# Minimal Varieties of Representable Commutative Residuated Lattices

Rostislav Horčík

Institute of Computer Science Academy of Sciences of the Czech Republic

Logic, Algebra and Truth Degrees Prague, 2010

LATD 2010

1/19

Rostislav Horčík (ICS, AS CR)

• How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice Λ(FL) of FL-algebras.

< ロ > < 同 > < 回 > < 回 >

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice Λ(FL) of FL-algebras.
- The above-mentioned examples correspond respectively to the atoms V(2), V(Z), V(Z<sup>-</sup>).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice Λ(FL) of FL-algebras.
- The above-mentioned examples correspond respectively to the atoms V(2), V(Z), V(Z<sup>-</sup>).
- It is known that there are continuum many atoms  $\Lambda(FL)$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice Λ(FL) of FL-algebras.
- The above-mentioned examples correspond respectively to the atoms V(2), V(Z), V(Z<sup>-</sup>).
- It is known that there are continuum many atoms  $\Lambda(FL)$ .
- What about atoms satisfying some additional properties like representability, commutativity, integrality?

• In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in  $\Lambda(RL)$  that satisfy the commutative identity or the identity  $x^2 = x^3$ ?

• In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in  $\Lambda(RL)$  that satisfy the commutative identity or the identity  $x^2 = x^3$ ?

• This question was solved by Galatos by constructing continuum many representable atoms satisfying the identity  $x^2 = x$ . At the same time he also conjectured that there are only countably many representable commutative atoms in  $\Lambda(RL)$ .

• In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in  $\Lambda(RL)$  that satisfy the commutative identity or the identity  $x^2 = x^3$ ?

- This question was solved by Galatos by constructing continuum many representable atoms satisfying the identity  $x^2 = x$ . At the same time he also conjectured that there are only countably many representable commutative atoms in  $\Lambda(RL)$ .
- In this talk we are going to show that this was a false conjecture.

イロト イヨト イヨト イヨト

• In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in  $\Lambda(RL)$  that satisfy the commutative identity or the identity  $x^2 = x^3$ ?

- This question was solved by Galatos by constructing continuum many representable atoms satisfying the identity  $x^2 = x$ . At the same time he also conjectured that there are only countably many representable commutative atoms in  $\Lambda(RL)$ .
- In this talk we are going to show that this was a false conjecture.
- Furthermore, we solve related open problems on cardinality of atoms in  $\Lambda(FL_{ei})$  and  $\Lambda(FL_{eo})$ .

# FL-algebras

### Definition

An algebra  $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \backslash, 0, 1 \rangle$  is called FL-algebra if

- $\langle A, \wedge, \vee \rangle$  is a lattice,
- 2  $\langle A, \cdot, 1 \rangle$  is a monoid,
- $x \cdot y \leq z \text{ iff } y \leq x \setminus z \text{ iff } x \leq z/y.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# **FL**-algebras

### Definition

An algebra  $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \backslash, 0, 1 \rangle$  is called FL-algebra if

- $\langle A, \wedge, \vee \rangle$  is a lattice,
- 2  $\langle A, \cdot, 1 \rangle$  is a monoid,

$$x \cdot y \leq z \text{ iff } y \leq x \setminus z \text{ iff } x \leq z/y.$$

### Other properties

- A is a residuated lattice if 1 = 0,
- A is an FL<sub>e</sub>-algebra (commutative) if  $x \cdot y = y \cdot x$ ,
- A is an FL<sub>i</sub>-algebra (integral) if  $x \le 1$ ,
- A is an  $FL_0$ -algebra if  $0 \le x$ ,
- A is *n*-potent if  $x^{n+1} = x^n$ ,
- A is representable (semilinear) if it is a subdirect product of chains.

### Nucleus and conucleus

### Definition

• A closure operator  $\gamma$  on an FL-algebra  ${\bf A}$  is called a nucleus if

 $\gamma(\mathbf{x})\gamma(\mathbf{y}) \leq \gamma(\mathbf{x}\mathbf{y})$ .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

## Nucleus and conucleus

#### Definition

• A closure operator  $\gamma$  on an FL-algebra **A** is called a nucleus if

 $\gamma(\mathbf{x})\gamma(\mathbf{y}) \leq \gamma(\mathbf{x}\mathbf{y})$ .

• An interior operator  $\sigma$  on an FL-algebra **A** is called a conucleus if

$$\sigma(\mathbf{x})\sigma(\mathbf{y}) \leq \sigma(\mathbf{x}\mathbf{y}), \qquad \sigma(1) = 1.$$

< (□) < 三 > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□)

## Nucleus and conucleus

#### Definition

A closure operator γ on an FL-algebra A is called a nucleus if

 $\gamma(\mathbf{x})\gamma(\mathbf{y}) \leq \gamma(\mathbf{x}\mathbf{y}).$ 

• An interior operator  $\sigma$  on an FL-algebra **A** is called a conucleus if

$$\sigma(\mathbf{x})\sigma(\mathbf{y}) \leq \sigma(\mathbf{x}\mathbf{y}), \qquad \sigma(1) = 1.$$

• Let  $\gamma : A \to A$  be an operator on A. The image of  $\gamma$  is denoted  $A_{\gamma}$ .

• • • • • • • • • • • •

# Nuclear retraction and conuclear contraction

#### Lemma

 An operator σ on A is conucleus iff A<sub>σ</sub> is a submonoid of A and max{a ∈ A<sub>σ</sub> | a ≤ x} exists for all x ∈ A.
 A<sub>σ</sub> is called conuclear contraction.

# Nuclear retraction and conuclear contraction

#### Lemma

 An operator σ on A is conucleus iff A<sub>σ</sub> is a submonoid of A and max{a ∈ A<sub>σ</sub> | a ≤ x} exists for all x ∈ A.
 A<sub>σ</sub> is called conuclear contraction.

• An operator  $\gamma$  on **A** is nucleus iff  $A_{\gamma}$  satisfies  $\min\{a \in A_{\gamma} \mid x \leq a\} \text{ exists for all } x \in A.$ 

and

$$x \rightarrow y \in A_{\gamma}$$
 for all  $x \in A$  and  $y \in A_{\gamma}$ .

 $A_{\gamma}$  is called nuclear retraction.

# Resulting residuated algebras

#### Lemma

Let A = ⟨A, ∧, ∨, ·, /, \, 0, 1⟩ be an FL-algebra, γ a nucleus on A and σ a conucleus on A.

# Resulting residuated algebras

#### Lemma

- Let A = ⟨A, ∧, ∨, ·, /, ∖, 0, 1⟩ be an FL-algebra, γ a nucleus on A and σ a conucleus on A.
- Then the algebra  $\mathbf{A}_{\gamma} = \langle \mathbf{A}_{\gamma}, \wedge, \vee_{\gamma}, \circ_{\gamma}, /, \backslash, \gamma(\mathbf{0}), \gamma(\mathbf{1}) \rangle$  is an *FL*-algebra, where
  - $x \vee_{\gamma} y = \gamma(x \vee y),$
  - $x \circ_{\gamma} y = \gamma(x \cdot y).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Resulting residuated algebras

#### Lemma

- Let A = ⟨A, ∧, ∨, ·, /, ∖, 0, 1⟩ be an FL-algebra, γ a nucleus on A and σ a conucleus on A.
- Then the algebra  $\mathbf{A}_{\gamma} = \langle A_{\gamma}, \wedge, \vee_{\gamma}, \circ_{\gamma}, /, \backslash, , \gamma(0), \gamma(1) \rangle$  is an *FL-algebra*, where
  - *x* ∨<sub>γ</sub> *y* = γ(*x* ∨ *y*), *x* ∘<sub>γ</sub> *y* = γ(*x* ⋅ *y*).
- Further, the algebra  $\mathbf{A}_{\sigma} = \langle A_{\sigma}, \wedge_{\sigma}, \vee, \cdot, /_{\sigma}, \setminus_{\sigma}, \sigma(0), 1 \rangle$  is an *FL*-algebra, where
  - $X \wedge_{\sigma} Y = \sigma(X \wedge Y),$
  - $x/_{\sigma}y = \sigma(x/y)$ ,
  - $X \setminus_{\sigma} y = \sigma(X \setminus y).$

Given a variety V, the subvariety lattice of V is denoted  $\Lambda(V)$ .

イロト イ理ト イヨト イヨト

Given a variety V, the subvariety lattice of V is denoted  $\Lambda(V)$ .

Our results can be summarized as follows:

• There are  $2^{\aleph_0}$  representable commutative atoms in  $\Lambda(RL)$ .

Given a variety V, the subvariety lattice of V is denoted  $\Lambda(V)$ .

Our results can be summarized as follows:

- There are  $2^{\aleph_0}$  representable commutative atoms in  $\Lambda(RL)$ .
- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{ei})$ .

Given a variety V, the subvariety lattice of V is denoted  $\Lambda(V)$ .

Our results can be summarized as follows:

- There are  $2^{\aleph_0}$  representable commutative atoms in  $\Lambda(RL)$ .
- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{ei})$ .
- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{eo})$ .

・ロン ・四 ・ ・ ヨン ・ ヨン

Given a variety V, the subvariety lattice of V is denoted  $\Lambda(V)$ .

Our results can be summarized as follows:

- There are  $2^{\aleph_0}$  representable commutative atoms in  $\Lambda(RL)$ .
- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{ei})$ .
- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{eo})$ .

On the other hand, we also prove the following result:

• There are  $2^1$  representable commutative integral atoms in  $\Lambda(RL)$ .

・ロト ・四ト ・ヨト ・ヨト

• Let G be the lexicographic product of two copies of Z.

イロト イポト イヨト イヨ

- Let G be the lexicographic product of two copies of Z.
- For each infinite  $S \subseteq -2 \mathbb{N}$  we will construct a residuated chain  $A_S$  by means of a conucleus  $\sigma_S$  and a nucleus  $\gamma$ .

- Let G be the lexicographic product of two copies of Z.
- For each infinite  $S \subseteq -2 \mathbb{N}$  we will construct a residuated chain  $A_S$  by means of a conucleus  $\sigma_S$  and a nucleus  $\gamma$ .
- The conucleus  $\sigma_S$  is defined by its conuclear contraction:

$$\begin{aligned} G_{\sigma_{\mathcal{S}}} &= \{ \langle 0, 0 \rangle, \langle -1, 0 \rangle, \langle -1, -1 \rangle \} \cup \\ &\{ \langle -1, z \rangle \in \mathcal{A} \mid z \in \mathcal{S} \} \cup \{ \langle x, y \rangle \in \mathcal{A} \mid x \leq -2 \} \end{aligned}$$

LATD 2010

9/19

- Let G be the lexicographic product of two copies of Z.
- For each infinite  $S \subseteq -2 \mathbb{N}$  we will construct a residuated chain  $A_S$  by means of a conucleus  $\sigma_S$  and a nucleus  $\gamma$ .
- The conucleus  $\sigma_S$  is defined by its conuclear contraction:

$$egin{aligned} G_{\sigma_{\mathcal{S}}} &= \{ \langle 0,0 
angle, \langle -1,0 
angle, \langle -1,-1 
angle \} \cup \ \{ \langle -1,z 
angle \in \mathcal{A} \mid z \in \mathcal{S} \} \cup \{ \langle x,y 
angle \in \mathcal{A} \mid x \leq -2 \} \end{aligned}$$

• Since *S* is infinite and dually well ordered, we get the following lemma.

Lemma

The set  $G_{\sigma_s}$  forms a conuclear contraction.

• Next, we define the nucleus  $\gamma(x, y) = \langle x, y \rangle \lor \langle -3, -1 \rangle$ .

イロト イヨト イヨト イヨト

- Next, we define the nucleus  $\gamma(x, y) = \langle x, y \rangle \lor \langle -3, -1 \rangle$ .
- Then  $\mathbf{A}_S$  is the subalgebra of  $(\mathbf{G}_{\sigma_S})_{\gamma}$  generated by  $\mathbf{a} = \langle -1, \mathbf{0} \rangle$ .

• • • • • • • • • • • •

- Next, we define the nucleus  $\gamma(x, y) = \langle x, y \rangle \lor \langle -3, -1 \rangle$ .
- Then  $\mathbf{A}_S$  is the subalgebra of  $(\mathbf{G}_{\sigma_S})_{\gamma}$  generated by  $\mathbf{a} = \langle -1, \mathbf{0} \rangle$ .

#### Lemma

The algebra A<sub>S</sub> is simple 4-potent integral commutative residuated lattice.

• • • • • • • • • • • • •

- Next, we define the nucleus  $\gamma(x, y) = \langle x, y \rangle \lor \langle -3, -1 \rangle$ .
- Then **A**<sub>S</sub> is the subalgebra of  $(\mathbf{G}_{\sigma_S})_{\gamma}$  generated by  $\mathbf{a} = \langle -1, \mathbf{0} \rangle$ .

#### Lemma

The algebra A<sub>S</sub> is simple 4-potent integral commutative residuated lattice.

Let 
$$n \in \mathbb{N}$$
. Then  $\langle -2, n \rangle, \langle -3, n \rangle \in A_S$ .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Next, we define the nucleus  $\gamma(x, y) = \langle x, y \rangle \lor \langle -3, -1 \rangle$ .
- Then **A**<sub>S</sub> is the subalgebra of  $(\mathbf{G}_{\sigma_S})_{\gamma}$  generated by  $\mathbf{a} = \langle -1, \mathbf{0} \rangle$ .

• • • • • • • • • • • •

LATD 2010

10/19

#### Lemma

The algebra A<sub>S</sub> is simple 4-potent integral commutative residuated lattice.

2 Let 
$$n \in \mathbb{N}$$
. Then  $\langle -2, n \rangle, \langle -3, n \rangle \in A_S$ .

3 Let 
$$z \in S$$
. Then  $\langle -1, z \rangle \in A_S$ .

- Next, we define the nucleus  $\gamma(x, y) = \langle x, y \rangle \lor \langle -3, -1 \rangle$ .
- Then **A**<sub>S</sub> is the subalgebra of  $(\mathbf{G}_{\sigma_S})_{\gamma}$  generated by  $\mathbf{a} = \langle -1, \mathbf{0} \rangle$ .

#### Lemma

The algebra A<sub>S</sub> is simple 4-potent integral commutative residuated lattice.

2 Let 
$$n \in \mathbb{N}$$
. Then  $\langle -2, n \rangle, \langle -3, n \rangle \in A_S$ .

3 Let 
$$z \in S$$
. Then  $\langle -1, z \rangle \in A_S$ .

• • • • • • • • • • • •
• Each **A**<sub>S</sub> contains a nontrivial subalgebra, namely **2**.

Rostislav Horčík (ICS, AS CR)

▲ ■ ▶ ■ • つへで LATD 2010 11/19

- Each A<sub>S</sub> contains a nontrivial subalgebra, namely 2.
- Thus we extend  $\mathbf{A}_S$  to  $\mathbf{A}_S^{\top}$  by adding a top element  $\top$  such that  $\top x = x$  for  $x \neq \langle 0, 0 \rangle$ .

- Each **A**<sub>S</sub> contains a nontrivial subalgebra, namely **2**.
- Thus we extend  $\mathbf{A}_S$  to  $\mathbf{A}_S^{\top}$  by adding a top element  $\top$  such that  $\top x = x$  for  $x \neq \langle 0, 0 \rangle$ .

#### Lemma

The algebra  $\mathbf{A}_{S}^{\top}$  is strictly simple with a nearly term definable bottom element by the term  $x^{4} \wedge (x \rightarrow 1)^{4}$ .

- Each **A**<sub>S</sub> contains a nontrivial subalgebra, namely **2**.
- Thus we extend  $\mathbf{A}_S$  to  $\mathbf{A}_S^{\top}$  by adding a top element  $\top$  such that  $\top x = x$  for  $x \neq \langle 0, 0 \rangle$ .

#### Lemma

The algebra  $\mathbf{A}_{S}^{\top}$  is strictly simple with a nearly term definable bottom element by the term  $x^{4} \wedge (x \rightarrow 1)^{4}$ .

## Theorem (Galatos)

Let A be a strictly simple FL-algebra with bottom element ⊥ nearly term definable by an n-ary term t. Then, V(A) is an atom.

LATD 2010

11/19

- Each **A**<sub>S</sub> contains a nontrivial subalgebra, namely **2**.
- Thus we extend  $\mathbf{A}_S$  to  $\mathbf{A}_S^{\top}$  by adding a top element  $\top$  such that  $\top x = x$  for  $x \neq \langle 0, 0 \rangle$ .

#### Lemma

The algebra  $\mathbf{A}_{S}^{\top}$  is strictly simple with a nearly term definable bottom element by the term  $x^{4} \wedge (x \rightarrow 1)^{4}$ .

## Theorem (Galatos)

- Let A be a strictly simple FL-algebra with bottom element ⊥ nearly term definable by an n-ary term t. Then, V(A) is an atom.
- Ø Moreover, if A' is a strictly simple FL-algebra with bottom element nearly term definable by the same term t, then V(A) ⊆ V(A') iff A and A' are isomorphic.

## Our results

### Theorem

There are  $2^{\aleph_0}$  representable commutative 4-potent atoms in  $\Lambda(RL)$ .

・ロト ・ 日 ト ・ ヨ ト ・

## Our results

### Theorem

There are  $2^{\aleph_0}$  representable commutative 4-potent atoms in  $\Lambda(RL)$ .

### Theorem

There are only finitely many 3-potent representable commutative atoms in  $\Lambda(RL)$ . Namely, varieties generated by  $\mathbf{2}, \mathbf{T}_1, \mathbf{T}_2, \mathbf{T}_3, \mathbf{T}'_3$ .

• • • • • • • • • • • •

LATD 2010

12/19

# 3-potent atoms



Rostislav Horčík (ICS, AS CR)

▶ ▲ ■ ▶ ■ つへの LATD 2010 13/19

イロト イヨト イヨト イヨト

### • There are $2^{\aleph_0}$ representable atoms in $\Lambda(FL_{ei})$ .

• • • • • • • • • • • •

- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{ei})$ .
- 2 There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{eo})$ .

- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{ei})$ .
- **2** There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{eo})$ .

### Proof.

• We use the FL-algebras living on  $A_S$  where 0 is interpreted by any element different from  $\langle -3, -1 \rangle$ ,  $\langle 0, 0 \rangle$ .

• • • • • • • • • • • •

LATD 2010

14/19

- There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{ei})$ .
- **2** There are  $2^{\aleph_0}$  representable atoms in  $\Lambda(FL_{eo})$ .

### Proof.

• We use the FL-algebras living on  $A_S$  where 0 is interpreted by any element different from  $\langle -3, -1 \rangle$ ,  $\langle 0, 0 \rangle$ .

LATD 2010

14/19

**2** We use the FL-algebras living on  $\mathbf{A}_{S}^{\top}$  where 0 is interpreted by  $\langle -3, -1 \rangle$ .

#### Theorem

There are  $2^1$  representable commutative integral atoms in  $\Lambda(RL)$ , namely  $V(\mathbf{Z}^-)$  and  $V(\mathbf{2})$ .

### Theorem

There are  $2^1$  representable commutative integral atoms in  $\Lambda(RL)$ , namely  $V(\mathbf{Z}^-)$  and  $V(\mathbf{2})$ .

Proof.

• Let A be a representable simple ICRC.

### Theorem

There are  $2^1$  representable commutative integral atoms in  $\Lambda(RL)$ , namely  $V(\mathbf{Z}^-)$  and  $V(\mathbf{2})$ .

- Let **A** be a representable simple ICRC.
- If A has a minimum then A contains 2 as a subalgebra.

### Theorem

There are  $2^1$  representable commutative integral atoms in  $\Lambda(RL)$ , namely  $V(Z^-)$  and V(2).

- Let **A** be a representable simple ICRC.
- If A has a minimum then A contains 2 as a subalgebra.
- Otherwise  $\langle a^k \rangle_{k \in \mathbb{N}^+}$  is a strictly decreasing sequence for  $a \neq 1$ .

### Theorem

There are  $2^1$  representable commutative integral atoms in  $\Lambda(RL)$ , namely  $V(\mathbf{Z}^-)$  and  $V(\mathbf{2})$ .

- Let **A** be a representable simple ICRC.
- If A has a minimum then A contains 2 as a subalgebra.
- Otherwise  $\langle a^k \rangle_{k \in \mathbb{N}^+}$  is a strictly decreasing sequence for  $a \neq 1$ .
- Consider  $\mathbf{B} = \mathbf{A}^{\mathbb{N}}/U$  for a free ultrafilter U on  $\mathbb{N}$ .

### Theorem

There are  $2^1$  representable commutative integral atoms in  $\Lambda(RL)$ , namely  $V(\mathbf{Z}^-)$  and  $V(\mathbf{2})$ .

- Let **A** be a representable simple ICRC.
- If A has a minimum then A contains 2 as a subalgebra.
- Otherwise  $\langle a^k \rangle_{k \in \mathbb{N}^+}$  is a strictly decreasing sequence for  $a \neq 1$ .
- Consider  $\mathbf{B} = \mathbf{A}^{\mathbb{N}}/U$  for a free ultrafilter U on  $\mathbb{N}$ .
- Let  $\theta$  be the congruence on **B** corresponding to the convex subalgebra generated by the congruence classes containing the constant mappings and  $\mathbf{a} = \langle a^k \rangle_{k \in \mathbb{N}^+} / U$ .

### Theorem

There are 2<sup>1</sup> representable commutative integral atoms in  $\Lambda(RL)$ , namely  $V(\mathbf{Z}^-)$  and  $V(\mathbf{2})$ .

Proof.

- Let **A** be a representable simple ICRC.
- If A has a minimum then A contains 2 as a subalgebra.
- Otherwise  $\langle a^k \rangle_{k \in \mathbb{N}^+}$  is a strictly decreasing sequence for  $a \neq 1$ .
- Consider  $\mathbf{B} = \mathbf{A}^{\mathbb{N}}/U$  for a free ultrafilter U on  $\mathbb{N}$ .
- Let  $\theta$  be the congruence on **B** corresponding to the convex subalgebra generated by the congruence classes containing the constant mappings and  $\mathbf{a} = \langle a^k \rangle_{k \in \mathbb{N}^+} / U$ .
- Then the subalgebra of  $\mathbf{B}/\theta$  generated by **a** is isomorphic to  $\mathbf{Z}^-$ .

LATD 2010 15 / 19

• The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.

- The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.
- It turns out that it is sufficiently large to generate the whole variety of representable integral commutative residuated lattices.

LATD 2010

16/19

- The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.
- It turns out that it is sufficiently large to generate the whole variety of representable integral commutative residuated lattices.

### Theorem

Each finitely generated ICRC can be embedded into a 1-generated ICRC.

• • • • • • • • • • • •

- The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.
- It turns out that it is sufficiently large to generate the whole variety of representable integral commutative residuated lattices.

## Theorem

Each finitely generated ICRC can be embedded into a 1-generated ICRC.

# Corollary

The variety of representable integral commutative residuated lattices is generated by 1-generated finite totally ordered members.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Lexicographic product

#### Lemma

Let **A**, **B** be ICRCs such that **A** is cancellative. Then the lexicographic product  $\mathbf{A} \stackrel{\rightarrow}{\times} \mathbf{B}$  is an ICRC.

# Lexicographic product

#### Lemma

Let **A**, **B** be ICRCs such that **A** is cancellative. Then the lexicographic product  $\mathbf{A} \stackrel{\rightarrow}{\times} \mathbf{B}$  is an ICRC.

$$\langle a, x \rangle \rightarrow \langle b, y \rangle = \begin{cases} \langle a \rightarrow_A b, 1_B \rangle & \text{if } a \cdot_A (a \rightarrow_A b) <_A b, \\ \langle a \rightarrow_A b, x \rightarrow_B y \rangle & \text{otherwise.} \end{cases}$$

# Lexicographic product

#### Lemma

Let **A**, **B** be ICRCs such that **A** is cancellative. Then the lexicographic product  $\mathbf{A} \stackrel{\rightarrow}{\times} \mathbf{B}$  is an ICRC.

$$\langle a, x \rangle \rightarrow \langle b, y \rangle = \begin{cases} \langle a \rightarrow_A b, 1_B \rangle & \text{if } a \cdot_A (a \rightarrow_A b) <_A b, \\ \langle a \rightarrow_A b, x \rightarrow_B y \rangle & \text{otherwise.} \end{cases}$$

In particular, if  $\mathbf{A} = \mathbf{Z}^-$ , then for  $\langle a, x \rangle > \langle b, y \rangle$  we have

$$\langle a, x \rangle 
ightarrow \langle b, y 
angle = \langle b - a, x 
ightarrow_B y 
angle.$$

• • • • • • • • • • • • •

# Sketch of the proof



< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

18/19

LATD 2010

Let **A** be an ICRC generated by  $\{a, b, c\}$ . We will construct a 1-generated ICRC in which **A** can be embedded.

# Sketch of the proof



LATD 2010

18/19

Consider the lexicographic product  $\mathbf{Z}^- \stackrel{\rightarrow}{\times} \mathbf{A}$ . The elements are tuples  $\langle x, y \rangle$  where  $x \in \mathbf{Z}^-$  and  $y \in \mathbf{A}$ .

# Sketch of the proof



LATD 2010

18/19

Take the conuclear contraction of  $\mathbf{Z}^- \stackrel{\rightarrow}{\times} \mathbf{A}$  by deleting  $\{\langle -1, y \rangle \mid y > a\} \cup \{\langle -2, y \rangle \mid y > b\} \cup \{\langle -3, y \rangle \mid y > c\}$ . Denote the corresponding conucleus  $\sigma$ .

# Sketch of the proof



Consider the nucleus  $\gamma(x) = x \lor \langle -8, e \rangle$  and its corresponding nuclear retraction.

3

18/19

LATD 2010

# Sketch of the proof



Finally, let **C** be the subalgebra generated by the element  $g = \langle -1, a \rangle$ . We will prove that **A** can be embedded into **C**.

LATD 2010

18/19

# Sketch of the proof



First, we have  $g^8 = \gamma(\langle -1, a \rangle^8) = \gamma(\langle -8, a^8 \rangle) = \langle -8, e \rangle$ .

Rostislav Horčík (ICS, AS CR)

LATD 2010 18/19

・ロト ・ 四ト ・ ヨト ・ ヨト

## Sketch of the proof



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

LATD 2010

18/19

Then  $g \to_{\sigma} g^8 = \sigma(\langle -1, a \rangle \to \langle -8, e \rangle) = \sigma(\langle -7, e \rangle) = \langle -7, e \rangle.$ 

## Sketch of the proof



Then  $g^2 \rightarrow_{\sigma} g^8 = \sigma(\langle -2, a^2 \rangle \rightarrow \langle -8, e \rangle) = \sigma(\langle -6, e \rangle) = \langle -6, e \rangle.$ 

Rostislav Horčík (ICS, AS CR)

LATD 2010 18 / 19

## Sketch of the proof



Then  $g^3 \rightarrow_{\sigma} g^8 = \sigma(\langle -3, a^3 \rangle \rightarrow \langle -8, e \rangle) = \sigma(\langle -5, e \rangle) = \langle -5, e \rangle.$ 

Rostislav Horčík (ICS, AS CR)

LATD 2010 18 / 19

## Sketch of the proof



Then  $g^4 \rightarrow_{\sigma} g^8 = \sigma(\langle -4, a^4 \rangle \rightarrow \langle -8, e \rangle) = \sigma(\langle -4, e \rangle) = \langle -4, e \rangle.$ 

Rostislav Horčík (ICS, AS CR)

LATD 2010 18 / 19
## Sketch of the proof



Then  $g^5 \rightarrow_{\sigma} g^8 = \sigma(\langle -5, a^5 \rangle \rightarrow \langle -8, e \rangle) = \sigma(\langle -3, e \rangle) = \langle -3, c \rangle.$ 

Rostislav Horčík (ICS, AS CR)

LATD 2010 18 / 19

## Sketch of the proof



Then  $g^6 \rightarrow_{\sigma} g^8 = \sigma(\langle -6, a^6 \rangle \rightarrow \langle -8, e \rangle) = \sigma(\langle -2, e \rangle) = \langle -2, b \rangle.$ 

Rostislav Horčík (ICS, AS CR)

LATD 2010 18 / 19

# Sketch of the proof



We have 
$$\langle -5, e \rangle \rightarrow_{\sigma} \langle -1, a \rangle \langle -4, e \rangle = \sigma(\langle -5, e \rangle \rightarrow \langle -5, a \rangle) = \sigma(\langle 0, a \rangle) = \langle 0, a \rangle.$$

Rostislav Horčík (ICS, AS CR)

▲ ▶ ▲ 볼 ▶ 볼 ∽ ९.୦ LATD 2010 18/19

イロト イヨト イヨト イヨト

## Sketch of the proof



We have  $\langle -6, e \rangle \rightarrow_{\sigma} \langle -2, b \rangle \langle -4, e \rangle = \sigma(\langle -6, e \rangle \rightarrow \langle -6, b \rangle) = \sigma(\langle 0, b \rangle) = \langle 0, b \rangle.$ 

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

# Sketch of the proof



We have 
$$\langle -7, e \rangle \rightarrow_{\sigma} \langle -3, c \rangle \langle -4, e \rangle = \sigma(\langle -7, e \rangle \rightarrow \langle -7, c \rangle) = \sigma(\langle 0, c \rangle) = \langle 0, c \rangle.$$

イロト イヨト イヨト イヨト

# Sketch of the proof



Thus  $\langle 0, a \rangle, \langle 0, b \rangle, \langle 0, c \rangle \in \mathbf{C}$ , i.e. **C** contains an isomorphic copy of **A**.

イロト イヨト イヨト イヨト

3

18/19

LATD 2010

# Thank you for your attention!

Rostislav Horčík (ICS, AS CR)

LATD 2010 19 / 19

A .

∃ >