Algebraic Methods from Substructural Logics and Formal Languages

Rostislav Horčík

Institute of Computer Science Academy of Sciences of the Czech Republic

1st Annual Scientific Meeting of CE-ITI 13–14 December 2012

A warm introduction

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

$$x \sim_L y$$
 iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

$$x \sim_L y$$
 iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid: $\mathbf{M}(L) = \Sigma^* / \sim_L$.

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

 $x \sim_L y$ iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid: $\mathbf{M}(L) = \Sigma^* / \sim_L$.

Theorem

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

 $x \sim_L y$ iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid:
$$\mathbf{M}(L) = \Sigma^* / \sim_L$$
.

Theorem

• \sim_L is the largest congruence such that $L = \bigcup_{w \in L} w / \sim_L$.

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

 $x \sim_L y$ iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid: $\mathbf{M}(L) = \Sigma^* / \sim_L$.

Theorem

• \sim_L is the largest congruence such that $L = \bigcup_{w \in L} w / \sim_L$.

\bigcirc M(*L*) is finite iff *L* is regular (Myhill-Nerode Theorem).

• Syntactic monoids were mainly applied in the realm of regular languages.

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem there is a bijection between varieties of regular languages and varieties of finite monoids.

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem there is a bijection between varieties of regular languages and varieties of finite monoids.
- Beyond regular languages they do not contain sufficiently enough information to distinguish very different languages, e.g.

$$L_1 = \{ww^R \mid w \in \{0,1\}^*\}, \\ L_2 = \{w \in \{0,1\}^* \mid w \text{ is prime}\}.$$

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem there is a bijection between varieties of regular languages and varieties of finite monoids.
- Beyond regular languages they do not contain sufficiently enough information to distinguish very different languages, e.g.

$$L_1 = \{ww^R \mid w \in \{0,1\}^*\}, L_2 = \{w \in \{0,1\}^* \mid w \text{ is prime}\}.$$

• The syntactic congruence is known in AAL as Leibniz congruence which is used in the construction of Lindenbaum-Tarski algebra for a given theory.

- Syntactic monoids were mainly applied in the realm of regular languages.
- Eilenberg variety theorem there is a bijection between varieties of regular languages and varieties of finite monoids.
- Beyond regular languages they do not contain sufficiently enough information to distinguish very different languages, e.g.

$$L_1 = \{ww^R \mid w \in \{0,1\}^*\}, \\ L_2 = \{w \in \{0,1\}^* \mid w \text{ is prime}\}.$$

- The syntactic congruence is known in AAL as Leibniz congruence which is used in the construction of Lindenbaum-Tarski algebra for a given theory.
- Can other constructions/ideas from (substructural) logics be used in the language theory?

Residuated lattices

Definition

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$x \leq y \implies uxv \leq uyv$$
.

Residuated lattices

Definition

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$x \leq y \implies uxv \leq uyv$$
.

Definition

A residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, /, 1 \rangle$ is a monoid such that $\langle A, \wedge, \vee \rangle$ is a lattice and for all $a, b, c \in A$:

$$a \cdot b \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

Powerset monoid

Example

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. Then

$$\mathcal{P}(\mathsf{M}) = \langle \mathcal{P}(M), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$$

is a residuated lattice, where

$$X \cdot Y = \{xy \in M \mid x \in X, y \in Y\},\$$

$$X \setminus Z = \{y \in M \mid X \cdot \{y\} \subseteq Z\},\$$

$$Z/Y = \{x \in M \mid \{x\} \cdot Y \subseteq Z\}.$$

Powerset monoid

Example

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. Then

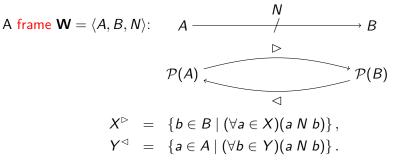
$$\mathcal{P}(\mathsf{M}) = \langle \mathcal{P}(\mathsf{M}), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$$

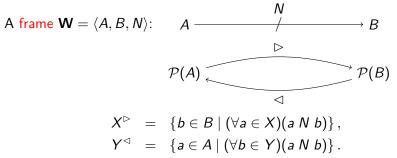
is a residuated lattice, where

$$\begin{array}{rcl} X \cdot Y &=& \left\{ xy \in M \mid x \in X, y \in Y \right\}, \\ X \setminus Z &=& \left\{ y \in M \mid X \cdot \left\{ y \right\} \subseteq Z \right\}, \\ Z/Y &=& \left\{ x \in M \mid \left\{ x \right\} \cdot Y \subseteq Z \right\}. \end{array}$$

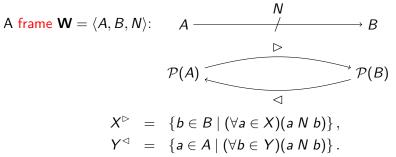
Other examples can be obtained by introducing a suitable closure operator on $\mathcal{P}(M)$.

A frame
$$\mathbf{W} = \langle A, B, N \rangle$$
: $A \xrightarrow{N} B$

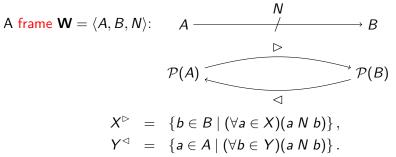




• $\gamma(X) = X^{\rhd \lhd}$ is a closure operator on $\mathcal{P}(A)$.



γ(X) = X^{▷⊲} is a closure operator on P(A).
{{b}[⊲] | b ∈ B} is its basis.



•
$$\gamma(X) = X^{arphi arphi}$$
 is a closure operator on $\mathcal{P}(A).$

- $\{\{b\}^{\triangleleft} \mid b \in B\}$ is its basis.
- The collection of closed sets forms a complete lattice
 W⁺ = ⟨γ[P(A)], ∩, ∪_γ⟩, where

$$X\cup_{\gamma}Y=\gamma(X\cup Y)$$
.

• Given a monoid **A** and an frame $\mathbf{W} = \langle A, B, N \rangle$, define an extended frame $\widehat{\mathbf{W}} = \langle A, A^2 \times B, \widehat{N} \rangle$, where

 $x \widehat{N} \langle u, v, b \rangle$ iff uxv N b.

• Given a monoid **A** and an frame $\mathbf{W} = \langle A, B, N \rangle$, define an extended frame $\widehat{\mathbf{W}} = \langle A, A^2 \times B, \widehat{N} \rangle$, where

$$x \ \widehat{N} \langle u, v, b
angle$$
 iff $uxv \ N \ b$.

• The closure operator γ induced by \widehat{N} is a nucleus (i.e., $\gamma(X)\gamma(Y) \subseteq \gamma(XY)$).

• Given a monoid **A** and an frame $\mathbf{W} = \langle A, B, N \rangle$, define an extended frame $\widehat{\mathbf{W}} = \langle A, A^2 \times B, \widehat{N} \rangle$, where

$$x \ \widehat{N} \langle u, v, b
angle$$
 iff $uxv \ N \ b$.

- The closure operator γ induced by \widehat{N} is a nucleus (i.e., $\gamma(X)\gamma(Y) \subseteq \gamma(XY)$).
- Then $\widehat{\mathbf{W}}^+ = \langle \mathcal{P}(A)_{\gamma}, \cap, \cup_{\gamma}, \circ_{\gamma}, \setminus_{\gamma}, \gamma\{1\} \rangle$ forms a complete residuated lattice, where $X \bullet_{\gamma} Y = \gamma(X \bullet Y)$ for $\bullet \in \{\circ, \backslash, /, \cup\}$.

• Given a monoid **A** and an frame $\mathbf{W} = \langle A, B, N \rangle$, define an extended frame $\widehat{\mathbf{W}} = \langle A, A^2 \times B, \widehat{N} \rangle$, where

$$x \ \widehat{N} \langle u, v, b
angle$$
 iff $uxv \ N \ b$.

- The closure operator γ induced by \widehat{N} is a nucleus (i.e., $\gamma(X)\gamma(Y) \subseteq \gamma(XY)$).
- Then $\widehat{\mathbf{W}}^+ = \langle \mathcal{P}(A)_{\gamma}, \cap, \cup_{\gamma}, \circ_{\gamma}, \setminus_{\gamma}, \gamma, \gamma\{1\} \rangle$ forms a complete residuated lattice, where $X \bullet_{\gamma} Y = \gamma(X \bullet Y)$ for $\bullet \in \{\circ, \backslash, /, \cup\}$.
- The binary relation on A defined by

$$x \sqsubseteq y$$
 iff $\gamma\{x\} \subseteq \gamma\{y\}$

is a compatible quasi-order on A.

Definition

Let $L \subseteq \Sigma^*$ be a language. Define frame $\mathbf{W} = \langle \Sigma^*, \{\star\}, N \rangle$, where $N \subseteq \Sigma^* \times \{\star\}$ is defined by

$$x N \star \text{ iff } x \in L.$$

Then $\mathbf{R}(L) = \widehat{\mathbf{W}}^+$ is called the syntactic residuated lattice of L.

Definition

Let $L \subseteq \Sigma^*$ be a language. Define frame $\mathbf{W} = \langle \Sigma^*, \{\star\}, N \rangle$, where $N \subseteq \Sigma^* \times \{\star\}$ is defined by

$$x N \star \text{ iff } x \in L.$$

Then $\mathbf{R}(L) = \widehat{\mathbf{W}}^+$ is called the syntactic residuated lattice of L.

Theorem

Definition

Let $L \subseteq \Sigma^*$ be a language. Define frame $\mathbf{W} = \langle \Sigma^*, \{\star\}, N \rangle$, where $N \subseteq \Sigma^* \times \{\star\}$ is defined by

$$x N \star \text{ iff } x \in L.$$

Then $\mathbf{R}(L) = \widehat{\mathbf{W}}^+$ is called the syntactic residuated lattice of L.

Theorem

() The nucleus γ is the point-wise largest nucleus making L a closed set.

Definition

Let $L \subseteq \Sigma^*$ be a language. Define frame $\mathbf{W} = \langle \Sigma^*, \{\star\}, N \rangle$, where $N \subseteq \Sigma^* \times \{\star\}$ is defined by

$$x N \star \text{ iff } x \in L.$$

Then $\mathbf{R}(L) = \widehat{\mathbf{W}}^+$ is called the syntactic residuated lattice of L.

Theorem

The nucleus γ is the point-wise largest nucleus making L a closed set.
 {γ{x} | x ∈ Σ*} forms a submonoid isomorphic to M(L).

Definition

Let $L \subseteq \Sigma^*$ be a language. Define frame $\mathbf{W} = \langle \Sigma^*, \{\star\}, N \rangle$, where $N \subseteq \Sigma^* \times \{\star\}$ is defined by

$$x N \star \text{ iff } x \in L.$$

Then $\mathbf{R}(L) = \widehat{\mathbf{W}}^+$ is called the syntactic residuated lattice of L.

Theorem

- **1** The nucleus γ is the point-wise largest nucleus making L a closed set.
- **2** $\{\gamma\{x\} \mid x \in \Sigma^*\}$ forms a submonoid isomorphic to **M**(*L*).
- **3** $\mathbf{R}(L)$ is finite iff L is regular.

Generalized Myhill Theorem

The following theorem is the core of most decidability proofs we have for substructural logics.

Theorem

Let **A** be a monoid and $\mathbf{W} = \langle A, B, N \rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^+$ is finite iff there is a compatible dual well quasi-order \leq on **A** such that

 $x \leq y, \ y \ N \ b \implies x \ N \ b$.

Generalized Myhill Theorem

The following theorem is the core of most decidability proofs we have for substructural logics.

Theorem

Let **A** be a monoid and $\mathbf{W} = \langle A, B, N \rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^+$ is finite iff there is a compatible dual well quasi-order \leq on **A** such that

$$x \leq y, y N b \implies x N b.$$

Corollary (Generalized Myhill Theorem – Ehrenfeucht, Rozenberg)

A language $L \subseteq \Sigma^*$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^* .

Application

• Our decidability proof for the universal theory of residuated lattices satisfying $x^2 \le x$ can be translated into the language theory.

Application

- Our decidability proof for the universal theory of residuated lattices satisfying $x^2 \le x$ can be translated into the language theory.
- The variety of residuated lattices satisfying x² ≤ x can be equivalently axiomatized by

$$uxv \leq z \& uyv \leq z \implies uxyv \leq z$$
.

Application

- Our decidability proof for the universal theory of residuated lattices satisfying $x^2 \le x$ can be translated into the language theory.
- The variety of residuated lattices satisfying x² ≤ x can be equivalently axiomatized by

$$uxv \leq z \& uyv \leq z \implies uxyv \leq z$$
.

Theorem

Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

$$uxv, uyv \in L \implies uxyv \in L.$$
 (r)

Application

- Our decidability proof for the universal theory of residuated lattices satisfying $x^2 \le x$ can be translated into the language theory.
- The variety of residuated lattices satisfying x² ≤ x can be equivalently axiomatized by

$$uxv \leq z \& uyv \leq z \implies uxyv \leq z$$
.

Theorem

Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

$$uxv, uyv \in L \implies uxyv \in L.$$
 (r)

Example

The language $a^+(b(a+b+c)^*b+b)c^+$ is closed under (r).

Application (cont.)

 Consider a closure operator γ: P(Σ*) → P(Σ*) s.t. its closed sets are closed under the rule:

$$uxv, uyv \in L \implies uxyv \in L$$
.

Application (cont.)

 Consider a closure operator γ: P(Σ*) → P(Σ*) s.t. its closed sets are closed under the rule:

$$uxv, uyv \in L \implies uxyv \in L$$
.

Then γ is nucleus on P(Σ*) and the following relation is a compatible quasi-order on Σ*:

$$x \sqsubseteq y$$
 iff $\gamma\{x\} \subseteq \gamma\{y\}$.

Application (cont.)

 Consider a closure operator γ: P(Σ*) → P(Σ*) s.t. its closed sets are closed under the rule:

$$uxv, uyv \in L \implies uxyv \in L$$
.

 Then γ is nucleus on P(Σ*) and the following relation is a compatible quasi-order on Σ*:

$$x \sqsubseteq y$$
 iff $\gamma\{x\} \subseteq \gamma\{y\}$.

 In order to show that L has to be regular, it suffices to show that ⊑ is a dual well quasi-order using the generalized Myhill theorem.

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

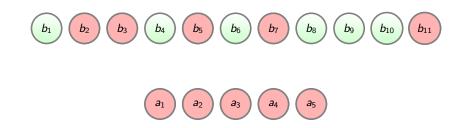
Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

$$a_1$$
 a_2 a_3 a_4 a_5

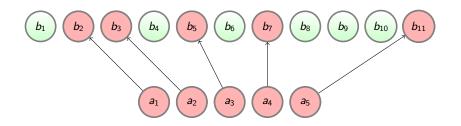
Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by



Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by



Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

 $a_1 \dots a_n \leq^* b_1 \dots b_m$ iff there is a strictly increasing map $f : [1, n] \rightarrow [1, m]$ s.t. $a_i \leq b_{f(i)}$ for all $i \in [1, n]$.



Lemma (Higman's lemma)

If $\langle Q, \leq \rangle$ is a well quasi-ordered set then so is $\langle Q^*, \leq^* \rangle$.

Rostislav Horčík (ICS)

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \text{ and } f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \text{ and } a_i \leq b_{f(i+1)-1} \text{ for all } i \in [1, n]. \end{array}$$

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \ \text{and} \ f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \ \text{and} \ a_i \leq b_{f(i+1)-1} \ \text{for all } i \in [1, n]. \end{array}$$

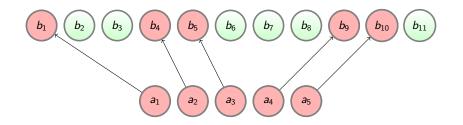
$$b_1$$
 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10} b_{11}

$$a_1$$
 a_2 a_3 a_4 a_5

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

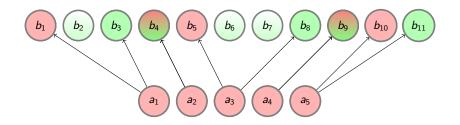
$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \text{ and } f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \text{ and } a_i \leq b_{f(i+1)-1} \text{ for all } i \in [1, n]. \end{array}$$



Definition

Let $\langle Q, \leq
angle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \text{ and } f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \text{ and } a_i \leq b_{f(i+1)-1} \text{ for all } i \in [1, n]. \end{array}$$



Modified Higman's lemma (cont.)

Lemma

If $\langle Q, \leq \rangle$ is a well quasi-ordered set then $\langle Q^+, \leq^+ \rangle$ forms a well quasi-ordered set as well.

Modified Higman's lemma (cont.)

Lemma

If $\langle Q, \leq \rangle$ is a well quasi-ordered set then $\langle Q^+, \leq^+ \rangle$ forms a well quasi-ordered set as well.

Lemma

Let $w \in \Sigma^*$ and $Alph(w) = \Gamma$. Then $wuw \sqsubseteq w$ for every $u \in \Gamma^*$.

Beyond regular languages? Let $\Sigma = \{0, 1\}.$

$$\begin{array}{rcl} L_1 &=& \{ww^R \mid w \in \Sigma^*\}\,, \\ L_2 &=& \{w \in \Sigma^* \mid w \text{ is prime}\}\,. \end{array}$$

Beyond regular languages? Let $\Sigma = \{0, 1\}.$

$$\begin{array}{rcl} L_1 &=& \left\{ww^R \mid w \in \Sigma^*\right\}, \\ L_2 &=& \left\{w \in \Sigma^* \mid w \text{ is prime}\right\}. \end{array}$$

Consider the following rule:

$$uxv, ux^2v \in L \implies uv \in L.$$

Then L_1 is closed under (r) and L_2 not.

(r)

Beyond regular languages? Let $\Sigma = \{0, 1\}.$

$$\begin{array}{rcl} L_1 &=& \left\{ww^R \mid w \in \Sigma^*\right\}, \\ L_2 &=& \left\{w \in \Sigma^* \mid w \text{ is prime}\right\}. \end{array}$$

Consider the following rule:

$$uxv, ux^2v \in L \implies uv \in L.$$
 (r)

Then L_1 is closed under (r) and L_2 not.

The rule (r) is equivalent to

$$1 \le x \lor x^2 \lor x \setminus y.$$

Thus the languages L_1, L_2 can be separated by a variety of residuated lattices.

Rostislav Horčík (ICS)

Thank you!