Full Lambek Calculus with Contraction is Undecidable

Rostislav Horčík
\&
Karel Chvalovský

Sequent Calculus for Int [Gentzen 1935]

$$
\underbrace{A_{1}, A_{2}, \ldots, A_{n}}_{\text {assumptions }} \Rightarrow \underbrace{B}_{\text {conclusio }}
$$

Sequent Calculus for Int [Gentzen 1935]

$$
\underbrace{A_{1}, A_{2}, \ldots, A_{n}}_{\text {assumptions }} \Rightarrow \underbrace{B}_{\text {conclusid }}
$$

Structural rules:

$$
\text { Exchange } \quad \begin{aligned}
& \ldots, A, B, \ldots \Rightarrow C \\
& \ldots, B, A, \ldots \Rightarrow C
\end{aligned}
$$

Sequent Calculus for Int [Gentzen 1935]

$$
\underbrace{A_{1}, A_{2}, \ldots, A_{n}} \Rightarrow \underbrace{B}
$$

Structural rules:

$$
\begin{aligned}
\text { Exchange } & \ldots, A, B, \ldots \Rightarrow C \\
& \ldots, B, A, \ldots \Rightarrow C \\
\text { Contraction } & \ldots, A, A, \ldots \Rightarrow B \\
& \ldots, A, \ldots \Rightarrow B
\end{aligned}
$$

Sequent Calculus for Int [Gentzen 1935]

$$
\underbrace{A_{1}, A_{2}, \ldots, A_{n}} \Rightarrow \underbrace{B}
$$

Structural rules:

$$
\begin{aligned}
& \text { Exchange } \quad \begin{array}{l}
\ldots, A, B, \ldots \Rightarrow C \\
\ldots, B, A, \ldots \Rightarrow C
\end{array} \\
& \text { Contraction } \quad \begin{array}{l}
\ldots, A, A, \ldots \Rightarrow B \\
\ldots, A, \ldots \Rightarrow B
\end{array} \\
& \text { Weakening } \\
& \begin{array}{l}
\ldots, \ldots \Rightarrow B \\
\ldots, A, \ldots \Rightarrow B
\end{array} \\
& \begin{array}{l}
\ldots \Rightarrow \\
\ldots \Rightarrow A
\end{array}
\end{aligned}
$$

A DRUNKARD'S PROGRESS

TIPSY

DRUNKEN

LEGLESS

DRUNK
(BY STRICT NAUTICAL
STANDARD): immobile

Basic substructural logics

Basic substructural logics

Basic substructural logics

Basic substructural logics

Algebraic semantics

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_{c} iff $A \leq B$ holds in FL_{C}-algebras.

Algebraic semantics

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_{c} iff $A \leq B$ holds in FL_{C}-algebras.
FL_{c}-algebras = square-increasing pointed residuated lattices

Algebraic semantics

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_{c} iff $A \leq B$ holds in FL_{c}-algebras.
FL_{c}-algebras = square-increasing pointed residuated lattices

$$
\mathbf{A}=\langle\mathbf{A}, \wedge, \vee, \cdot, \backslash, /, 0,1\rangle
$$

Algebraic semantics

Theorem:

A sequent $A \Rightarrow B$ is provable in FL_{c} iff $A \leq B$ holds in FL_{C}-algebras.
FL_{c}-algebras = square-increasing pointed residuated lattices
$\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, 0,1\rangle$
Facts:

1. $\langle A, \wedge, \vee\rangle$ - lattice
2. $\langle A, \cdot, 1\rangle$ - monoid
3. $a \leq a^{2}$
4. $a(a \backslash b) \leq b$
5. $a(b \vee c) d=a b d \vee a c d$

Strategy

Reachability problem for SRS

Reachability problem for atomic conditional SRS

Equational theory of FL_{c}

String rewriting systems (SRS)

$$
\Sigma=\{a, b\}-\underline{\text { alphabet, }} R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\} \text { - set of rules }
$$

String rewriting systems (SRS)

$$
\Sigma=\{a, b\}-\text { alphabet, } R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\} \text { - set of rules }
$$

$a b b a$

String rewriting systems (SRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\underline{\text { alphabet, }} R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\}-\text { set of rules } \\
& \text { abba } \rightarrow_{R} b a b a
\end{aligned}
$$

String rewriting systems (SRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\text { alphabet, } R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\}-\text { set of rules } \\
& a b b a \rightarrow_{R} b a b \rightarrow_{R} b b
\end{aligned}
$$

String rewriting systems (SRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\underline{\text { alphabet, }} R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\} \text { - set of rules } \\
& a b b a \rightarrow_{R} b a b a \rightarrow_{R} b b a \rightarrow_{R} b b
\end{aligned}
$$

String rewriting systems (SRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\text { alphabet, } R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\} \text { - set of rules } \\
& a b b a \rightarrow_{R} b a b a \rightarrow_{R} b b a \rightarrow_{R} b b \\
& L(b b)=\left\{w \in \Sigma^{*} \mid w \rightarrow_{R}^{*} b b\right\}
\end{aligned}
$$

String rewriting systems (SRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\underline{\text { alphabet, }} R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\}-\text { set of rules } \\
& a b b a \rightarrow_{R} b a b a \rightarrow_{R} b b a \rightarrow_{R} b b \\
& L(b b)=\left\{w \in \Sigma^{*} \mid w \rightarrow_{R}^{*} b b\right\}=\left\{a^{k} b a^{\prime} b a^{m} \mid k+I+m \text { is even }\right\}
\end{aligned}
$$

String rewriting systems (SRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\underline{\text { alphabet, }} R=\{a b \rightarrow b a, a a \rightarrow \varepsilon\}-\text { set of rules } \\
& a b b a \rightarrow_{R} b a b a \rightarrow_{R} b b a \rightarrow_{R} b b \\
& L(b b)=\left\{w \in \Sigma^{*} \mid w \rightarrow_{R}^{*} b b\right\}=\left\{a^{k} b a^{\prime} b a^{m} \mid k+I+m \text { is even }\right\}
\end{aligned}
$$

Theorem [RH]:
There is an $\operatorname{SRS}\langle\Sigma, R\rangle$ and $w_{0} \in \Sigma^{*}$ such that

$$
L\left(w_{0}\right)=\left\{w \in \Sigma^{*} \mid w \rightarrow_{R}^{*} w_{0}\right\}
$$

is undecidable and $L\left(w_{0}\right)$ consists only of words.

Conditional string rewriting systems (CSRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\underline{\text { alphabet }} \\
& R=\left\{\left\langle a b \rightarrow b a, \Sigma^{*}, \Sigma^{\prime}\right\rangle,\left\langle a a \rightarrow \varepsilon, \Sigma^{*} b, a^{*}\right\rangle\right\}-\text { cond. rules }
\end{aligned}
$$

Conditional string rewriting systems (CSRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\underline{\text { alphabet }} \\
& R=\left\{\left\langle a b \rightarrow b a, \Sigma^{*}, \Sigma\right\rangle,\left\langle a a \rightarrow \varepsilon, \Sigma^{*} b, a^{*}\right\rangle\right\}-\text { cond. rules } \\
&
\end{aligned}
$$

Conditional string rewriting systems (CSRS)

$$
\begin{aligned}
& \Sigma=\{a, b\}-\underline{\text { alphabet }} \\
& R=\left\{\left\langle a b \rightarrow b a, \Sigma^{*}, \Sigma\right\rangle,\left\langle a a \rightarrow \varepsilon, \Sigma^{*} b, a^{*}\right\rangle\right\}-\underline{\text { cond. rules }} \\
&
\end{aligned}
$$

Conditional string rewriting systems (CSRS)

$\Sigma=\{a, b\}-\underline{\text { alphabet }}$
$R=\left\{\left\langle a b \rightarrow b a, \Sigma^{*}, \quad\right\rangle,\left\langle a a \rightarrow \varepsilon, \Sigma^{*} b, a^{*}\right\rangle\right\}-\underline{\text { cond. rules }}$
left contexts

For example

$$
\varepsilon a a b \not f_{R} b
$$

Conditional string rewriting systems (CSRS)

$\Sigma=\{a, b\}-\underline{\text { alphabet }}$
$R=\left\{\left\langle a b \rightarrow b a, \Sigma^{*}, \quad\right\rangle,\left\langle a a \rightarrow \varepsilon, \Sigma^{*} b, a^{*}\right\rangle\right\}-\underline{\text { cond. rules }}$
left contexts

For example

$$
\varepsilon a a b \rightarrow_{R} b \text { but } a a b \rightarrow_{R^{\prime}} a b a \rightarrow_{R} b a a=b a a \rightarrow_{R} b
$$

Conditional string rewriting systems (CSRS)

$\Sigma=\{a, b\}-\underline{\text { alphabet }}$
$R=\left\{\left\langle a b \rightarrow b a, \Sigma^{*}, \quad\right\rangle,\left\langle a a \rightarrow \varepsilon, \Sigma^{*} b, a^{*}\right\rangle\right\}-$ cond. rules
left contexts

For example

$$
\varepsilon a a b \nrightarrow_{R} b \text { but } a a b \rightarrow_{R^{\prime}} a b a \rightarrow_{R} b a a=b a a \rightarrow_{R} b
$$

If all the rules are of the form $\left\langle x \rightarrow a, L_{\ell}, L_{r}\right\rangle$ for $a \in \Sigma$, we call the CSRS atomic.

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma^{\prime}\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma^{\prime}\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Lemma: Let $w, w_{0} \in \Sigma^{*}$. Then $w \rightarrow_{R}^{*} w_{0}$ iff $w \rightarrow_{R^{\prime}}^{*} w_{0}$

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Lemma: Let $w, w_{0} \in \Sigma^{*}$. Then $w \rightarrow_{R}^{*} w_{0}$ iff $w \rightarrow_{R^{\prime}}^{*} w_{0}$ $u \times v \rightarrow_{R}$ uabv is simulated by

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Lemma: Let $w, w_{0} \in \Sigma^{*}$. Then $w \rightarrow_{R}^{*} w_{0}$ iff $w \rightarrow_{R^{\prime}}^{*} w_{0}$ $u \times v \rightarrow_{R}$ uabv is simulated by

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma^{\prime}\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Lemma: Let $w, w_{0} \in \Sigma^{*}$. Then $w \rightarrow_{R}^{*} w_{0}$ iff $w \rightarrow_{R^{\prime}}^{*} w_{0}$ $u \times v \rightarrow_{R}$ uabv is simulated by

$$
u x v \rightarrow_{R^{\prime}} u x b^{\prime \prime} v
$$

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma^{\prime}\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Lemma: Let $w, w_{0} \in \Sigma^{*}$. Then $w \rightarrow_{R}^{*} w_{0}$ iff $w \rightarrow_{R^{\prime}}^{*} w_{0}$ $u \times v \rightarrow_{R}$ uabv is simulated by

$$
u x v \rightarrow_{R^{\prime}} u x b^{\prime \prime} v \rightarrow_{R^{\prime}} u a^{\prime} b^{\prime \prime} v
$$

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma^{\prime}\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Lemma: Let $w, w_{0} \in \Sigma^{*}$. Then $w \rightarrow_{R}^{*} w_{0}$ iff $w \rightarrow_{R^{\prime}}^{*} w_{0}$ $u \times v \rightarrow_{R}$ uabv is simulated by

$$
u x v \rightarrow_{R^{\prime}} u x b^{\prime \prime} v \rightarrow_{R^{\prime}} u a^{\prime} b^{\prime \prime} v \rightarrow_{R^{\prime}} u a^{\prime} b v
$$

Reduction SRS \rightarrow atomic CSRS

Let $\langle\Sigma, R\rangle$ be an SRS.
Define an atomic CSRS $\left\langle\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}, R^{\prime}\right\rangle$ as follows

1. $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in \Sigma\right\}$ - disjoint copies of Σ
2. Replace $x \rightarrow a b$ by atomic cond. rules:

$$
\begin{aligned}
& \left\langle\varepsilon \rightarrow b^{\prime \prime}, \Sigma^{*}, \Sigma\right\rangle \\
& \left\langle x \rightarrow a^{\prime}, \Sigma^{*}, b^{\prime \prime} \Sigma^{\prime}\right\rangle \\
& \left\langle b^{\prime \prime} \rightarrow b, \Sigma^{*} a^{\prime}, \Sigma\right\rangle \\
& \left\langle a^{\prime} \rightarrow a, \Sigma^{*}, \Sigma\right\rangle
\end{aligned}
$$

Lemma: Let $w, w_{0} \in \Sigma^{*}$. Then $w \rightarrow_{R}^{*} w_{0}$ iff $w \rightarrow_{R^{\prime}}^{*} w_{0}$ $u \times v \rightarrow_{R} u a b v$ is simulated by

$$
u x v \rightarrow_{R^{\prime}} u x b^{\prime \prime} v \rightarrow_{R^{\prime}} u a^{\prime} b^{\prime \prime} v \rightarrow_{R^{\prime}} u a^{\prime} b v \rightarrow_{R^{\prime}} u a b v
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{C}-algebras

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras
$a b a \in L$ is simulated by
$a b a \delta_{G}$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{C}-algebras
$a b a \in L$ is simulated by

$$
a b a \delta_{G} \leq a b a \delta_{G}^{2}
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras
$a b a \in L$ is simulated by

$$
a b a \delta_{G} \leq a b a \delta_{G}^{2} \leq a b a(a \backslash B) \delta_{G}
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{C}-algebras
$a b a \in L$ is simulated by

$$
a b a \delta_{G} \leq a b a \delta_{G}^{2} \leq a b a(a \backslash B) \delta_{G} \leq a b B \delta_{G}
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras
$a b a \in L$ is simulated by

$$
\begin{aligned}
a b a \delta_{G} \leq a b a \delta_{G}^{2} \leq & a b a(a \backslash B) \delta_{G} \leq a b B \delta_{G} \leq \\
& \leq a b B(b B \backslash B) \delta_{G}
\end{aligned}
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras
$a b a \in L$ is simulated by

$$
\begin{aligned}
a b a \delta_{G} \leq a b a \delta_{G}^{2} \leq & a b a(a \backslash B) \delta_{G} \leq a b B \delta_{G} \leq \\
& \leq a b B(b B \backslash B) \delta_{G} \leq a B \delta_{G}
\end{aligned}
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{C}-algebras
$a b a \in L$ is simulated by

$$
\begin{aligned}
a b a \delta_{G} \leq a b a \delta_{G}^{2} \leq & a b a(a \backslash B) \delta_{G} \leq a b B \delta_{G} \leq \\
& \leq a b B(b B \backslash B) \delta_{G} \leq a B \delta_{G} \leq a B(a B \backslash S)
\end{aligned}
$$

Regular languages

$L=a b^{*} a$ can be generated by a right-linear CFG G :

$$
\begin{aligned}
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow a
\end{aligned}
$$

Define $\delta_{G}=1 \wedge(a B \backslash S) \wedge(b B \backslash B) \wedge(a \backslash B)$
Note that $\delta_{G}^{2}=\delta_{G} \leq 1$
Lemma: $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras
$a b a \in L$ is simulated by

$$
\begin{aligned}
a b a \delta_{G} \leq a b a \delta_{G}^{2} \leq & a b a(a \backslash B) \delta_{G} \leq a b B \delta_{G} \leq \\
& \leq a b B(b B \backslash B) \delta_{G} \leq a B \delta_{G} \leq a B(a B \backslash S) \leq S
\end{aligned}
$$

Atomic rules

$$
\Sigma=\{a, b\}-\text { alphabet, } R=\{a b \rightarrow a, a a \rightarrow b\} \text { - atomic rules }
$$

Atomic rules

$$
\Sigma=\{a, b\}-\text { alphabet, } R=\{a b \rightarrow a, a a \rightarrow b\} \text { - atomic rules }
$$

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$

Note that $\theta^{2}=\theta \leq 1$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$

Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$
Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$
$a b a \rightarrow_{R} a a \rightarrow_{R} b$ is simulated by

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$
Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$
$a b a \rightarrow_{R} a a \rightarrow_{R} b$ is simulated by
$(a b a)^{\theta}$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$
Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$
$a b a \rightarrow_{R} a a \rightarrow_{R} b$ is simulated by

$$
(a b a)^{\theta} \leq a b \theta a \theta
$$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$
Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$
$a b a \rightarrow_{R} a a \rightarrow_{R} b$ is simulated by

$$
(a b a)^{\theta} \leq a b \theta a \theta \leq a b(a b \backslash a) \theta a \theta
$$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$
Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$
$a b a \rightarrow_{R} a a \rightarrow_{R} b$ is simulated by

$$
(a b a)^{\theta} \leq a b \theta a \theta \leq a b(a b \backslash a) \theta a \theta \leq a \theta a \theta
$$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$
Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$
$a b a \rightarrow_{R} a a \rightarrow_{R} b$ is simulated by

$$
(a b a)^{\theta} \leq a b \theta a \theta \leq a b(a b \backslash a) \theta a \theta \leq a \theta a \theta \leq a a(a a \backslash b)
$$

Atomic rules

$\Sigma=\{a, b\}$ - alphabet, $R=\{a b \rightarrow a, a a \rightarrow b\}$ - atomic rules

Define $\theta=1 \wedge(a b \backslash a) \wedge(a a \backslash b)$
Note that $\theta^{2}=\theta \leq 1$
Notation: $w^{\theta}=a_{1} \theta a_{2} \theta \ldots a_{n} \theta$ for $w=a_{1} a_{2} \ldots a_{n}$
$a b a \rightarrow_{R} a a \rightarrow_{R} b$ is simulated by

$$
(a b a)^{\theta} \leq a b \theta a \theta \leq a b(a b \backslash a) \theta a \theta \leq a \theta a \theta \leq a a(a a \backslash b) \leq b
$$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{r}\right\rangle$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{r}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{,}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {, }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{,}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {r }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{,}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {r }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras
$u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows:

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{,}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q-$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras
$u x v \rightarrow_{R}$ ua for $u \in L_{l}, v \in L_{c}$ is simulated as follows: $(u \times v)^{\theta}$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{r}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {. }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras
$u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows:
$(u x v)^{\theta} \leq u^{\theta} x \theta v^{\theta}$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{,}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {. }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras
$u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows:
$(u x v)^{\theta} \leq u^{\theta} x \theta v^{\theta} \leq u^{\theta} x(x \backslash a \vee q) \theta v^{\theta}$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{r}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {. }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras $u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows: $(u x v)^{\theta} \leq u^{\theta} x \theta v^{\theta} \leq u^{\theta} x(x \backslash a \vee q) \theta v^{\theta} \leq(u a v)^{\theta} \vee(u q v)^{\theta}$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{r}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {. }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras $u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows:
$(u x v)^{\theta} \leq u^{\theta} x \theta v^{\theta} \leq u^{\theta} x(x \backslash a \vee q) \theta v^{\theta} \leq(u a v)^{\theta} \vee(u q v)^{\theta}$
$(u x v)^{\theta} \delta_{G}$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{r}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {, }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras $u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows:
$(u x v)^{\theta} \leq u^{\theta} x \theta v^{\theta} \leq u^{\theta} x(x \backslash a \vee q) \theta v^{\theta} \leq(u a v)^{\theta} \vee(u q v)^{\theta}$
$(u x v)^{\theta} \delta_{G} \leq\left((u a v)^{\theta} \vee(u q v)^{\theta}\right) \delta_{G}$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{-}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {, }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras $u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows:
$(u x v)^{\theta} \leq u^{\theta} x \theta v^{\theta} \leq u^{\theta} x(x \backslash a \vee q) \theta v^{\theta} \leq(u a v)^{\theta} \vee(u q v)^{\theta}$
$(u x v)^{\theta} \delta_{G} \leq\left((u a v)^{\theta} \vee(u q v)^{\theta}\right) \delta_{G} \leq(u a v)^{\theta} \vee u q \vee \delta_{G}$

Reduction atomic CSRS \rightarrow Eq. theory of FL_{c}

Let $\langle\Sigma, R\rangle$ be an atomic CSRS and $w_{0} \in \Sigma^{*}$ such that $L\left(w_{0}\right)$ is undecidable

Consider an atomic cond. rule $\left\langle x \rightarrow a, L_{\ell}, L_{-}\right\rangle$
Define

1. $\theta=1 \wedge x \backslash(a \vee q), q$ a fresh variable
2. the regular language $L=L_{\ell} q L_{\text {, }}$ gen. by a grammar G, i.e., $w \in L$ iff $w \delta_{G} \leq S$ holds in FL_{c}-algebras

Lemma: $w \in L\left(w_{0}\right)$ iff $w^{\theta} \delta_{G} \leq w_{0} \vee S$ holds in FL_{c}-algebras $u x v \rightarrow_{R} u a v$ for $u \in L_{\ell}, v \in L_{r}$ is simulated as follows:
$(u x v)^{\theta} \leq u^{\theta} x \theta v^{\theta} \leq u^{\theta} x(x \backslash a \vee q) \theta v^{\theta} \leq(u a v)^{\theta} \vee(u q v)^{\theta}$
$(u x v)^{\theta} \delta_{G} \leq\left((u a v)^{\theta} \vee(u q v)^{\theta}\right) \delta_{G} \leq(u a v)^{\theta} \vee u q \vee \delta_{G} \leq(u a v)^{\theta} \vee S$

Main result

Theorem:
The equational theory of FL_{c}-algebras is undecidable.

Corollary:

The set of provable formulas in FL_{c} is undecidable.

Final remarks

1. Our encoding does not need 0 and $/$.

Final remarks

1. Our encoding does not need 0 and $/$.
2. We can also eliminate 1 and multiplication.

Final remarks

1. Our encoding does not need 0 and /.
2. We can also eliminate 1 and multiplication.
3. Our undecidability proof can be modified for $x^{m} \leq x^{n}$ for $1 \leq m<n$.

Final remarks

1. Our encoding does not need 0 and $/$.
2. We can also eliminate 1 and multiplication.
3. Our undecidability proof can be modified for $x^{m} \leq x^{n}$ for $1 \leq m<n$.
4. Algorithmic deduction theorem:

Let $T \cup\{A\}$ be a finite set of formulae. Then there is an algorithm which produces a formula B (given the input T and A) such that $\vdash_{F L_{c}} B$ iff $T \vdash_{F L_{c}} A$.

Thank you!

