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Introduction

Introduction

How many maximally consistent substructural logics (axiomatic
extensions of Full Lambek) are there?

Typical examples of such logics are e.g. classical logic, Abelian
logic, cancellative hoop logic...
Algebraically speaking, this question can be equivalently
expressed as: How many atoms are there in the subvariety lattice
Λ(FL) of FL-algebras.
The above-mentioned examples correspond respectively to the
atoms V(2), V(Z), V(Z−).
It is known that there are continuum many atoms Λ(FL).
What about atoms satisfying some additional properties like
representability, commutativity, integrality?
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Introduction

Introduction (cont.)

In their survey on residuated lattices Jipsen and Tsinakis posed
the following question:

Are there uncountably many atoms in Λ(RL) that satisfy
the commutative identity or the identity x2 = x3?

This question was solved by Galatos by constructing continuum
many representable atoms satisfying the identity x2 = x . At the
same time he also conjectured that there are only countably many
representable commutative atoms in Λ(RL).

In this talk we are going to show that this was a false conjecture.

Furthermore, we solve related open problems on cardinality of
atoms in Λ(FLei) and Λ(FLeo).
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Preliminaries

FL-algebras

Definition
An algebra A = 〈A,∧,∨, ·, /, \,0,1〉 is called FL-algebra if

1 〈A,∧,∨〉 is a lattice,
2 〈A, ·,1〉 is a monoid,
3 x · y ≤ z iff y ≤ x\z iff x ≤ z/y .

Other properties
A is a residuated lattice if 1 = 0,
A is an FLe-algebra (commutative) if x · y = y · x ,
A is an FLi-algebra (integral) if x ≤ 1,
A is an FLo-algebra if 0 ≤ x ,
A is n-potent if xn+1 = xn,
A is representable (semilinear) if it is a subdirect product of chains.
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Preliminaries

Nucleus and conucleus

Definition
A closure operator γ on an FL-algebra A is called a nucleus if

γ(x)γ(y) ≤ γ(xy) .

An interior operator σ on an FL-algebra A is called a conucleus if

σ(x)σ(y) ≤ σ(xy) , σ(1) = 1 .

Let γ : A→ A be an operator on A. The image of γ is denoted Aγ .
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Rostislav Horčík (ICS, AS CR) LATD 2010 5 / 19



Preliminaries

Nucleus and conucleus

Definition
A closure operator γ on an FL-algebra A is called a nucleus if

γ(x)γ(y) ≤ γ(xy) .

An interior operator σ on an FL-algebra A is called a conucleus if

σ(x)σ(y) ≤ σ(xy) , σ(1) = 1 .

Let γ : A→ A be an operator on A. The image of γ is denoted Aγ .
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Preliminaries

Nuclear retraction and conuclear contraction

Lemma
An operator σ on A is conucleus iff Aσ is a submonoid of A and

max{a ∈ Aσ | a ≤ x} exists for all x ∈ A.
Aσ is called conuclear contraction.

An operator γ on A is nucleus iff Aγ satisfies
min{a ∈ Aγ | x ≤ a} exists for all x ∈ A.

and
x → y ∈ Aγ for all x ∈ A and y ∈ Aγ .

Aγ is called nuclear retraction.
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Preliminaries

Resulting residuated algebras

Lemma
Let A = 〈A,∧,∨, ·, /, \,0,1〉 be an FL-algebra, γ a nucleus on A
and σ a conucleus on A.

Then the algebra Aγ = 〈Aγ ,∧,∨γ , ◦γ , /, \, , γ(0), γ(1)〉 is an
FL-algebra, where

x ∨γ y = γ(x ∨ y),
x ◦γ y = γ(x · y).

Further, the algebra Aσ = 〈Aσ,∧σ,∨, ·, /σ, \σ, σ(0),1〉 is an
FL-algebra, where

x ∧σ y = σ(x ∧ y),
x/σy = σ(x/y),
x\σy = σ(x\y).
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Results

Our results

Given a variety V, the subvariety lattice of V is denoted Λ(V).

Our results can be summarized as follows:

There are 2ℵ0 representable commutative atoms in Λ(RL).

There are 2ℵ0 representable atoms in Λ(FLei).

There are 2ℵ0 representable atoms in Λ(FLeo).

On the other hand, we also prove the following result:

There are 21 representable commutative integral atoms in Λ(RL).
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Results

Construction of AS

Let G be the lexicographic product of two copies of Z.

For each infinite S ⊆ −2− N we will construct a residuated chain
AS by means of a conucleus σS and a nucleus γ.
The conucleus σS is defined by its conuclear contraction:

GσS = {〈0,0〉, 〈−1,0〉, 〈−1,−1〉}∪
{〈−1, z〉 ∈ A | z ∈ S} ∪ {〈x , y〉 ∈ A | x ≤ −2} .

Since S is infinite and dually well ordered, we get the following
lemma.

Lemma
The set GσS forms a conuclear contraction.
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Results

Construction of AS (cont.)

Next, we define the nucleus γ(x , y) = 〈x , y〉 ∨ 〈−3,−1〉.

Then AS is the subalgebra of (GσS )γ generated by a = 〈−1,0〉.

Lemma
1 The algebra AS is simple 4-potent integral commutative

residuated lattice.

2 Let n ∈ N. Then 〈−2,n〉, 〈−3,n〉 ∈ AS.

3 Let z ∈ S. Then 〈−1, z〉 ∈ AS.

4 AR
∼= AS iff R = S.
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Results

Each AS contains a nontrivial subalgebra, namely 2.

Thus we extend AS to A>S by adding a top element > such that
>x = x for x 6= 〈0,0〉.

Lemma
The algebra A>S is strictly simple with a nearly term definable bottom
element by the term x4 ∧ (x → 1)4.

Theorem (Galatos)
1 Let A be a strictly simple FL-algebra with bottom element ⊥ nearly

term definable by an n-ary term t. Then, V(A) is an atom.
2 Moreover, if A′ is a strictly simple FL-algebra with bottom element

nearly term definable by the same term t, then V(A) ⊆ V(A′) iff A
and A′ are isomorphic.
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Results

Our results

Theorem
There are 2ℵ0 representable commutative 4-potent atoms in Λ(RL).

Theorem
There are only finitely many 3-potent representable commutative
atoms in Λ(RL). Namely, varieties generated by 2,T1,T2,T3,T′3.
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Results

3-potent atoms

a

1

2

a

1

>

T1

a2

a

1

>

T2

a3

a2

a

1

>

T3

a3

a2
a→ a3
a

1

>

T′3
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Results

Theorem
1 There are 2ℵ0 representable atoms in Λ(FLei).

2 There are 2ℵ0 representable atoms in Λ(FLeo).

Proof.
1 We use the FL-algebras living on AS where 0 is interpreted by any

element different from 〈−3,−1〉, 〈0,0〉.

2 We use the FL-algebras living on A>S where 0 is interpreted by
〈−3,−1〉.
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Results

Representable Commutative Integral Atoms

Theorem
There are 21 representable commutative integral atoms in Λ(RL),
namely V(Z−) and V(2).

Proof.
Let A be a representable simple ICRC.
If A has a minimum then A contains 2 as a subalgebra.
Otherwise 〈ak 〉k∈N+ is a strictly decreasing sequence for a 6= 1.
Consider B = AN/U for a free ultrafilter U on N.
Let θ be the congruence on B corresponding to the convex
subalgebra generated by the congruence classes containing the
constant mappings and a = 〈ak 〉k∈N+/U.
Then the subalgebra of B/θ generated by a is isomorphic to Z−.
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Results

1-generated ICRCs

The discussed results show that the class of 1-generated integral
commutative residuated chains (ICRCs) is quite large.

It turns out that it is sufficiently large to generate the whole variety
of representable integral commutative residuated lattices.

Theorem
Each finitely generated ICRC can be embedded into a 1-generated
ICRC.

Corollary
The variety of representable integral commutative residuated lattices is
generated by 1-generated finite totally ordered members.
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Results

Lexicographic product

Lemma
Let A,B be ICRCs such that A is cancellative. Then the lexicographic
product A

→
× B is an ICRC.

〈a, x〉 → 〈b, y〉 =

{
〈a→A b,1B〉 if a ·A (a→A b) <A b,
〈a→A b, x →B y〉 otherwise.

In particular, if A = Z−, then for 〈a, x〉 > 〈b, y〉 we have

〈a, x〉 → 〈b, y〉 = 〈b − a, x →B y〉 .
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Sketch of the proof

c ea b

Let A be an ICRC generated by {a,b, c}.
We will construct a 1-generated ICRC in which A can be embed-
ded.
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Sketch of the proof

c ea baaa

a a a a

bb

b b b b

c

cccc eeeee

−1−2−3 0

−4−5−6−7−8

e cc b ee

a b c

Consider the lexicographic product Z−
→
× A.

The elements are tuples 〈x , y〉 where x ∈ Z− and y ∈ A.
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Sketch of the proof

c ea baaa

a a a a

bb

b b b b
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−4−5−6−7−8

a b c

Take the conuclear contraction of Z−
→
× A by deleting

{〈−1, y〉 | y > a} ∪ {〈−2, y〉 | y > b} ∪ {〈−3, y〉 | y > c}.
Denote the corresponding conucleus σ.

Rostislav Horčík (ICS, AS CR) LATD 2010 18 / 19



Results

Sketch of the proof
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Consider the nucleus γ(x) = x ∨ 〈−8,e〉 and its corresponding nuclear
retraction.
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Sketch of the proof
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Finally, let C be the subalgebra generated by the element g = 〈−1,a〉.
We will prove that A can be embedded into C.
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Sketch of the proof
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First, we have g8 = γ(〈−1,a〉8) = γ(〈−8,a8〉) = 〈−8,e〉.
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Sketch of the proof
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Then g →σ g8 = σ(〈−1,a〉 → 〈−8,e〉) = σ(〈−7,e〉) = 〈−7,e〉.
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Sketch of the proof
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Then g2 →σ g8 = σ(〈−2,a2〉 → 〈−8,e〉) = σ(〈−6,e〉) = 〈−6,e〉.
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Sketch of the proof
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Then g3 →σ g8 = σ(〈−3,a3〉 → 〈−8,e〉) = σ(〈−5,e〉) = 〈−5,e〉.
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Sketch of the proof
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Then g4 →σ g8 = σ(〈−4,a4〉 → 〈−8,e〉) = σ(〈−4,e〉) = 〈−4,e〉.
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Sketch of the proof
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Then g5 →σ g8 = σ(〈−5,a5〉 → 〈−8,e〉) = σ(〈−3,e〉) = 〈−3, c〉.

Rostislav Horčík (ICS, AS CR) LATD 2010 18 / 19



Results

Sketch of the proof
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Then g6 →σ g8 = σ(〈−6,a6〉 → 〈−8,e〉) = σ(〈−2,e〉) = 〈−2,b〉.
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Sketch of the proof
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We have
〈−5,e〉 →σ 〈−1,a〉〈−4,e〉 = σ(〈−5,e〉 → 〈−5,a〉) = σ(〈0,a〉) =
〈0,a〉.
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We have
〈−6,e〉 →σ 〈−2,b〉〈−4,e〉 = σ(〈−6,e〉 → 〈−6,b〉) = σ(〈0,b〉) =
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Sketch of the proof
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We have
〈−7,e〉 →σ 〈−3, c〉〈−4,e〉 = σ(〈−7,e〉 → 〈−7, c〉) = σ(〈0, c〉) =
〈0, c〉.
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Sketch of the proof

c ea baaa

a a a a

bb

b b b b

c

cccc eeeee

−1−2−3 0

−4−5−6−7−8

Thus 〈0,a〉, 〈0,b〉, 〈0, c〉 ∈ C, i.e. C contains an isomorphic copy of A.
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Thank you for your
attention!
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