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Introduction

Starting point

There are only two cancellative atoms in the lattice of subvarieties
of residuated lattices (Galatos 2005).

The first one is the variety CLG of Abelian `-groups. CLG is
generated by Z.

The second one is the variety CLG− of negative cones of Abelian
`-groups. CLG− is generated by Z−.

We are going to discuss what is above CLG−.

The obtained results can be applied also to the lattice of fuzzy
logics extending MTL.
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Introduction
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Introduction

An observation

There are uncountably many covers of CLG−. It follows from the
fact that there are uncountably many covers of CLG and the result
by BCGJT. This results shows that the mapping assigning to a
class of `-groups their negative cones is a lattice embedding.

What about integral commutative representable covers?

We will show that there are infinitely many of such covers.

However, it remains still open whether there are only countably
many of them or uncountably many.
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Preliminaries

Algebras of interest

A residuated lattice (RL) is an algebra A = (A, ·, /, \,∧,∨, 1) where
the following conditions are satisfied:

(A, ·, 1) is a monoid,
(A,∧,∨) is a lattice,
xy ≤ z iff x ≤ z/y iff y ≤ x\z.

A RL is commutative (CRL) if (A, ·, 1) is commutative (in this case
/ = \ = →).
A CRL is integral (ICRL) if 1 is top element.
An ICRL is cancellative (CanICRL) if · is cancellative.
A totally ordered ICRL is called an ICRC.
A CanICRC belongs to CLG− iff it satisfies x ∧ y = x(x → y).
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Preliminaries

2-generated submonoids of Z−

The fact that there are only two cancellative atoms in Λ(RL) is
proved by showing that for any CanRL there is a 1-generated
subalgebra isomorphic either to Z or Z− where

Z = (Z,+,−, min, max, 0) and

Z− = (Z−,+,→, min, max, 0), x → y = min {(y − x), 0}.

Z− can be viewed as a 1-generated monoid.

Each 2-generated submonoid of Z− is in fact residuated (since Z−
is dually well-ordered), i.e. it forms a CanICRC.

The varieties generated by such CanICRCs will serve as good
candidates for covers of CLG−.
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Results

Example

Let a = 5 and b = 12.

Then 〈a, b〉 contains the following elements:

0 < 5 < 10 < 12 < 15 < 17 < 20 < 22 < 24 < 25
< 27 < 29 < 30 < 32 < 34 < 35 < 36 < 37 < 39

< 40 < 41 < 42 < 44 < 45 < 46 < 47 < 48 < · · ·

45 is the first multiple of a above which there are no gaps.
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Results

Representation of N

Let a ∈ N and a > 0.

Then (N,+, 0,≤) is isomorphic to the `-monoid defined on
N× Za.

The neutral element is (0, 0) and the order is lexicographic.

The monoidal operation is defined as follows:

(x , y) + (u, v) =

{
(x + u + 1, y +a v) if y + v ≥ a,
(x + u, y +a v) otherwise.

The isomorphism sends x ∈ N to the pair (x : a, r) where x : a is
the result on integer division of x by a and r its remainder.

Let a, b ∈ N. The submonoid 〈a, b〉 can be embedded into N× Za.
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Results

Example (cont.)
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a = 5, b = 12

R. Horčík (ICS, ASCR) Almost Minimal Varieties of CanRL LATD 2008 9 / 18



Results

2-generated submonoids of N−

Lemma
Let a, b be coprime natural numbers and n = (ab − b) : a. Then we
have the following:

1 For each x ≥ n we have (x , y) ∈ 〈a, b〉 for all y ∈ Za, i.e.
〈a, b〉 ∩ [na,∞) = [na,∞).

2 For each x < n there is y ∈ Za \ {0} such that (x , y) 6∈ 〈a, b〉.
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Results

CanICRCs arising from 〈a, b〉

Let a, b ∈ N.

Then M(a, b) = (M(a, b),+,→, min, max, 0) is a simple CanICRC
where

M(a, b) = {−ka− lb | k , l ∈ N} ,

x → y = max{z ∈ M(a, b) | x + z ≤ y} .

We will consider varieties V(M(a, b)) for 0 < a < b, a, b coprime,
and a prime.

G = {(a, b) ∈ N2 | 0 < a < b, a, b coprime, a prime} .
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Results

Different varieties

Lemma
Let (a, b) ∈ G. Then M(a, b) satisfies the identity

xa(xa → ya) = xa ∧ ya .

Lemma
Let (a, b), (c, d) ∈ G, such that a < c. Then M(c, d) does not satisfy

xa(xa → ya) = xa ∧ ya .
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Results

Different varieties (cont.)

Lemma
Let (a, b) ∈ G and n = (ab − b) : a. Then M(a, b) satisfies

(y → xzn) ≤ z ∨ (x ∧ y → x(x → y)) .

Lemma
Let (a, b), (a, c) ∈ G such that b < c and n = (ab − b) : a. Then
M(a, c) does not satisfy

(y → xzn) ≤ z ∨ (x ∧ y → x(x → y)) .
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R. Horčík (ICS, ASCR) Almost Minimal Varieties of CanRL LATD 2008 13 / 18



Results

Different varieties (cont.)

Summary
Let (a, b), (c, d) ∈ G such that (a, b) 6= (c, d).

1 G is infinite.

2 V(M(a, b)) 6= CLG−.

3 V(M(a, b)) 6= V(M(c, d)).
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Results

Covers of CLG−

Now we have to show that each V(M(a, b)) is a cover of CLG−.

We will do it by showing that for each SI-algebra A ∈V(M(a, b))
either A ∈CLG− or V(A) ⊇ V(M(a, b)).

We will use Jónsson’s lemma telling that each SI-algebra in
V(M(a, b)) belongs to HSPU(M(a, b)).

R. Horčík (ICS, ASCR) Almost Minimal Varieties of CanRL LATD 2008 15 / 18



Results

Covers of CLG−

Now we have to show that each V(M(a, b)) is a cover of CLG−.

We will do it by showing that for each SI-algebra A ∈V(M(a, b))
either A ∈CLG− or V(A) ⊇ V(M(a, b)).

We will use Jónsson’s lemma telling that each SI-algebra in
V(M(a, b)) belongs to HSPU(M(a, b)).
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Results

Homomorphic images

Let K denote the variety of CanICRLs relatively axiomatized by the
identity:

((x → y) → y)2 ≤ x ∨ y .

Theorem (HM 2007)
A CanICRC A ∈ K iff A ∈CLG− or A is subdirectly irreducible with a
monolith θ, A/θ ∈CLG−, and each a/θ 6= 1/θ has no maximum.

Corollary
1 Each M(a, b) belongs to K , i.e. V(M(a, b)) ⊆ K .
2 Let A ∈HSPU(M(a, b)). If A 6∈ ISPU(M(a, b)), then A ∈CLG−.

It remains to discuss what happens when A ∈ ISPU(M(a, b)).
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R. Horčík (ICS, ASCR) Almost Minimal Varieties of CanRL LATD 2008 16 / 18



Results

Homomorphic images

Let K denote the variety of CanICRLs relatively axiomatized by the
identity:

((x → y) → y)2 ≤ x ∨ y .

Theorem (HM 2007)
A CanICRC A ∈ K iff A ∈CLG− or A is subdirectly irreducible with a
monolith θ, A/θ ∈CLG−, and each a/θ 6= 1/θ has no maximum.

Corollary
1 Each M(a, b) belongs to K , i.e. V(M(a, b)) ⊆ K .
2 Let A ∈HSPU(M(a, b)). If A 6∈ ISPU(M(a, b)), then A ∈CLG−.

It remains to discuss what happens when A ∈ ISPU(M(a, b)).
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Results

Subalgebras of an ultrapower

Lemma
Let (a, b) ∈ G. Then each nontrivial proper subalgebra of M(a, b) is
isomorphic to Z−.

Lemma
Let (a, b) ∈ G and B ∈SPU(M(a, b)). If B 6∈CLG−, then B contains an
isomorphic copy of M(a, b).
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Results

Conclusion

Theorem
1 There are infinitely many covers of CLG− in the lattice of

subvarieties of residuated lattices.

2 We found covers generated by algebras M(a, b) for (a, b) ∈ G.

3 These covers are cancellative, commutative, representable and
integral.

Corollary
There are infinitely many varieties of ΠMTL-algebras covering the
variety of product algebras.
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