Minimal Varieties of Representable Commutative Residuated Lattices

Rostislav Horčík

Institute of Computer Science
Academy of Sciences of the Czech Republic
Logic, Algebra and Truth Degrees
Prague, 2010

Introduction

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?

Introduction

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...

Introduction

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice $\Lambda(F L)$ of FL-algebras.

Introduction

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice $\Lambda(F L)$ of FL-algebras.
- The above-mentioned examples correspond respectively to the atoms $\mathrm{V}(2), \mathrm{V}(\mathrm{Z}), \mathrm{V}\left(\mathrm{Z}^{-}\right)$.

Introduction

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice $\Lambda(F L)$ of FL-algebras.
- The above-mentioned examples correspond respectively to the atoms $\mathrm{V}(2), \mathrm{V}(\mathrm{Z}), \mathrm{V}\left(\mathrm{Z}^{-}\right)$.
- It is known that there are continuum many atoms $\wedge(\mathrm{FL})$.

Introduction

- How many maximally consistent substructural logics (axiomatic extensions of Full Lambek) are there?
- Typical examples of such logics are e.g. classical logic, Abelian logic, cancellative hoop logic...
- Algebraically speaking, this question can be equivalently expressed as: How many atoms are there in the subvariety lattice $\Lambda(F L)$ of FL-algebras.
- The above-mentioned examples correspond respectively to the atoms $\mathrm{V}(2), \mathrm{V}(\mathrm{Z}), \mathrm{V}\left(\mathrm{Z}^{-}\right)$.
- It is known that there are continuum many atoms $\Lambda(\mathrm{FL})$.
- What about atoms satisfying some additional properties like representability, commutativity, integrality?

Introduction (cont.)

- In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in $\wedge(\mathrm{RL})$ that satisfy the commutative identity or the identity $x^{2}=x^{3}$?

Introduction (cont.)

- In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in $\wedge(\mathrm{RL})$ that satisfy the commutative identity or the identity $x^{2}=x^{3}$?

- This question was solved by Galatos by constructing continuum many representable atoms satisfying the identity $x^{2}=x$. At the same time he also conjectured that there are only countably many representable commutative atoms in $\Lambda(\mathrm{RL})$.

Introduction (cont.)

- In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in $\wedge(\mathrm{RL})$ that satisfy the commutative identity or the identity $x^{2}=x^{3}$?

- This question was solved by Galatos by constructing continuum many representable atoms satisfying the identity $x^{2}=x$. At the same time he also conjectured that there are only countably many representable commutative atoms in $\Lambda(\mathrm{RL})$.
- In this talk we are going to show that this was a false conjecture.

Introduction (cont.)

- In their survey on residuated lattices Jipsen and Tsinakis posed the following question:

Are there uncountably many atoms in $\wedge(\mathrm{RL})$ that satisfy the commutative identity or the identity $x^{2}=x^{3}$?

- This question was solved by Galatos by constructing continuum many representable atoms satisfying the identity $x^{2}=x$. At the same time he also conjectured that there are only countably many representable commutative atoms in $\Lambda(\mathrm{RL})$.
- In this talk we are going to show that this was a false conjecture.
- Furthermore, we solve related open problems on cardinality of atoms in $\Lambda\left(\mathrm{FL}_{\mathrm{ei}}\right)$ and $\Lambda\left(\mathrm{FL}_{\mathrm{eo}}\right)$.

FL-algebras

Definition
An algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, /, \backslash, 0,1\rangle$ is called $F L$-algebra if
(1) $\langle A, \wedge, V\rangle$ is a lattice,
(2) $\langle A, \cdot, 1\rangle$ is a monoid,
(3) $x \cdot y \leq z$ iff $y \leq x \backslash z$ iff $x \leq z / y$.

FL-algebras

Definition
An algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, /, \backslash, 0,1\rangle$ is called $F L$-algebra if
(1) $\langle A, \wedge, V\rangle$ is a lattice,
(2) $\langle A, \cdot, 1\rangle$ is a monoid,
(3) $x \cdot y \leq z$ iff $y \leq x \backslash z$ iff $x \leq z / y$.

Other properties

- A is a residuated lattice if $1=0$,
- A is an FL_{e}-algebra (commutative) if $x \cdot y=y \cdot x$,
- \mathbf{A} is an FL_{i}-algebra (integral) if $x \leq 1$,
- \mathbf{A} is an FL_{0}-algebra if $0 \leq x$,
- A is n-potent if $x^{n+1}=x^{n}$,
- A is representable (semilinear) if it is a subdirect product of chains.

Nucleus and conucleus

Definition

- A closure operator γ on an FL-algebra \mathbf{A} is called a nucleus if

$$
\gamma(x) \gamma(y) \leq \gamma(x y)
$$

Nucleus and conucleus

Definition

- A closure operator γ on an FL-algebra \mathbf{A} is called a nucleus if

$$
\gamma(x) \gamma(y) \leq \gamma(x y)
$$

- An interior operator σ on an FL-algebra \mathbf{A} is called a conucleus if

$$
\sigma(x) \sigma(y) \leq \sigma(x y), \quad \sigma(1)=1
$$

Nucleus and conucleus

Definition

- A closure operator γ on an FL-algebra \mathbf{A} is called a nucleus if

$$
\gamma(x) \gamma(y) \leq \gamma(x y)
$$

- An interior operator σ on an FL-algebra \mathbf{A} is called a conucleus if

$$
\sigma(x) \sigma(y) \leq \sigma(x y), \quad \sigma(1)=1
$$

- Let $\gamma: A \rightarrow A$ be an operator on A. The image of γ is denoted A_{γ}.

Nuclear retraction and conuclear contraction

Lemma

- An operator σ on \mathbf{A} is conucleus iff A_{σ} is a submonoid of \mathbf{A} and $\max \left\{a \in A_{\sigma} \mid a \leq x\right\}$ exists for all $x \in A$.
A_{σ} is called conuclear contraction.

Nuclear retraction and conuclear contraction

Lemma

- An operator σ on \mathbf{A} is conucleus iff A_{σ} is a submonoid of \mathbf{A} and $\max \left\{a \in A_{\sigma} \mid a \leq x\right\}$ exists for all $x \in A$.
A_{σ} is called conuclear contraction.
- An operator γ on \mathbf{A} is nucleus iff A_{γ} satisfies

$$
\min \left\{a \in A_{\gamma} \mid x \leq a\right\} \text { exists for all } x \in A
$$

and

$$
x \rightarrow y \in A_{\gamma} \text { for all } x \in A \text { and } y \in A_{\gamma} .
$$

A_{γ} is called nuclear retraction.

Resulting residuated algebras

Lemma

- Let $\mathbf{A}=\langle A, \wedge, \vee, \cdot, /, \backslash, 0,1\rangle$ be an FL-algebra, γ a nucleus on \mathbf{A} and σ a conucleus on \mathbf{A}.

Resulting residuated algebras

Lemma

- Let $\mathbf{A}=\langle A, \wedge, \vee, \cdot, /, \backslash, 0,1\rangle$ be an FL-algebra, γ a nucleus on \mathbf{A} and σ a conucleus on \mathbf{A}.
- Then the algebra $\mathbf{A}_{\gamma}=\left\langle\boldsymbol{A}_{\gamma}, \wedge, \vee_{\gamma}, \circ_{\gamma}, /, \backslash,, \gamma(0), \gamma(1)\right\rangle$ is an FL-algebra, where
- $x \vee_{\gamma} y=\gamma(x \vee y)$,
- $x \circ_{\gamma} y=\gamma(x \cdot y)$.

Resulting residuated algebras

Lemma

- Let $\mathbf{A}=\langle A, \wedge, \vee, \cdot, /, \backslash, 0,1\rangle$ be an FL-algebra, γ a nucleus on \mathbf{A} and σ a conucleus on \mathbf{A}.
- Then the algebra $\mathbf{A}_{\gamma}=\left\langle\boldsymbol{A}_{\gamma}, \wedge, \vee_{\gamma}, \circ_{\gamma}, /, \backslash,, \gamma(0), \gamma(1)\right\rangle$ is an FL-algebra, where
- $x \vee_{\gamma} y=\gamma(x \vee y)$,
- $x \circ_{\gamma} y=\gamma(x \cdot y)$.
- Further, the algebra $\mathbf{A}_{\sigma}=\left\langle A_{\sigma}, \wedge_{\sigma}, \vee, \cdot, /{ }_{\sigma}, \backslash_{\sigma}, \sigma(0), 1\right\rangle$ is an FL-algebra, where
- $x \wedge_{\sigma} y=\sigma(x \wedge y)$,
- $x /{ }_{\sigma} y=\sigma(x / y)$,
- $x \backslash_{\sigma} y=\sigma(x \backslash y)$.

Our results

Given a variety V , the subvariety lattice of V is denoted $\Lambda(\mathrm{V})$.

Our results

Given a variety V , the subvariety lattice of V is denoted $\Lambda(\mathrm{V})$.
Our results can be summarized as follows:

- There are $2^{\aleph_{0}}$ representable commutative atoms in $\wedge(R L)$.

Our results

Given a variety V , the subvariety lattice of V is denoted $\Lambda(\mathrm{V})$.
Our results can be summarized as follows:

- There are $2^{\aleph_{0}}$ representable commutative atoms in $\wedge(R L)$.
- There are $2^{\aleph_{0}}$ representable atoms in $\Lambda\left(\mathrm{FL}_{\mathrm{ei}}\right)$.

Our results

Given a variety V , the subvariety lattice of V is denoted $\Lambda(\mathrm{V})$.
Our results can be summarized as follows:

- There are $2^{\aleph_{0}}$ representable commutative atoms in $\wedge(R L)$.
- There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{\mathrm{ei}}\right)$.
- There are $2^{\aleph_{0}}$ representable atoms in $\Lambda\left(\mathrm{FL}_{\text {eo }}\right)$.

Our results

Given a variety V , the subvariety lattice of V is denoted $\Lambda(\mathrm{V})$.
Our results can be summarized as follows:

- There are $2^{\aleph_{0}}$ representable commutative atoms in $\Lambda(R L)$.
- There are $2^{\aleph_{0}}$ representable atoms in $\Lambda\left(\mathrm{FL}_{\mathrm{ei}}\right)$.
- There are $2^{\aleph_{0}}$ representable atoms in $\Lambda\left(\mathrm{FL}_{\text {eo }}\right)$.

On the other hand, we also prove the following result:

- There are 2^{1} representable commutative integral atoms in $\wedge(R L)$.

Construction of \mathbf{A}_{S}

- Let \mathbf{G} be the lexicographic product of two copies of \mathbf{Z}.

Construction of \mathbf{A}_{S}

- Let \mathbf{G} be the lexicographic product of two copies of \mathbf{Z}.
- For each infinite $S \subseteq-2-\mathbb{N}$ we will construct a residuated chain \mathbf{A}_{S} by means of a conucleus σ_{S} and a nucleus γ.

Construction of \mathbf{A}_{S}

- Let \mathbf{G} be the lexicographic product of two copies of \mathbf{Z}.
- For each infinite $S \subseteq-2-\mathbb{N}$ we will construct a residuated chain \mathbf{A}_{S} by means of a conucleus σ_{S} and a nucleus γ.
- The conucleus σ_{S} is defined by its conuclear contraction:

$$
\begin{aligned}
G_{\sigma_{S}}=\{\langle 0,0\rangle, & \langle-1,0\rangle,\langle-1,-1\rangle\} \cup \\
& \{\langle-1, z\rangle \in A \mid z \in S\} \cup\{\langle x, y\rangle \in A \mid x \leq-2\}
\end{aligned}
$$

Construction of \mathbf{A}_{S}

- Let \mathbf{G} be the lexicographic product of two copies of \mathbf{Z}.
- For each infinite $S \subseteq-2-\mathbb{N}$ we will construct a residuated chain \mathbf{A}_{S} by means of a conucleus σ_{S} and a nucleus γ.
- The conucleus σ_{S} is defined by its conuclear contraction:

$$
\begin{aligned}
& G_{\sigma_{S}}=\{\langle 0,0\rangle,\langle-1,0\rangle,\langle-1,-1\rangle\} \cup \\
& \\
& \quad\{\langle-1, z\rangle \in A \mid z \in S\} \cup\{\langle x, y\rangle \in A \mid x \leq-2\}
\end{aligned}
$$

- Since S is infinite and dually well ordered, we get the following lemma.

Lemma
The set $G_{\sigma_{S}}$ forms a conuclear contraction.

Construction of \mathbf{A}_{S} (cont.)

- Next, we define the nucleus $\gamma(x, y)=\langle x, y\rangle \vee\langle-3,-1\rangle$.

Construction of \mathbf{A}_{S} (cont.)

- Next, we define the nucleus $\gamma(x, y)=\langle x, y\rangle \vee\langle-3,-1\rangle$.
- Then \mathbf{A}_{S} is the subalgebra of $\left(\mathbf{G}_{\sigma_{S}}\right)_{\gamma}$ generated by $a=\langle-1,0\rangle$.

Construction of \mathbf{A}_{S} (cont.)

- Next, we define the nucleus $\gamma(x, y)=\langle x, y\rangle \vee\langle-3,-1\rangle$.
- Then $\mathbf{A}_{\mathcal{S}}$ is the subalgebra of $\left(\mathbf{G}_{\sigma_{S}}\right)_{\gamma}$ generated by $a=\langle-1,0\rangle$.

Lemma
(1) The algebra \mathbf{A}_{S} is simple 4-potent integral commutative residuated lattice.

Construction of \mathbf{A}_{S} (cont.)

- Next, we define the nucleus $\gamma(x, y)=\langle x, y\rangle \vee\langle-3,-1\rangle$.
- Then $\mathbf{A}_{\mathcal{S}}$ is the subalgebra of $\left(\mathbf{G}_{\sigma_{S}}\right)_{\gamma}$ generated by $a=\langle-1,0\rangle$.

Lemma
(1) The algebra \mathbf{A}_{S} is simple 4-potent integral commutative residuated lattice.
(2) Let $n \in \mathbb{N}$. Then $\langle-2, n\rangle,\langle-3, n\rangle \in A_{S}$.

Construction of \mathbf{A}_{S} (cont.)

- Next, we define the nucleus $\gamma(x, y)=\langle x, y\rangle \vee\langle-3,-1\rangle$.
- Then $\mathbf{A}_{\mathcal{S}}$ is the subalgebra of $\left(\mathbf{G}_{\sigma_{S}}\right)_{\gamma}$ generated by $a=\langle-1,0\rangle$.

Lemma

(1) The algebra \mathbf{A}_{S} is simple 4-potent integral commutative residuated lattice.
(2) Let $n \in \mathbb{N}$. Then $\langle-2, n\rangle,\langle-3, n\rangle \in A_{S}$.
(3) Let $z \in S$. Then $\langle-1, z\rangle \in A_{S}$.

Construction of \mathbf{A}_{S} (cont.)

- Next, we define the nucleus $\gamma(x, y)=\langle x, y\rangle \vee\langle-3,-1\rangle$.
- Then $\mathbf{A}_{\mathcal{S}}$ is the subalgebra of $\left(\mathbf{G}_{\sigma_{S}}\right)_{\gamma}$ generated by $a=\langle-1,0\rangle$.

Lemma

(1) The algebra \mathbf{A}_{S} is simple 4-potent integral commutative residuated lattice.
(2) Let $n \in \mathbb{N}$. Then $\langle-2, n\rangle,\langle-3, n\rangle \in A_{S}$.
(3) Let $z \in S$. Then $\langle-1, z\rangle \in A_{S}$.
(4) $\mathbf{A}_{R} \cong \mathbf{A}_{S}$ iff $R=S$.

- Each \mathbf{A}_{S} contains a nontrivial subalgebra, namely 2.
- Each \mathbf{A}_{S} contains a nontrivial subalgebra, namely 2.
- Thus we extend \mathbf{A}_{S} to \mathbf{A}_{S}^{\top} by adding a top element T such that $\top x=x$ for $x \neq\langle 0,0\rangle$.
- Each \mathbf{A}_{S} contains a nontrivial subalgebra, namely 2.
- Thus we extend \mathbf{A}_{S} to \mathbf{A}_{S}^{\top} by adding a top element T such that $\top x=x$ for $x \neq\langle 0,0\rangle$.

Lemma

The algebra \mathbf{A}_{S}^{\top} is strictly simple with a nearly term definable bottom element by the term $x^{4} \wedge(x \rightarrow 1)^{4}$.

- Each \mathbf{A}_{S} contains a nontrivial subalgebra, namely 2.
- Thus we extend \mathbf{A}_{S} to \mathbf{A}_{S}^{\top} by adding a top element T such that $\top x=x$ for $x \neq\langle 0,0\rangle$.

Lemma

The algebra \mathbf{A}_{S}^{\top} is strictly simple with a nearly term definable bottom element by the term $x^{4} \wedge(x \rightarrow 1)^{4}$.

Theorem (Galatos)

(1) Let A be a strictly simple FL-algebra with bottom element \perp nearly term definable by an n-ary term t. Then, $\mathrm{V}(\mathbf{A})$ is an atom.

- Each \mathbf{A}_{S} contains a nontrivial subalgebra, namely 2.
- Thus we extend \mathbf{A}_{S} to \mathbf{A}_{S}^{\top} by adding a top element T such that $\top x=x$ for $x \neq\langle 0,0\rangle$.

Lemma

The algebra \mathbf{A}_{S}^{\top} is strictly simple with a nearly term definable bottom element by the term $x^{4} \wedge(x \rightarrow 1)^{4}$.

Theorem (Galatos)

(1) Let \mathbf{A} be a strictly simple FL-algebra with bottom element \perp nearly term definable by an n-ary term t. Then, $\mathrm{V}(\mathbf{A})$ is an atom.
(2) Moreover, if \mathbf{A}^{\prime} is a strictly simple FL-algebra with bottom element nearly term definable by the same term t, then $\mathrm{V}(\mathbf{A}) \subseteq \mathrm{V}\left(\mathbf{A}^{\prime}\right)$ iff \mathbf{A} and \mathbf{A}^{\prime} are isomorphic.

Our results

Theorem

There are $2^{\aleph_{0}}$ representable commutative 4 -potent atoms in $\wedge(R L)$.

Our results

Theorem

There are $2^{\aleph_{0}}$ representable commutative 4 -potent atoms in $\wedge(\mathrm{RL})$.

Theorem
There are only finitely many 3 -potent representable commutative atoms in $\wedge(\mathrm{RL})$. Namely, varieties generated by $\mathbf{2}, \mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}, \mathbf{T}_{3}^{\prime}$.

3-potent atoms

Theorem
(1) There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{\mathrm{e}}\right)$.

Theorem
(1) There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{\mathrm{e}}\right)$.
(2) There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{\mathrm{e}}\right)$.

Theorem

(1) There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{\mathrm{e}}\right)$.
(2) There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{\text {eo }}\right)$.

Proof.

(1) We use the FL-algebras living on \mathbf{A}_{S} where 0 is interpreted by any element different from $\langle-3,-1\rangle,\langle 0,0\rangle$.

Theorem

(1) There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{\mathrm{ei}}\right)$.
(2) There are $2^{\aleph_{0}}$ representable atoms in $\wedge\left(\mathrm{FL}_{e \rho}\right)$.

Proof.

(1) We use the FL-algebras living on \mathbf{A}_{S} where 0 is interpreted by any element different from $\langle-3,-1\rangle,\langle 0,0\rangle$.
(2) We use the FL-algebras living on \mathbf{A}_{S}^{\top} where 0 is interpreted by $\langle-3,-1\rangle$.

Representable Commutative Integral Atoms

Theorem
There are 2^{1} representable commutative integral atoms in $\Lambda(R L)$, namely $\mathrm{V}\left(\mathbf{Z}^{-}\right)$and $\mathrm{V}(\mathbf{2})$.

Representable Commutative Integral Atoms

Theorem
There are 2^{1} representable commutative integral atoms in $\wedge(\mathrm{RL})$, namely $\mathrm{V}\left(\mathbf{Z}^{-}\right)$and $\mathrm{V}(\mathbf{2})$.

Proof.

- Let A be a representable simple ICRC.

Representable Commutative Integral Atoms

Theorem
There are 2^{1} representable commutative integral atoms in $\wedge(\mathrm{RL})$, namely $\mathrm{V}\left(\mathbf{Z}^{-}\right)$and $\mathrm{V}(\mathbf{2})$.

Proof.

- Let A be a representable simple ICRC.
- If \mathbf{A} has a minimum then \mathbf{A} contains $\mathbf{2}$ as a subalgebra.

Representable Commutative Integral Atoms

Theorem
There are 2^{1} representable commutative integral atoms in $\wedge(\mathrm{RL})$, namely $\mathrm{V}\left(\mathbf{Z}^{-}\right)$and $\mathrm{V}(\mathbf{2})$.

Proof.

- Let A be a representable simple ICRC.
- If \mathbf{A} has a minimum then \mathbf{A} contains $\mathbf{2}$ as a subalgebra.
- Otherwise $\left\langle a^{k}\right\rangle_{k \in \mathbb{N}^{+}}$is a strictly decreasing sequence for $a \neq 1$.

Representable Commutative Integral Atoms

Theorem
There are 2^{1} representable commutative integral atoms in $\wedge(\mathrm{RL})$, namely $\mathrm{V}\left(\mathbf{Z}^{-}\right)$and $\mathrm{V}(\mathbf{2})$.

Proof.

- Let A be a representable simple ICRC.
- If \mathbf{A} has a minimum then \mathbf{A} contains $\mathbf{2}$ as a subalgebra.
- Otherwise $\left\langle a^{k}\right\rangle_{k \in \mathbb{N}^{+}}$is a strictly decreasing sequence for $a \neq 1$.
- Consider $\mathbf{B}=\mathbf{A}^{\mathbb{N}} / U$ for a free ultrafilter U on \mathbb{N}.

Representable Commutative Integral Atoms

Theorem

There are 2^{1} representable commutative integral atoms in $\wedge(\mathrm{RL})$, namely $\mathrm{V}\left(\mathbf{Z}^{-}\right)$and $\mathrm{V}(\mathbf{2})$.

Proof.

- Let A be a representable simple ICRC.
- If \mathbf{A} has a minimum then \mathbf{A} contains $\mathbf{2}$ as a subalgebra.
- Otherwise $\left\langle a^{k}\right\rangle_{k \in \mathbb{N}^{+}}$is a strictly decreasing sequence for $a \neq 1$.
- Consider $\mathbf{B}=\mathbf{A}^{\mathbb{N}} / U$ for a free ultrafilter U on \mathbb{N}.
- Let θ be the congruence on \mathbf{B} corresponding to the convex subalgebra generated by the congruence classes containing the constant mappings and $\mathbf{a}=\left\langle a^{k}\right\rangle_{k \in \mathbb{N}^{+}} / U$.

Representable Commutative Integral Atoms

Theorem
There are 2^{1} representable commutative integral atoms in $\wedge(R L)$, namely $\mathrm{V}\left(\mathbf{Z}^{-}\right)$and $\mathrm{V}(\mathbf{2})$.

Proof.

- Let A be a representable simple ICRC.
- If \mathbf{A} has a minimum then \mathbf{A} contains $\mathbf{2}$ as a subalgebra.
- Otherwise $\left\langle a^{k}\right\rangle_{k \in \mathbb{N}^{+}}$is a strictly decreasing sequence for $a \neq 1$.
- Consider $\mathbf{B}=\mathbf{A}^{\mathbb{N}} / U$ for a free ultrafilter U on \mathbb{N}.
- Let θ be the congruence on \mathbf{B} corresponding to the convex subalgebra generated by the congruence classes containing the constant mappings and $\mathbf{a}=\left\langle a^{k}\right\rangle_{k \in \mathbb{N}^{+}} / U$.
- Then the subalgebra of \mathbf{B} / θ generated by \mathbf{a} is isomorphic to \mathbf{Z}^{-}.

1-generated ICRCs

- The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.

1-generated ICRCs

- The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.
- It turns out that it is sufficiently large to generate the whole variety of representable integral commutative residuated lattices.

1-generated ICRCs

- The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.
- It turns out that it is sufficiently large to generate the whole variety of representable integral commutative residuated lattices.

Theorem

Each finitely generated ICRC can be embedded into a 1-generated ICRC.

1-generated ICRCs

- The discussed results show that the class of 1-generated integral commutative residuated chains (ICRCs) is quite large.
- It turns out that it is sufficiently large to generate the whole variety of representable integral commutative residuated lattices.

Theorem

Each finitely generated ICRC can be embedded into a 1-generated ICRC.

Corollary

The variety of representable integral commutative residuated lattices is generated by 1-generated finite totally ordered members.

Lexicographic product

Lemma

Let \mathbf{A}, \mathbf{B} be ICRCs such that \mathbf{A} is cancellative. Then the lexicographic product $\mathbf{A} \overrightarrow{\times} \mathbf{B}$ is an ICRC.

Lexicographic product

Lemma

Let \mathbf{A}, \mathbf{B} be ICRCs such that \mathbf{A} is cancellative. Then the lexicographic product $\mathbf{A} \overrightarrow{\times} \mathbf{B}$ is an ICRC.

$$
\langle a, x\rangle \rightarrow\langle b, y\rangle= \begin{cases}\left\langle a \rightarrow_{A} b, 1_{B}\right\rangle & \text { if } a \cdot{ }_{A}\left(a \rightarrow_{A} b\right)<_{A} b, \\ \left\langle a \rightarrow_{A} b, x \rightarrow_{B} y\right\rangle & \text { otherwise. }\end{cases}
$$

Lexicographic product

Lemma

Let \mathbf{A}, \mathbf{B} be ICRCs such that \mathbf{A} is cancellative. Then the lexicographic product $\mathbf{A} \overrightarrow{\times} \mathbf{B}$ is an ICRC.

$$
\langle a, x\rangle \rightarrow\langle b, y\rangle= \begin{cases}\left\langle a \rightarrow_{A} b, 1_{B}\right\rangle & \text { if } a \cdot{ }_{A}\left(a \rightarrow_{A} b\right)<_{A} b, \\ \left\langle a \rightarrow_{A} b, x \rightarrow_{B} y\right\rangle & \text { otherwise. }\end{cases}
$$

In particular, if $\mathbf{A}=\mathbf{Z}^{-}$, then for $\langle a, x\rangle>\langle b, y\rangle$ we have

$$
\langle a, x\rangle \rightarrow\langle b, y\rangle=\left\langle b-a, x \rightarrow_{B} y\right\rangle .
$$

Sketch of the proof

Let \mathbf{A} be an ICRC generated by $\{a, b, c\}$. We will construct a 1-generated ICRC in which A can be embedded.

Sketch of the proof

Consider the lexicographic product $\mathbf{Z}^{-} \overrightarrow{\times} \mathbf{A}$. The elements are tuples $\langle x, y\rangle$ where $x \in \mathbf{Z}^{-}$and $y \in \mathbf{A}$.

Sketch of the proof

Take the conuclear contraction of $\mathbf{Z}^{-} \overrightarrow{\times} \mathbf{A}$ by deleting $\{\langle-1, y\rangle \mid y>a\} \cup\{\langle-2, y\rangle \mid y>b\} \cup\{\langle-3, y\rangle \mid y>c\}$. Denote the corresponding conucleus σ.

Sketch of the proof

Consider the nucleus $\gamma(x)=x \vee\langle-8, e\rangle$ and its corresponding nuclear retraction.

Sketch of the proof

Finally, let \mathbf{C} be the subalgebra generated by the element $g=\langle-1, a\rangle$. We will prove that \mathbf{A} can be embedded into \mathbf{C}.

Sketch of the proof

First, we have $g^{8}=\gamma\left(\langle-1, a\rangle^{8}\right)=\gamma\left(\left\langle-8, a^{8}\right\rangle\right)=\langle-8, e\rangle$.

Sketch of the proof

Then $g \rightarrow_{\sigma} g^{8}=\sigma(\langle-1, a\rangle \rightarrow\langle-8, e\rangle)=\sigma(\langle-7, e\rangle)=\langle-7, e\rangle$.

Sketch of the proof

Then $g^{2} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-2, a^{2}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-6, e\rangle)=\langle-6, e\rangle$.

Sketch of the proof

Then $g^{3} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-3, a^{3}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-5, e\rangle)=\langle-5, e\rangle$.

Sketch of the proof

Then $g^{4} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-4, a^{4}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-4, e\rangle)=\langle-4, e\rangle$.

Sketch of the proof

Then $g^{5} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-5, a^{5}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-3, e\rangle)=\langle-3, c\rangle$.

Sketch of the proof

Then $g^{6} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-6, a^{6}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-2, e\rangle)=\langle-2, b\rangle$.

Sketch of the proof

We have
$\langle-5, e\rangle \rightarrow_{\sigma}\langle-1, a\rangle\langle-4, e\rangle=\sigma(\langle-5, e\rangle \rightarrow\langle-5, a\rangle)=\sigma(\langle 0, a\rangle)=$ $\langle 0, a\rangle$.

Sketch of the proof

We have
$\langle-6, e\rangle \rightarrow_{\sigma}\langle-2, b\rangle\langle-4, e\rangle=\sigma(\langle-6, e\rangle \rightarrow\langle-6, b\rangle)=\sigma(\langle 0, b\rangle)=$ $\langle 0, b\rangle$.

Sketch of the proof

We have
$\langle-7, e\rangle \rightarrow_{\sigma}\langle-3, c\rangle\langle-4, e\rangle=\sigma(\langle-7, e\rangle \rightarrow\langle-7, c\rangle)=\sigma(\langle 0, c\rangle)=$ $\langle 0, c\rangle$.

Sketch of the proof

Thus $\langle 0, a\rangle,\langle 0, b\rangle,\langle 0, c\rangle \in \mathbf{C}$, i.e. \mathbf{C} contains an isomorphic copy of \mathbf{A}.

Thank you for your attention!

