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Introduction

Burnside groups are finitely generated groups satisfying xn = 1.

Studied questions: finiteness, word problem...

Burnside semigroups/monoids are defined analogously as finitely
generated semigroups/monoids where xm = xn holds.

Burnside partially ordered monoids should be defined by xm ≤ xn.

In the theory of residuated lattices are known as knotted rules/axioms
(Hori, Ono, Schellinx).

The aim of my talk: (un)decidability of the word problem for
“Burnside” residuated lattices.
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Pomonoids and residuated lattices

Definition
A structure A = 〈A, ·, 1 ≤〉 is called pomonoid if 〈A, ·, 1〉 is a monoid and
for all a, b, c ∈ A:

a ≤ b =⇒ ca ≤ cb , ac ≤ bc .

A residuated lattice A = 〈A,∧,∨, ·, \, /, 1〉 is a pomonoid such that
〈A,∧,∨〉 is a lattice and for all a, b, c ∈ A:

ab ≤ c iff b ≤ a \ c iff a ≤ c/b .

Let m, n ∈ N and m 6= n. The variety of residuated lattices satisfying
xm ≤ xn is denoted RLn

m.
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Word problem
Let K be a class of residuated lattices.

A quasi-inequality:

t1 ≤ s1 & . . . & tk ≤ sk =⇒ t0 ≤ s0 .

K has (un)decidable uniform word problem if the set of all
quasi-inequalities valid in K is (un)decidable.
K has undecidable (local) word problem if there are fixed premises
t1 ≤ s1, . . . , tk ≤ sk such that the set of all quasi-inequalities

t1 ≤ s1 & . . . & tk ≤ sk =⇒ t0 ≤ s0 .

valid in K is undecidable.

Theorem (van Alten)
Let CRLn

m be the variety of commutative residuated lattices satisfying
xm ≤ xn. Then the universal theory (word problem) for CRLn

m is
decidable for all m 6= n.
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Minsky machines (2CM)
Finite number of states: q0, q1, . . . , qn

Final state: q0

2 counters: c1, c2 ∈ N

Transition function τ (i > 0):

I τ(qi ) = 〈+, 1, qj〉: qi qj
c1 := c1 + 1

I τ(qi ) = 〈−, 1, qj , qk〉: qi

qk

qj

if c1 = 0

if c1 > 0c1 := c1 − 1

I Analogously for the second counter.
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A simple example

q0

q1 q2

c2:=c2+1

if c1>0
c1:=c1-1if c1=0

2
c1

1
c2
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Minsky machines

Note that 〈qi , c1, c2〉 fully determines the state of the computation of
a Minsky machine.

Such triples are called configurations.

A configuration 〈qi , c1, c2〉 is accepted by the machine if the
computation terminates at 〈q0, 0, 0〉.

Theorem (Minsky, Lambek)
There is a Minsky machine (2CM) whose set of accepted configurations is
undecidable.
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2 counters are more than 1 counter
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Semi-Thue systems

Σ a finite alphabet, Σ∗ the set of words over Σ

R a finite set of rules, i.e., pairs x → y for x , y ∈ Σ∗

Then 〈Σ,R〉 is called a semi-Thue system.

A rewriting relation →R on Σ∗ defined by:

uxv →R uyv iff x → y ∈ R .

Then →∗R denotes the reflexive and transitive closure of →R .

Observation

1 Σ∗ together with concatenation as multiplication forms a free monoid.
2 →∗R is the least quasi-order on Σ∗ compatible with multiplication

containing R.
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Semi-Thue systems and pomonoids

Let ∼R =→∗R ∩ (→∗R)−1.

Then Σ∗/∼R is a pomonoid (x/∼R ≤ y/∼R iff x →∗R y).

Every Semi-Thue system 〈Σ,R〉 can be viewed as a finite presentation
and Σ∗/∼R as the corresponding finitely presented pomonoid.

Lemma
Let 〈Σ, {t1 → s1, . . . , tn → sn}〉 be a Semi-Thue system and u, v ∈ Σ∗.

1 If u →∗R v then

t1 ≤ s1 & . . . & tn ≤ sn =⇒ u ≤ v (q)

holds in every pomonoid.
2 If u 6→∗R v then Σ∗/∼R does not satisfy (q).
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2 If u 6→∗R v then Σ∗/∼R does not satisfy (q).
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Simulating 2CM by Semi-Thue system
Configurations are encoded by words over a finite alphabet
Σ = {q0, . . . , qn, a,A}.

〈qi , c1, c2〉  Aac1qiac2A

Transition function is captured by the set R of rewriting rules:
I τ(qi ) = 〈+, 1, qj〉: qi → aqj
I τ(qi ) = 〈+, 2, qj〉: qi → qja
I τ(qi ) = 〈−, 1, qj , qk〉: aqi → qj , Aqi → Aqk
I τ(qi ) = 〈−, 2, qj , qk〉: qia→ qj , qiA→ qkA

Aaaq1aA →R Aaq2aA
→R Aaq1aaA
→R Aq2aaA
→R Aq1aaaA
→R Aq0aaaA
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Burnside inequalities

Lemma
〈qi , c1, c2〉 is accepted iff Aac1qiac2A→∗R Aq0A.

If our set of rules R is expanded e.g. by x2 → x3 for all x ∈ Σ∗ then
the above coding is ruined.
To prevent the use of x2 → x3, we encode the configurations into
square-free words.

Definition
A word w ∈ Σ∗ contains square if it is of the form w = u1xxu2 for some
u1, u2, x ∈ Σ∗. Words containing no square are called square-free.

Theorem (Thue 1906)
There is an infinite square-free word over Σ for |Σ| ≥ 3.

Rostislav Horčík (ICS) Knotted rules LATD 2012 12 / 28



Burnside inequalities

Lemma
〈qi , c1, c2〉 is accepted iff Aac1qiac2A→∗R Aq0A.

If our set of rules R is expanded e.g. by x2 → x3 for all x ∈ Σ∗ then
the above coding is ruined.

To prevent the use of x2 → x3, we encode the configurations into
square-free words.

Definition
A word w ∈ Σ∗ contains square if it is of the form w = u1xxu2 for some
u1, u2, x ∈ Σ∗. Words containing no square are called square-free.

Theorem (Thue 1906)
There is an infinite square-free word over Σ for |Σ| ≥ 3.

Rostislav Horčík (ICS) Knotted rules LATD 2012 12 / 28



Burnside inequalities

Lemma
〈qi , c1, c2〉 is accepted iff Aac1qiac2A→∗R Aq0A.

If our set of rules R is expanded e.g. by x2 → x3 for all x ∈ Σ∗ then
the above coding is ruined.
To prevent the use of x2 → x3, we encode the configurations into
square-free words.

Definition
A word w ∈ Σ∗ contains square if it is of the form w = u1xxu2 for some
u1, u2, x ∈ Σ∗. Words containing no square are called square-free.

Theorem (Thue 1906)
There is an infinite square-free word over Σ for |Σ| ≥ 3.

Rostislav Horčík (ICS) Knotted rules LATD 2012 12 / 28



Burnside inequalities

Lemma
〈qi , c1, c2〉 is accepted iff Aac1qiac2A→∗R Aq0A.

If our set of rules R is expanded e.g. by x2 → x3 for all x ∈ Σ∗ then
the above coding is ruined.
To prevent the use of x2 → x3, we encode the configurations into
square-free words.

Definition
A word w ∈ Σ∗ contains square if it is of the form w = u1xxu2 for some
u1, u2, x ∈ Σ∗. Words containing no square are called square-free.

Theorem (Thue 1906)
There is an infinite square-free word over Σ for |Σ| ≥ 3.

Rostislav Horčík (ICS) Knotted rules LATD 2012 12 / 28



Burnside inequalities

Lemma
〈qi , c1, c2〉 is accepted iff Aac1qiac2A→∗R Aq0A.

If our set of rules R is expanded e.g. by x2 → x3 for all x ∈ Σ∗ then
the above coding is ruined.
To prevent the use of x2 → x3, we encode the configurations into
square-free words.

Definition
A word w ∈ Σ∗ contains square if it is of the form w = u1xxu2 for some
u1, u2, x ∈ Σ∗. Words containing no square are called square-free.

Theorem (Thue 1906)
There is an infinite square-free word over Σ for |Σ| ≥ 3.

Rostislav Horčík (ICS) Knotted rules LATD 2012 12 / 28



Square-free morphisms – example

Let Σ = {a, b, c}. Define monoid endomorphism h : Σ∗ → Σ∗ as follows:

h(a) = abc , h(b) = ac , h(c) = b .

Lemma
The homomorphism h is square-free. Thus hn(a) is a square-free word for
all natural numbers n.
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all natural numbers n.
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Square-free morphisms – example

Let Σ = {a, b, c}. Define monoid endomorphism h : Σ∗ → Σ∗ as follows:

h(a) = abc , h(b) = ac , h(c) = b .

Lemma
The homomorphism h is square-free. Thus hn(a) is a square-free word for
all natural numbers n.

h2(a) = h(a)h(b)h(c) = abcacb
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Square-free morphisms – example

Let Σ = {a, b, c}. Define monoid endomorphism h : Σ∗ → Σ∗ as follows:

h(a) = abc , h(b) = ac , h(c) = b .

Lemma
The homomorphism h is square-free. Thus hn(a) is a square-free word for
all natural numbers n.

h3(a) = h(a)h(b)h(c)h(a)h(c)h(b) = abcacbabcbac
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Square-free morphisms – example

Let Σ = {a, b, c}. Define monoid endomorphism h : Σ∗ → Σ∗ as follows:

h(a) = abc , h(b) = ac , h(c) = b .

Lemma
The homomorphism h is square-free. Thus hn(a) is a square-free word for
all natural numbers n.

〈qi , c1, c2〉  Ahc1(a)qihc2(a)A
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Square-free morphisms – example

Let Σ = {a, b, c}. Define monoid endomorphism h : Σ∗ → Σ∗ as follows:

h(a) = abc , h(b) = ac , h(c) = b .

Lemma
The homomorphism h is square-free. Thus hn(a) is a square-free word for
all natural numbers n.

〈qi , c1, c2〉  Ahc1(a)qihc2(a)A

Problem: qihc2(a)→ qjhc2+1(a), qihc2+1(a)→ qjhc2(a)
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Addition and substruction

hn+1(a) = h(hn(a)) = h(d1 . . . dk) = h(d1) . . . h(dk)

C+d → h(d)C+

C+hn(a) = C+d1d2 . . . dk

→ h(d1)C+d2 . . . dk

→ h(d1)h(d2)C+ . . . dk
...
→ h(d1)h(d2) . . . h(dk)C+

= hn+1(a)C+

Substruction can be treated similarly by
C−h(d)→ dC−
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Resulting coding
Alphabet: Σ = {q0, . . . , qn, a, b, c,A,B,B+,B−,C ,C+,C−}

Configurations:

〈qi , c1, c2〉  Ahc1(a)BqiChc2(a)A

The set of rules R:

I τ(qi ) = 〈+, 2, qj〉:
qiC → qjC+ ,

I τ(qi ) = 〈−, 2, qj , qk〉:

qiCabc → qjC−abc , qiCaA→ qkCaA ,

I Auxiliary rules for d ∈ {a, b, c}:

C+d → h(d)C+ , C+A→ CA , dC → Cd ,

C−h(d)→ dC− , C−A→ CA .
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What have we achieved?
Lemma
C = 〈qi , c1, c2〉 is accepted iff Ahc1(a)BqiChc2(a)A→∗R AaBq0CaA

&t→s∈R t ≤ s =⇒ Ahc1(a)BqiChc2(a)A ≤ AaBq0CaA (qC)

2CM

(qC) holds in all pomonoids (residuated lattices)

(qC) does not hold in Σ∗/∼R ?

acc.
C

not acc. C
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Construction of a residuated lattice

We want a residuated lattice W+

satisfying as many
(quasi-)identities as possible

but still being a countermodel for
all (qC)’s not valid in Σ∗/∼R .

RL

W+

Q
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Residuated frames (Galatos, Jipsen)

A B
N
/

P(A) P(B)

B

C

monoid

res. lattice

f

Closure operator: γ(X ) = XBC
The closed sets form a complete lattice W+.

xy N z iff y N xz iff x N z�y

f (x) = γ{x} is a monoid homomorphism from A to W+.
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Residuated frame from STS

Σ∗ Σ∗ × Σ∗
N
/

x N 〈u, v〉 iff uxv →∗R AaBq0CaA

Lemma

1 N is nuclear and γ{t} ⊆ γ{s} for all t → s ∈ R.
2 If w 6→∗R AaBq0CaA then

γ{w} 6⊆ γ{AaBq0CaA} .

3 In particular, if a configuration C = 〈qi , c1, c2〉 is not accepted then

&t→s∈R t ≤ s =⇒ Ahc1(a)BqiChc2(a)A ≤ AaBq0CaA (qC)

does not hold in W+.
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Properties
γ is the pointwise greatest nucleus
s.t.

γ{AaBq0CaA} =

{u ∈ Σ∗ | u →∗R AaBq0CaA} .

If w 6→∗R AaBq0CaA then

γ{w} 6⊆ γ{AaBq0CaA} .

Since γ{AaBq0CaA} contains only
square-free words, the complex
algebra W+ is a residuated lattice
satisfying x ≤ x2 and x3 = x2.

Σ∗

AaBq0CaA

w
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Undecidability results

Let C = 〈qi , c1, c2〉 be a configuration. Then C is accepted iff

&t→s∈R t ≤ s =⇒ Ahc1(a)BqiChc2(a)A ≤ AaBq0CaA (qC)

holds in RL2
1 ∩RL2

3.

Theorem
The word problem (quasi-equational theory) is undecidable in RLn

m for
1 ≤ n < m and m < n ≤ 2.

Theorem
Let DRLn

m be the variety of distributive residuated lattices satisfying
xm ≤ xn. Then the word problem (quasi-equational theory) is undecidable
in DRLn

m for 1 ≤ n < m.
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What remains?

1 ≤ xn axiomatizes the trivial variety.

xm ≤ 1 is equivalent to integrality, i.e., x ≤ 1.

Theorem (Blok, van Alten)
The universal theory of integral residuated lattices (i.e., RL0

m) is decidable.

The only remaining unknown cases are xm ≤ x for m ≥ 2.
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Finite embeddability property

A standard way of proving decidability of the uniform word problem
(universal theory) is to show the finite embeddability property (FEP).

A quasi-ordered set P = 〈P,v〉 is called dually well quasi-ordered if P
contains neither infinite ascending chains nor infinite antichains.

Theorem (Blok, van Alten)
If for each A ∈ RL1

m every finitely generated submonoid B of A is dually
well quasi-ordered then RL1

m has the FEP.
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Mingle x 2 ≤ x
Pomonoid subreducts of residuated lattices satisfying x2 ≤ x are
axiomatized by

uxv ≤ z & ux ′v ≤ z =⇒ uxx ′v ≤ z (q)

Consider a closure operator δ : P(Σ∗)→ P(Σ∗) s.t. its closed sets are
closed under the following rule:

uxv , ux ′v ∈ S =⇒ uxx ′v ∈ S

Define a quasi-order on Σ∗:

x v y iff δ{x} ⊆ δ{y} iff x ∈ δ{y} .

Lemma
Every finitely generated pomonoid A satisfying (q) is a homomorphic
image of 〈Σ∗,v〉 for some finite Σ.
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Well quasi-order

Thus it suffices to show that v is a dual well quasi-order.

Lemma
Let w ∈ Σ∗ and Alph(w) = Γ. Then wuw ∈ δ{w} (i.e., wuw v w) for
every u ∈ Γ∗.

By a modification of Higman’s lemma one can prove:

Lemma
The quasi-order v is a dual well quasi-order.
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Decidability result

Theorem
The variety of residuated lattices satisfying x2 ≤ x (i.e., RL1

2) has the
FEP.

Corollary
The universal theory of RL1

2 is decidable.
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Conclusion

What about xm ≤ x for m ≥ 3?

Since idempotent (x2 = x) monoids satisfy

uxv = z & ux ′v = z =⇒ uxx ′v = z ,

it follows from our result that finitely generated idempotent monoids
are finite.

Theorem (Green, Rees)
The free n-generated Burnside monoid satisfying xm+1 = x is finite iff the
free n-generated Burnside group satisfying xm = 1 is finite.

Is there a similar relation also for m ≥ 3?
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Thank you!
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