_{\ell}$, $v \in L_r$ is simulated as follows: $(u \times v)^{\theta} \leq u^{\theta} \times \theta v^{\theta} \leq u^{\theta} \times (x \setminus a \vee q) \theta v^{\theta} \leq (u a v)^{\theta} \vee (u q v)^{\theta}$ $(u \times v)^{\theta} \delta_G \leq ((u a v)^{\theta} \vee (u q v)^{\theta}) \delta_G$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{\ell}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \to_R u a v$ for $u \in L_\ell$, $v \in L_r$ is simulated as follows: $(u \times v)^{\theta} \leq u^{\theta} \times \theta v^{\theta} \leq u^{\theta} \times (x \setminus a \vee q) \theta v^{\theta} \leq (u a v)^{\theta} \vee (u q v)^{\theta}$ $(u \times v)^{\theta} \delta_G \leq ((u a v)^{\theta} \vee (u q v)^{\theta}) \delta_G \leq (u a v)^{\theta} \vee u q v \delta_G$

Let $\langle \Sigma, R \rangle$ be an atomic CSRS and $w_0 \in \Sigma^*$ such that $L(w_0)$ is undecidable

Consider an atomic cond. rule $\langle x \rightarrow a, L_{\ell}, L_{r} \rangle$

Define

1. $\theta = 1 \land x \setminus (a \lor q)$, *q* a fresh variable

2. the regular language $L = L_{\ell}qL_{\ell}$ gen. by a grammar G, i.e., $w \in L$ iff $w\delta_G \leq S$ holds in FL_c-algebras

Lemma: $w \in L(w_0)$ iff $w^{\theta} \delta_G \leq w_0 \vee S$ holds in FL_c -algebras $u \times v \to_R u a v$ for $u \in L_\ell$, $v \in L_\ell$ is simulated as follows: $(u \times v)^{\theta} \leq u^{\theta} \times \theta v^{\theta} \leq u^{\theta} \times (x \setminus a \vee q) \theta v^{\theta} \leq (u a v)^{\theta} \vee (u q v)^{\theta}$ $(u \times v)^{\theta} \delta_G \leq ((u a v)^{\theta} \vee (u q v)^{\theta}) \delta_G \leq (u a v)^{\theta} \vee u q v \delta_G \leq (u a v)^{\theta} \vee S$

Main result

Theorem:

The equational theory of FL_c -algebras is undecidable.

Corollary:

The set of provable formulas in FL_c is undecidable.

Final remarks

1. Our encoding does not need 0 and /.

1. Our encoding does not need 0 and /.

2. We can also eliminate 1 and multiplication.

1. Our encoding does not need 0 and /.

2. We can also eliminate 1 and multiplication.

Our undecidability proof can be modified for x^m ≤ xⁿ for 1 ≤ m < n.

1. Our encoding does not need 0 and /.

2. We can also eliminate 1 and multiplication.

3. Our undecidability proof can be modified for $x^m \le x^n$ for $1 \le m < n$.

4. Algorithmic deduction theorem:

Let $T \cup \{A\}$ be a finite set of formulae. Then there is an algorithm which produces a formula *B* (given the input *T* and *A*) such that $\vdash_{FL_c} B$ iff $T \vdash_{FL_c} A$.

Thank you!