Algebraic Methods from Substructural Logics and Formal Languages

Rostislav Horčík
Institute of Computer Science
Academy of Sciences of the Czech Republic
1st Annual Scientific Meeting of CE-ITI
13-14 December 2012

A warm introduction

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \quad \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L) \text {, }
$$

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \quad \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L),
$$

(2) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L) \text {, }
$$

(2) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Theorem

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L) \text {, }
$$

(2) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Theorem
(1) \sim_{L} is the largest congruence such that $L=\bigcup_{w \in L} w / \sim_{L}$.

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L) \text {, }
$$

(2) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Theorem

(1) \sim_{L} is the largest congruence such that $L=\bigcup_{w \in L} w / \sim_{L}$.
(2) $\mathbf{M}(L)$ is finite iff L is regular (Myhill-Nerode Theorem).

Remarks

- Syntactic monoids were mainly applied in the realm of regular languages.

Remarks

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem - there is a bijection between varieties of regular languages and varieties of finite monoids.

Remarks

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem - there is a bijection between varieties of regular languages and varieties of finite monoids.
- Beyond regular languages - they do not contain sufficiently enough information to distinguish very different languages, e.g.

$$
\begin{aligned}
& L_{1}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} \\
& L_{2}=\left\{w \in\{0,1\}^{*} \mid w \text { is prime }\right\}
\end{aligned}
$$

Remarks

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem - there is a bijection between varieties of regular languages and varieties of finite monoids.
- Beyond regular languages - they do not contain sufficiently enough information to distinguish very different languages, e.g.

$$
\begin{aligned}
& L_{1}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} \\
& L_{2}=\left\{w \in\{0,1\}^{*} \mid w \text { is prime }\right\}
\end{aligned}
$$

- The syntactic congruence is known in AAL as Leibniz congruence which is used in the construction of Lindenbaum-Tarski algebra for a given theory.

Remarks

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem - there is a bijection between varieties of regular languages and varieties of finite monoids.
- Beyond regular languages - they do not contain sufficiently enough information to distinguish very different languages, e.g.

$$
\begin{aligned}
& L_{1}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} \\
& L_{2}=\left\{w \in\{0,1\}^{*} \mid w \text { is prime }\right\}
\end{aligned}
$$

- The syntactic congruence is known in AAL as Leibniz congruence which is used in the construction of Lindenbaum-Tarski algebra for a given theory.
- Can other constructions/ideas from (substructural) logics be used in the language theory?

Residuated lattices

Definition

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$
x \leq y \Longrightarrow u x v \leq u y v .
$$

Residuated lattices

Definition

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$
x \leq y \Longrightarrow u x v \leq u y v
$$

Definition

A residuated lattice $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ is a monoid such that $\langle A, \wedge, \vee\rangle$ is a lattice and for all $a, b, c \in A$:

$$
a \cdot b \leq c \quad \text { iff } \quad b \leq a \backslash c \quad \text { iff } \quad a \leq c / b
$$

Powerset monoid

Example

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. Then

$$
\mathcal{P}(\mathbf{M})=\langle\mathcal{P}(M), \cap, \cup, \cdot, \backslash, /,\{1\}\rangle
$$

is a residuated lattice, where

$$
\begin{aligned}
X \cdot Y & =\{x y \in M \mid x \in X, y \in Y\} \\
X \backslash Z & =\{y \in M \mid X \cdot\{y\} \subseteq Z\} \\
Z / Y & =\{x \in M \mid\{x\} \cdot Y \subseteq Z\}
\end{aligned}
$$

Powerset monoid

Example

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. Then

$$
\mathcal{P}(\mathbf{M})=\langle\mathcal{P}(M), \cap, \cup, \cdot, \backslash, /,\{1\}\rangle
$$

is a residuated lattice, where

$$
\begin{aligned}
X \cdot Y & =\{x y \in M \mid x \in X, y \in Y\} \\
X \backslash Z & =\{y \in M \mid X \cdot\{y\} \subseteq Z\} \\
Z / Y & =\{x \in M \mid\{x\} \cdot Y \subseteq Z\}
\end{aligned}
$$

Other examples can be obtained by introducing a suitable closure operator on $\mathcal{P}(M)$.

Closure operators

A frame $\mathbf{W}=\langle A, B, N\rangle: \quad A \longrightarrow B$

Closure operators

A frame $\mathbf{W}=\langle A, B, N\rangle$:

$$
\begin{aligned}
& A \longrightarrow{ }^{N} B \\
& \mathcal{P}(A) \xrightarrow[\triangleleft]{\curvearrowright} \mathcal{D}(B)
\end{aligned}
$$

Closure operators

A frame $\mathbf{W}=\langle A, B, N\rangle$:

$$
\begin{aligned}
X^{\triangleright} & =\{b \in B \mid(\forall a \in X)(a N b)\}, \\
Y^{\triangleleft} & =\{a \in A \mid(\forall b \in Y)(a N b)\} .
\end{aligned}
$$

- $\gamma(X)=X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(A)$.

Closure operators

A frame $\mathbf{W}=\langle A, B, N\rangle$:

$$
\begin{aligned}
X^{\triangleright} & =\{b \in B \mid(\forall a \in X)(a N b)\}, \\
Y^{\triangleleft} & =\{a \in A \mid(\forall b \in Y)(a N b)\} .
\end{aligned}
$$

- $\gamma(X)=X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(A)$.
- $\left\{\{b\}^{\triangleleft} \mid b \in B\right\}$ is its basis.

Closure operators

A frame $\mathbf{W}=\langle A, B, N\rangle$:

$$
\begin{aligned}
X^{\triangleright} & =\{b \in B \mid(\forall a \in X)(a N b)\}, \\
Y^{\triangleleft} & =\{a \in A \mid(\forall b \in Y)(a N b)\} .
\end{aligned}
$$

- $\gamma(X)=X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(A)$.
- $\left\{\{b\}^{\triangleleft} \mid b \in B\right\}$ is its basis.
- The collection of closed sets forms a complete lattice $\mathbf{W}^{+}=\left\langle\gamma[\mathcal{P}(A)], \cap, \cup_{\gamma}\right\rangle$, where

$$
X \cup_{\gamma} Y=\gamma(X \cup Y)
$$

Residuated frames

- Given a monoid \mathbf{A} and an frame $\mathbf{W}=\langle A, B, N\rangle$, define an extended frame $\widehat{\mathbf{W}}=\left\langle A, A^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u x v N b
$$

Residuated frames

- Given a monoid \mathbf{A} and an frame $\mathbf{W}=\langle A, B, N\rangle$, define an extended frame $\widehat{\mathbf{W}}=\left\langle A, A^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u x v N b
$$

- The closure operator γ induced by \widehat{N} is a nucleus (i.e., $\gamma(X) \gamma(Y) \subseteq \gamma(X Y))$.

Residuated frames

- Given a monoid \mathbf{A} and an frame $\mathbf{W}=\langle A, B, N\rangle$, define an extended frame $\widehat{\mathbf{W}}=\left\langle A, A^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u \times v N b
$$

- The closure operator γ induced by \widehat{N} is a nucleus (i.e., $\gamma(X) \gamma(Y) \subseteq \gamma(X Y))$.
- Then $\widehat{\mathbf{W}}^{+}=\left\langle\mathcal{P}(A)_{\gamma}, \cap, \cup_{\gamma}, \circ_{\gamma}, \backslash_{\gamma}, /{ }_{\gamma}, \gamma\{1\}\right\rangle$ forms a complete residuated lattice, where $X \bullet{ }_{\gamma} Y=\gamma(X \bullet Y)$ for $\bullet \in\{\circ, \backslash, /, \cup\}$.

Residuated frames

- Given a monoid \mathbf{A} and an frame $\mathbf{W}=\langle A, B, N\rangle$, define an extended frame $\widehat{\mathbf{W}}=\left\langle A, A^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u \times v N b
$$

- The closure operator γ induced by \widehat{N} is a nucleus (i.e., $\gamma(X) \gamma(Y) \subseteq \gamma(X Y))$.
- Then $\widehat{\mathbf{W}}^{+}=\left\langle\mathcal{P}(A)_{\gamma}, \cap, \cup_{\gamma}, \circ_{\gamma}, \backslash_{\gamma}, /{ }_{\gamma}, \gamma\{1\}\right\rangle$ forms a complete residuated lattice, where $X \bullet{ }_{\gamma} Y=\gamma(X \bullet Y)$ for $\bullet \in\{\circ, \backslash, /, \cup\}$.
- The binary relation on A defined by

$$
x \sqsubseteq y \quad \text { iff } \quad \gamma\{x\} \subseteq \gamma\{y\}
$$

is a compatible quasi-order on \mathbf{A}.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. Define frame $\mathbf{W}=\left\langle\Sigma^{*},\{\star\}, N\right\rangle$, where $N \subseteq \Sigma^{*} \times\{\star\}$ is defined by

$$
x N \star \text { iff } \quad x \in L
$$

Then $\mathbf{R}(L)=\widehat{\mathbf{W}}^{+}$is called the syntactic residuated lattice of L.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. Define frame $\mathbf{W}=\left\langle\Sigma^{*},\{*\}, N\right\rangle$, where $N \subseteq \Sigma^{*} \times\{\star\}$ is defined by

$$
x N \star \text { iff } x \in L \text {. }
$$

Then $\mathbf{R}(L)=\widehat{\mathbf{W}}^{+}$is called the syntactic residuated lattice of L.

Theorem

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. Define frame $\mathbf{W}=\left\langle\Sigma^{*},\{*\}, N\right\rangle$, where $N \subseteq \Sigma^{*} \times\{\star\}$ is defined by

$$
x N \star \text { iff } x \in L \text {. }
$$

Then $\mathbf{R}(L)=\widehat{\mathbf{W}}^{+}$is called the syntactic residuated lattice of L.

Theorem
(1) The nucleus γ is the point-wise largest nucleus making L a closed set.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. Define frame $\mathbf{W}=\left\langle\Sigma^{*},\{*\}, N\right\rangle$, where $N \subseteq \Sigma^{*} \times\{\star\}$ is defined by

$$
x N \star \text { iff } x \in L \text {. }
$$

Then $\mathbf{R}(L)=\widehat{\mathbf{W}}^{+}$is called the syntactic residuated lattice of L.

Theorem
(1) The nucleus γ is the point-wise largest nucleus making L a closed set.
(2) $\left\{\gamma\{x\} \mid x \in \Sigma^{*}\right\}$ forms a submonoid isomorphic to $\mathbf{M}(L)$.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. Define frame $\mathbf{W}=\left\langle\Sigma^{*},\{*\}, N\right\rangle$, where $N \subseteq \Sigma^{*} \times\{\star\}$ is defined by

$$
x N \star \text { iff } x \in L \text {. }
$$

Then $\mathbf{R}(L)=\widehat{\mathbf{W}}^{+}$is called the syntactic residuated lattice of L.

Theorem
(1) The nucleus γ is the point-wise largest nucleus making L a closed set.
(2) $\left\{\gamma\{x\} \mid x \in \Sigma^{*}\right\}$ forms a submonoid isomorphic to $\mathbf{M}(L)$.
(3) $\mathbf{R}(L)$ is finite iff L is regular.

Generalized Myhill Theorem

The following theorem is the core of most decidability proofs we have for substructural logics.

Theorem
Let \mathbf{A} be a monoid and $\mathbf{W}=\langle A, B, N\rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^{+}$is finite iff there is a compatible dual well quasi-order \leqon \mathbf{A} such that

$$
x \leq y, y N b \Longrightarrow x N b
$$

Generalized Myhill Theorem

The following theorem is the core of most decidability proofs we have for substructural logics.

Theorem
Let \mathbf{A} be a monoid and $\mathbf{W}=\langle A, B, N\rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^{+}$is finite iff there is a compatible dual well quasi-order \leqon \mathbf{A} such that

$$
x \leq y, y N b \Longrightarrow x N b
$$

Corollary (Generalized Myhill Theorem - Ehrenfeucht, Rozenberg)
A language $L \subseteq \Sigma^{*}$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^{*}.

Application

- Our decidability proof for the universal theory of residuated lattices satisfying $x^{2} \leq x$ can be translated into the language theory.

Application

- Our decidability proof for the universal theory of residuated lattices satisfying $x^{2} \leq x$ can be translated into the language theory.
- The variety of residuated lattices satisfying $x^{2} \leq x$ can be equivalently axiomatized by

$$
u x v \leq z \& u y v \leq z \Longrightarrow u x y v \leq z
$$

Application

- Our decidability proof for the universal theory of residuated lattices satisfying $x^{2} \leq x$ can be translated into the language theory.
- The variety of residuated lattices satisfying $x^{2} \leq x$ can be equivalently axiomatized by

$$
u x v \leq z \& u y v \leq z \Longrightarrow u x y v \leq z
$$

Theorem

Every language $L \subseteq \Sigma^{*}$ closed under the following rule is regular:

$$
\begin{equation*}
u x v, u y v \in L \Longrightarrow u x y v \in L \tag{r}
\end{equation*}
$$

Application

- Our decidability proof for the universal theory of residuated lattices satisfying $x^{2} \leq x$ can be translated into the language theory.
- The variety of residuated lattices satisfying $x^{2} \leq x$ can be equivalently axiomatized by

$$
u x v \leq z \& u y v \leq z \Longrightarrow u x y v \leq z
$$

Theorem

Every language $L \subseteq \Sigma^{*}$ closed under the following rule is regular:

$$
\begin{equation*}
u x v, u y v \in L \Longrightarrow u x y v \in L \tag{r}
\end{equation*}
$$

Example

The language $a^{+}\left(b(a+b+c)^{*} b+b\right) c^{+}$is closed under (r).

Application (cont.)

- Consider a closure operator $\gamma: \mathcal{P}\left(\Sigma^{*}\right) \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ s.t. its closed sets are closed under the rule:

$$
u x v, u y v \in L \Longrightarrow u x y v \in L
$$

Application (cont.)

- Consider a closure operator $\gamma: \mathcal{P}\left(\Sigma^{*}\right) \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ s.t. its closed sets are closed under the rule:

$$
u x v, u y v \in L \Longrightarrow u x y v \in L
$$

- Then γ is nucleus on $\mathcal{P}\left(\Sigma^{*}\right)$ and the following relation is a compatible quasi-order on Σ^{*} :

$$
x \sqsubseteq y \quad \text { iff } \quad \gamma\{x\} \subseteq \gamma\{y\}
$$

Application (cont.)

- Consider a closure operator $\gamma: \mathcal{P}\left(\Sigma^{*}\right) \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ s.t. its closed sets are closed under the rule:

$$
u x v, u y v \in L \Longrightarrow u x y v \in L
$$

- Then γ is nucleus on $\mathcal{P}\left(\Sigma^{*}\right)$ and the following relation is a compatible quasi-order on Σ^{*} :

$$
x \sqsubseteq y \quad \text { iff } \quad \gamma\{x\} \subseteq \gamma\{y\} .
$$

- In order to show that L has to be regular, it suffices to show that \sqsubseteq is a dual well quasi-order using the generalized Myhill theorem.

Higman's lemma

Definition
Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by
$a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation $\leq *$ on Q^{*} by
$a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by $a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by
$a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by

$$
a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m} \text { iff there is a strictly increasing map }
$$

$$
f:[1, n] \rightarrow[1, m] \text { s.t. } a_{i} \leq b_{f(i)} \text { for all } i \in[1, n]
$$

Lemma (Higman's lemma)
If $\langle Q, \leq\rangle$ is a well quasi-ordered set then so is $\left\langle Q^{*}, \leq^{*}\right\rangle$.

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.

๑๑๑๑๑

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.

Modified Higman's lemma (cont.)

Lemma

If $\langle Q, \leq\rangle$ is a well quasi-ordered set then $\left\langle Q^{+}, \leq^{+}\right\rangle$forms a well quasi-ordered set as well.

Modified Higman's lemma (cont.)

Lemma

If $\langle Q, \leq\rangle$ is a well quasi-ordered set then $\left\langle Q^{+}, \leq^{+}\right\rangle$forms a well quasi-ordered set as well.

```
Lemma
Let w\in\mp@subsup{\Sigma}{}{*}\mathrm{ and }\operatorname{Alph}(w)=\Gamma.Then wuw \sqsubseteqw for every }u\in\mp@subsup{\Gamma}{}{*}\mathrm{ .
```


Beyond regular languages?

Let $\Sigma=\{0,1\}$.

$$
\begin{aligned}
& L_{1}=\left\{w w^{R} \mid w \in \Sigma^{*}\right\} \\
& L_{2}=\left\{w \in \Sigma^{*} \mid w \text { is prime }\right\}
\end{aligned}
$$

Beyond regular languages?

Let $\Sigma=\{0,1\}$.

$$
\begin{aligned}
& L_{1}=\left\{w w^{R} \mid w \in \Sigma^{*}\right\} \\
& L_{2}=\left\{w \in \Sigma^{*} \mid w \text { is prime }\right\}
\end{aligned}
$$

Consider the following rule:

$$
\begin{equation*}
u x v, u x^{2} v \in L \Longrightarrow u v \in L \tag{r}
\end{equation*}
$$

Then L_{1} is closed under (r) and L_{2} not.

Beyond regular languages?

Let $\Sigma=\{0,1\}$.

$$
\begin{aligned}
& L_{1}=\left\{w w^{R} \mid w \in \Sigma^{*}\right\} \\
& L_{2}=\left\{w \in \Sigma^{*} \mid w \text { is prime }\right\}
\end{aligned}
$$

Consider the following rule:

$$
\begin{equation*}
u x v, u x^{2} v \in L \Longrightarrow u v \in L \tag{r}
\end{equation*}
$$

Then L_{1} is closed under (r) and L_{2} not.
The rule (r) is equivalent to

$$
1 \leq x \vee x^{2} \vee x \backslash y
$$

Thus the languages L_{1}, L_{2} can be separated by a variety of residuated lattices.

Thank you!

