Minimal Varieties of Representable Commutative
Residuated Lattices

Rostislav Horcik

Institute of Computer Science
Academy of Sciences of the Czech Republic

Logic, Algebra and Truth Degrees
Prague, 2010

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 1/19



Introduction

@ How many maximally consistent substructural logics (axiomatic
extensions of Full Lambek) are there?

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 2/19



Introduction

@ How many maximally consistent substructural logics (axiomatic
extensions of Full Lambek) are there?

@ Typical examples of such logics are e.g. classical logic, Abelian
logic, cancellative hoop logic...

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 2/19



Introduction

@ How many maximally consistent substructural logics (axiomatic
extensions of Full Lambek) are there?

@ Typical examples of such logics are e.g. classical logic, Abelian
logic, cancellative hoop logic...

@ Algebraically speaking, this question can be equivalently
expressed as: How many atoms are there in the subvariety lattice
A(FL) of FL-algebras.

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 2/19



Introduction

@ How many maximally consistent substructural logics (axiomatic
extensions of Full Lambek) are there?

@ Typical examples of such logics are e.g. classical logic, Abelian
logic, cancellative hoop logic...

@ Algebraically speaking, this question can be equivalently
expressed as: How many atoms are there in the subvariety lattice
A(FL) of FL-algebras.

@ The above-mentioned examples correspond respectively to the
atoms V(2), V(2), V(Z7).

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 2/19



Introduction

@ How many maximally consistent substructural logics (axiomatic
extensions of Full Lambek) are there?

@ Typical examples of such logics are e.g. classical logic, Abelian
logic, cancellative hoop logic...

@ Algebraically speaking, this question can be equivalently
expressed as: How many atoms are there in the subvariety lattice
A(FL) of FL-algebras.

@ The above-mentioned examples correspond respectively to the
atoms V(2), V(2), V(Z7).
@ Itis known that there are continuum many atoms A(FL).

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 2/19



Introduction

@ How many maximally consistent substructural logics (axiomatic
extensions of Full Lambek) are there?

@ Typical examples of such logics are e.g. classical logic, Abelian
logic, cancellative hoop logic...

@ Algebraically speaking, this question can be equivalently
expressed as: How many atoms are there in the subvariety lattice
A(FL) of FL-algebras.

@ The above-mentioned examples correspond respectively to the
atoms V(2), V(2), V(Z7).
@ Itis known that there are continuum many atoms A(FL).

@ What about atoms satisfying some additional properties like
representability, commutativity, integrality?
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Introduction (cont.)

@ In their survey on residuated lattices Jipsen and Tsinakis posed
the following question:

Are there uncountably many atoms in A(RL) that satisfy
the commutative identity or the identity x?> = x3?
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Introduction (cont.)

@ In their survey on residuated lattices Jipsen and Tsinakis posed
the following question:
Are there uncountably many atoms in A(RL) that satisfy
the commutative identity or the identity x?> = x3?

@ This question was solved by Galatos by constructing continuum
many representable atoms satisfying the identity x> = x. At the
same time he also conjectured that there are only countably many
representable commutative atoms in A(RL).

@ In this talk we are going to show that this was a false conjecture.

@ Furthermore, we solve related open problems on cardinality of
atoms in A(FLgi) and A(FLeo).
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FL-algebras

Definition

An algebra A = (A, A, V, -, /,\,0,1) is called FL-algebra if
Q@ (A A,V)is a lattice,
@ (A -, 1) is a monoid,
Q x - y<<ziffy<x\ziffx <z/y.

Rostislav Horc¢ik (ICS, AS CR)

LATD 2010

4/19



FL-algebras

Definition

An algebra A = (A, A, V, -, /,\,0,1) is called FL-algebra if
Q@ (A A,V)is a lattice,
@ (A -, 1) is a monoid,
Q x - y<<ziffy<x\ziffx <z/y.

Other properties
@ Ais aresiduated lattice if 1 =0,
@ Ais an FlLe-algebra (commutative) if x -y = y - x,
@ Ais an FLj-algebra (integral) if x < 1,
@ Ais an FlLy-algebraif 0 < x,
@ Ais n-potent if x™1 = x”,
@ Aisrepresentable (semilinear) if it is a subdirect product of chains.
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Nucleus and conucleus

Definition

@ A closure operator v on an FL-algebra A is called a nucleus if

YY) < v(xy).

Rostislav Hor¢ik (ICS, AS CR) LATD 2010

5/19



Nucleus and conucleus

Definition
@ A closure operator v on an FL-algebra A is called a nucleus if

YY) < v(xy).

@ An interior operator o on an FL-algebra A is called a conucleus if

o(X)o(y) <olxy), o(1)=1.

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 5/19



Nucleus and conucleus

Definition
@ A closure operator v on an FL-algebra A is called a nucleus if

YY) < v(xy).

@ An interior operator o on an FL-algebra A is called a conucleus if

o(X)o(y) <olxy), o(1)=1.

@ Lety: A— Abe an operator on A. The image of v is denoted A,.
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Nuclear retraction and conuclear contraction

Lemma
@ An operator o on A is conucleus iff A, is a submonoid of A and
max{a e A, | a < x} exists for all x € A.
A, is called conuclear contraction.

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 6/19



Nuclear retraction and conuclear contraction

Lemma
@ An operator o on A is conucleus iff A, is a submonoid of A and
max{a e A, | a < x} exists for all x € A.
A, is called conuclear contraction.

@ An operator~y on A is nucleus iff A, satisfies
min{a € A, | x < a} exists for all x € A.
and
x—yecA forallxcAandy c A,.
A, is called nuclear retraction.
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Resulting residuated algebras

Lemma

@ LetA= (A NV, /,\,0,1) be an FL-algebra, v a nucleus on A
and o a conucleus on A.
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________________Froiminaries |
Resulting residuated algebras

Lemma

@ LetA= (A NV, /,\,0,1) be an FL-algebra, v a nucleus on A
and o a conucleus on A.

@ Then the algebra A, = (A, \, V4,04, /,\,,7(0),7(1)) is an
FL-algebra, where

@ XV, y=7v(xVy),
@ xo, ¥y =n(x-y).
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__________________Proimnaies
Resulting residuated algebras

Lemma

@ LetA= (A NV, /,\,0,1) be an FL-algebra, v a nucleus on A
and o a conucleus on A.

@ Then the algebra A, = (A, \, V4,04, /,\,,7(0),7(1)) is an
FL-algebra, where

o XV, y =A(xVy),
o X0y =A(x-y).

@ Further, the algebra A, = (As, Aoy Vs +, /55 \oy 0(0), 1) is an
FL-algebra, where
@ XNy =0(XNYy),
® X/oy =0(X/y),
o X\oy =0o(x\y).
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Our results
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Our results

Given a variety V, the subvariety lattice of V is denoted A(V).

Our results can be summarized as follows:

@ There are 2% representable commutative atoms in A(RL).
@ There are 2% representable atoms in A(FLg).
@ There are 2% representable atoms in A(FLeo).

On the other hand, we also prove the following result:

@ There are 2' representable commutative integral atoms in A(RL).
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Construction of Ag

@ Let G be the lexicographic product of two copies of Z.

@ For each infinite S € —2 — N we will construct a residuated chain
As by means of a conucleus og and a nucleus ~.

@ The conucleus og is defined by its conuclear contraction:

GUS = {<070>7<_170>7<_17_1>}U
{{(-1,2) e A|ze S} U{(x,y) e A| x < -2}.

@ Since S is infinite and dually well ordered, we get the following
lemma.

Lemma
The set G,4 forms a conuclear contraction.
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Construction of Ag (cont.)

@ Next, we define the nucleus v(x,y) = (x,y) vV (-3, —1).
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@ Next, we define the nucleus v(x,y) = (x,y) vV (-3, —1).
@ Then Ag is the subalgebra of (G,4), generated by a = (—1,0).
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Construction of Ag (cont.)

@ Next, we define the nucleus (x, y) = (x,y) VvV (=3, —1).
@ Then Ag is the subalgebra of (G,4), generated by a = (—1,0).

Lemma

@ The algebra As is simple 4-potent integral commutative
residuated lattice.
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@ Next, we define the nucleus v(x,y) = (x,y) vV (-3, —1).

@ Then Ag is the subalgebra of (G,4), generated by a = (—1,0).

Lemma

@ The algebra As is simple 4-potent integral commutative
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Construction of Ag (cont.)

@ Next, we define the nucleus (x, y) = (x,y) VvV (=3, —1).
@ Then Ag is the subalgebra of (G,4), generated by a = (—1,0).

Lemma

@ The algebra As is simple 4-potent integral commutative
residuated lattice.

@ LetneN. Then(-2,n),(—3,n) € As.
Q Letze S. Then(—1,z) € As.

Q AR=AgiffR=S.
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@ Each Ag contains a nontrivial subalgebra, namely 2.
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@ Each Ag contains a nontrivial subalgebra, namely 2.
@ Thus we extend Ag to Ag by adding a top element T such that
Tx = x for x # (0, 0).

Lemma
The algebra A is strictly simple with a nearly term definable bottom
element by the term x* A (x — 1)

Theorem (Galatos)
@ Let A be a strictly simple FL-algebra with bottom element L nearly
term definable by an n-ary term t. Then, V(A) is an atom.

@ Moreover, if A’ is a strictly simple FL-algebra with bottom element
nearly term definable by the same term t, then V(A) C V(A') iff A
and A’ are isomorphic.
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Our results

Theorem
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Our results

Theorem

There are 2% representable commutative 4-potent atoms in A(RL).

Theorem

There are only finitely many 3-potent representable commutative
atoms in N(RL). Namely, varieties generated by 2, Ty, T, T3, T5.
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3-potent atoms

T o T o T
1 1 1 1
a a a a
° g a
8 3
2 LE T2 T3
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Theorem
@ There are 2% representable atoms in A(FLg;).

@ There are 2% representable atoms in A(FLeo).

Proof.

@ We use the FL-algebras living on Ag where 0 is interpreted by any
element different from (-3, —1), (0, 0).
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Theorem
@ There are 2% representable atoms in A(FLg;).

@ There are 2% representable atoms in A(FLeo).

Proof.

@ We use the FL-algebras living on Ag where 0 is interpreted by any
element different from (-3, —1), (0, 0).

© We use the FL-algebras living on Ag where 0 is interpreted by
(—3,—-1).
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Representable Commutative Integral Atoms

Theorem

There are 2" representable commutative integral atoms in A(RL),
namely V(Z~) and V(2).
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Theorem

There are 2" representable commutative integral atoms in A(RL),
namely V(Z~) and V(2).

Proof.
@ Let A be a representable simple ICRC.
@ If A has a minimum then A contains 2 as a subalgebra.
@ Otherwise (a"),cn+ is a strictly decreasing sequence for a # 1.

@ Consider B = A" /U for a free ultrafilter U on N.

@ Let 0 be the congruence on B corresponding to the convex
subalgebra generated by the congruence classes containing the
constant mappings and a = (@) xcn+ /U.
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Representable Commutative Integral Atoms

Theorem

There are 2" representable commutative integral atoms in A(RL),
namely V(Z~) and V(2).

Proof.
@ Let A be a representable simple ICRC.
@ If A has a minimum then A contains 2 as a subalgebra.
@ Otherwise (a"),cn+ is a strictly decreasing sequence for a # 1.
@ Consider B = A" /U for a free ultrafilter U on N.

@ Let 0 be the congruence on B corresponding to the convex
subalgebra generated by the congruence classes containing the
constant mappings and a = (@) xcn+ /U.

@ Then the subalgebra of B/# generated by a is isomorphic to Z~.

O
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1-generated ICRCs

@ The discussed results show that the class of 1-generated integral
commutative residuated chains (ICRCs) is quite large.
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1-generated ICRCs

@ The discussed results show that the class of 1-generated integral
commutative residuated chains (ICRCs) is quite large.

@ It turns out that it is sufficiently large to generate the whole variety
of representable integral commutative residuated lattices.

Theorem

Each finitely generated ICRC can be embedded into a 1-generated
ICRC.

Corollary

The variety of representable integral commutative residuated lattices is
generated by 1-generated finite totally ordered members.
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Lexicographic product

Lemma

Let A,B be ICRCs such that A is cancellative. Then the lexicographic
—

product A x B is an ICRC.
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Lexicographic product

Lemma

Let A,B be ICRCs such that A is cancellative. Then the lexicographic
_)

product A x B is an ICRC.

<aaAb,1B> ifa-A(a%Ab) <a b,
(a—ab,x —pgy) otherwise.

<a,x) - <b7y> = {

In particular, if A =2Z~, then for (a, x) > (b, y) we have

(a,x) = (b,y)=(b—a,x —>gy).
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Sketch of the proof

Let A be an ICRC generated by {a, b, c}.
We will construct a 1-generated ICRC in which A can be embed-
ded.
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Sketch of the proof

Consider the lexicographic product Z~ % A.
The elements are tuples (x, y) where x € Z~ and y € A.
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Sketch of the proof

Take the conuclear contraction of Z~ x A by deleting

{1y ly>au{(=2,y) |y >bru{(=3,y) |y >c}.
Denote the corresponding conucleus o.
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Sketch of the proof

Consider the nucleus v(x) = x vV (—8, e) and its corresponding nuclear
retraction.
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Sketch of the proof

Finally, let C be the subalgebra generated by the element g = (—1, a).
We will prove that A can be embedded into C.
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Sketch of the proof

First, we have g8 = v((—1, a)%) = v((-8, &%) = (-8, e).
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Sketch of the proof

Then g —, g8 = o((—1,a) — (-8,8)) = o({(-7,€)) = (-7, ¢€).
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Sketch of the proof

Then g? —, 98 = 0((-2,8%) — (-8,€)) = o((—6,€)) = (-6, e).
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Sketch of the proof

Then g% —, g8 = 0((-3,8%) — (-8,e)) = o((—5, €)) = (-5, e).
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Sketch of the proof

Then g4 —o g8 = J(<_47 a4> — <_87 e)) = U(<_47 e)) = <_4’ e>'
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Sketch of the proof

Then g° —, g8 = o((-5,8%) — (-8,€)) = 0((—3,e)) = (-3, ¢).
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Sketch of the proof

Then g® —, g8 = 0((—6,8°%) — (-8,e)) = o((—2,€)) = (-2, b).

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 18/19



Sketch of the proof

We have
<_57 e> —o <_17a><_47 e> = J(<_57e> - <_5’a>) = U(<O7a>) =
(0, a).
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Sketch of the proof

We have
<_67 e> —o <_27b><_47e> = U(<_67 e> - <_67b>) = U(<07b>) =
(0, b).

Rostislav Hor¢ik (ICS, AS CR) LATD 2010 18/19



Sketch of the proof

We have
<_7> e> o <_3>C><_47 e> = U(<_77e> - (—7,C>) = U(<0>C>) =
(0,c).
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Sketch of the proof

Thus (0, a), (0, b), (0, c) € C, i.e. C contains an isomorphic copy of A.
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Thank you for your
attention!
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