Quasiequational Theory of Square-increasing Residuated Lattices is Undecidable

Rostislav Horčík
Institute of Computer Science
Academy of Sciences of the Czech Republic
Logic, Algebra and Truth Degrees
Kanazawa, 10-14 September 2012

Introduction

- Burnside groups are finitely generated groups satisfying $x^{n}=1$.

Introduction

- Burnside groups are finitely generated groups satisfying $x^{n}=1$.
- Studied questions: finiteness, word problem...

Introduction

- Burnside groups are finitely generated groups satisfying $x^{n}=1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^{m}=x^{n}$ holds.

Introduction

- Burnside groups are finitely generated groups satisfying $x^{n}=1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^{m}=x^{n}$ holds.
- Burnside partially ordered monoids should be defined by $x^{m} \leq x^{n}$.

Introduction

- Burnside groups are finitely generated groups satisfying $x^{n}=1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^{m}=x^{n}$ holds.
- Burnside partially ordered monoids should be defined by $x^{m} \leq x^{n}$.
- In the theory of residuated lattices are known as knotted rules/axioms (Hori, Ono, Schellinx).

Introduction

- Burnside groups are finitely generated groups satisfying $x^{n}=1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^{m}=x^{n}$ holds.
- Burnside partially ordered monoids should be defined by $x^{m} \leq x^{n}$.
- In the theory of residuated lattices are known as knotted rules/axioms (Hori, Ono, Schellinx).
- The aim of my talk: (un)decidability of the word problem for "Burnside" residuated lattices.

Pomonoids and residuated lattices

Definition

A structure $\mathbf{A}=\langle A, \cdot, 1 \leq\rangle$ is called pomonoid if $\langle A, \cdot, 1\rangle$ is a monoid and for all $a, b, c \in A$:

$$
a \leq b \Longrightarrow c a \leq c b, a c \leq b c
$$

Pomonoids and residuated lattices

Definition

A structure $\mathbf{A}=\langle A, \cdot, 1 \leq\rangle$ is called pomonoid if $\langle A, \cdot, 1\rangle$ is a monoid and for all $a, b, c \in A$:

$$
a \leq b \Longrightarrow c a \leq c b, a c \leq b c
$$

A residuated lattice $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ is a pomonoid such that $\langle A, \wedge, \vee\rangle$ is a lattice and for all $a, b, c \in A$:

$$
a b \leq c \quad \text { iff } \quad b \leq a \backslash c \text { iff } a \leq c / b
$$

Pomonoids and residuated lattices

Definition

A structure $\mathbf{A}=\langle A, \cdot, 1 \leq\rangle$ is called pomonoid if $\langle A, \cdot, 1\rangle$ is a monoid and for all $a, b, c \in A$:

$$
a \leq b \Longrightarrow c a \leq c b, a c \leq b c
$$

A residuated lattice $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ is a pomonoid such that $\langle A, \wedge, \vee\rangle$ is a lattice and for all $a, b, c \in A$:

$$
a b \leq c \quad \text { iff } \quad b \leq a \backslash c \text { iff } a \leq c / b
$$

Let $m, n \in \mathbb{N}$ and $m \neq n$. The variety of residuated lattices satisfying $x^{m} \leq x^{n}$ is denoted $\mathcal{R} \mathcal{L}_{m}^{n}$.

Word problem

- Let \mathcal{K} be a class of residuated lattices.

Word problem

- Let \mathcal{K} be a class of residuated lattices.
- A quasi-inequality:

$$
t_{1} \leq s_{1} \& \ldots \& t_{k} \leq s_{k} \Longrightarrow t_{0} \leq s_{0}
$$

Word problem

- Let \mathcal{K} be a class of residuated lattices.
- A quasi-inequality:

$$
t_{1} \leq s_{1} \& \ldots \& t_{k} \leq s_{k} \Longrightarrow t_{0} \leq s_{0}
$$

- \mathcal{K} has (un)decidable uniform word problem if the set of all quasi-inequalities valid in \mathcal{K} is (un)decidable.

Word problem

- Let \mathcal{K} be a class of residuated lattices.
- A quasi-inequality:

$$
t_{1} \leq s_{1} \& \ldots \& t_{k} \leq s_{k} \Longrightarrow t_{0} \leq s_{0}
$$

- \mathcal{K} has (un)decidable uniform word problem if the set of all quasi-inequalities valid in \mathcal{K} is (un)decidable.
- \mathcal{K} has undecidable (local) word problem if there are fixed premises $t_{1} \leq s_{1}, \ldots, t_{k} \leq s_{k}$ such that the set of all quasi-inequalities

$$
t_{1} \leq s_{1} \& \ldots \& t_{k} \leq s_{k} \Longrightarrow t_{0} \leq s_{0}
$$

valid in \mathcal{K} is undecidable.

Word problem

- Let \mathcal{K} be a class of residuated lattices.
- A quasi-inequality:

$$
t_{1} \leq s_{1} \& \ldots \& t_{k} \leq s_{k} \Longrightarrow t_{0} \leq s_{0}
$$

- \mathcal{K} has (un)decidable uniform word problem if the set of all quasi-inequalities valid in \mathcal{K} is (un)decidable.
- \mathcal{K} has undecidable (local) word problem if there are fixed premises $t_{1} \leq s_{1}, \ldots, t_{k} \leq s_{k}$ such that the set of all quasi-inequalities

$$
t_{1} \leq s_{1} \& \ldots \& t_{k} \leq s_{k} \Longrightarrow t_{0} \leq s_{0}
$$

valid in \mathcal{K} is undecidable.

Theorem (van Alten)

Let $\mathcal{C} \mathcal{R} \mathcal{L}_{m}^{n}$ be the variety of commutative residuated lattices satisfying $x^{m} \leq x^{n}$. Then the universal theory (word problem) for $\mathcal{C} \mathcal{R} \mathcal{L}_{m}^{n}$ is decidable for all $m \neq n$.

Minsky machines (2CM)

- Finite number of states: $q_{0}, q_{1}, \ldots, q_{n}$

Minsky machines (2CM)

- Finite number of states: $q_{0}, q_{1}, \ldots, q_{n}$
- Final state: q_{0}

Minsky machines (2CM)

- Finite number of states: $q_{0}, q_{1}, \ldots, q_{n}$
- Final state: q_{0}
- 2 counters: $c_{1}, c_{2} \in \mathbb{N}$

Minsky machines (2CM)

- Finite number of states: $q_{0}, q_{1}, \ldots, q_{n}$
- Final state: q_{0}
- 2 counters: $c_{1}, c_{2} \in \mathbb{N}$
- Transition function $\tau(i>0)$:

Minsky machines (2CM)

- Finite number of states: $q_{0}, q_{1}, \ldots, q_{n}$
- Final state: q_{0}
- 2 counters: $c_{1}, c_{2} \in \mathbb{N}$
- Transition function $\tau(i>0)$:
- $\tau\left(q_{i}\right)=\left\langle+, 1, q_{j}\right\rangle:$

Minsky machines (2CM)

- Finite number of states: $q_{0}, q_{1}, \ldots, q_{n}$
- Final state: q_{0}
- 2 counters: $c_{1}, c_{2} \in \mathbb{N}$
- Transition function $\tau(i>0)$:
- $\tau\left(q_{i}\right)=\left\langle+, 1, q_{j}\right\rangle:$
- $\tau\left(q_{i}\right)=\left\langle-, 1, q_{j}, q_{k}\right\rangle:$

Minsky machines (2CM)

- Finite number of states: $q_{0}, q_{1}, \ldots, q_{n}$
- Final state: q_{0}
- 2 counters: $c_{1}, c_{2} \in \mathbb{N}$
- Transition function $\tau(i>0)$:
- $\tau\left(q_{i}\right)=\left\langle+, 1, q_{j}\right\rangle:$
- $\tau\left(q_{i}\right)=\left\langle-, 1, q_{j}, q_{k}\right\rangle:$

- Analogously for the second counter.

A simple example

Minsky machines

- Note that $\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ fully determines the state of the computation of a Minsky machine.

Minsky machines

- Note that $\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ fully determines the state of the computation of a Minsky machine.
- Such triples are called configurations.

Minsky machines

- Note that $\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ fully determines the state of the computation of a Minsky machine.
- Such triples are called configurations.
- A configuration $\left\langle q_{i}, c 1, c 2\right\rangle$ is accepted by the machine if the computation terminates at $\left\langle q_{0}, 0,0\right\rangle$.

Minsky machines

- Note that $\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ fully determines the state of the computation of a Minsky machine.
- Such triples are called configurations.
- A configuration $\left\langle q_{i}, c 1, c 2\right\rangle$ is accepted by the machine if the computation terminates at $\left\langle q_{0}, 0,0\right\rangle$.

Theorem (Minsky, Lambek)

There is a Minsky machine (2CM) whose set of accepted configurations is undecidable.

2 counters are more than 1 counter

Two Bytes Are Better Than One

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ
- R a finite set of rules, i.e., pairs $x \rightarrow y$ for $x, y \in \Sigma^{*}$

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ
- R a finite set of rules, i.e., pairs $x \rightarrow y$ for $x, y \in \Sigma^{*}$
- Then $\langle\Sigma, R\rangle$ is called a semi-Thue system.

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ
- R a finite set of rules, i.e., pairs $x \rightarrow y$ for $x, y \in \Sigma^{*}$
- Then $\langle\Sigma, R\rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_{R} on Σ^{*} defined by:

$$
u x v \rightarrow_{R} \text { uyv iff } \quad x \rightarrow y \in R
$$

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ
- R a finite set of rules, i.e., pairs $x \rightarrow y$ for $x, y \in \Sigma^{*}$
- Then $\langle\Sigma, R\rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_{R} on Σ^{*} defined by:

$$
u x v \rightarrow_{R} \text { uyv iff } \quad x \rightarrow y \in R
$$

- Then \rightarrow_{R}^{*} denotes the reflexive and transitive closure of \rightarrow_{R}.

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ
- R a finite set of rules, i.e., pairs $x \rightarrow y$ for $x, y \in \Sigma^{*}$
- Then $\langle\Sigma, R\rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_{R} on Σ^{*} defined by:

$$
u x v \rightarrow_{R} \text { uyv iff } \quad x \rightarrow y \in R .
$$

- Then \rightarrow_{R}^{*} denotes the reflexive and transitive closure of \rightarrow_{R}.

Observation

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ
- R a finite set of rules, i.e., pairs $x \rightarrow y$ for $x, y \in \Sigma^{*}$
- Then $\langle\Sigma, R\rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_{R} on Σ^{*} defined by:

$$
u x v \rightarrow_{R} \text { uyv iff } \quad x \rightarrow y \in R
$$

- Then \rightarrow_{R}^{*} denotes the reflexive and transitive closure of \rightarrow_{R}.

Observation

(1) Σ^{*} together with concatenation as multiplication forms a free monoid.

Semi-Thue systems

- Σ a finite alphabet, Σ^{*} the set of words over Σ
- R a finite set of rules, i.e., pairs $x \rightarrow y$ for $x, y \in \Sigma^{*}$
- Then $\langle\Sigma, R\rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_{R} on Σ^{*} defined by:

$$
u x v \rightarrow_{R} \text { uyv iff } \quad x \rightarrow y \in R
$$

- Then \rightarrow_{R}^{*} denotes the reflexive and transitive closure of \rightarrow_{R}.

Observation

(1) Σ^{*} together with concatenation as multiplication forms a free monoid.
(2) \rightarrow_{R}^{*} is the least quasi-order on Σ^{*} compatible with multiplication containing R.

Semi-Thue systems and pomonoids

- Let $\sim_{R}=\rightarrow_{R}^{*} \cap\left(\rightarrow_{R}^{*}\right)^{-1}$.

Semi-Thue systems and pomonoids

- Let $\sim_{R}=\rightarrow_{R}^{*} \cap\left(\rightarrow_{R}^{*}\right)^{-1}$.
- Then Σ^{*} / \sim_{R} is a pomonoid $\left(x / \sim_{R} \leq y / \sim_{R}\right.$ iff $\left.x \rightarrow_{R}^{*} y\right)$.

Semi-Thue systems and pomonoids

- Let $\sim_{R}=\rightarrow_{R}^{*} \cap\left(\rightarrow_{R}^{*}\right)^{-1}$.
- Then Σ^{*} / \sim_{R} is a pomonoid $\left(x / \sim_{R} \leq y / \sim_{R}\right.$ iff $\left.x \rightarrow_{R}^{*} y\right)$.
- Every Semi-Thue system $\langle\Sigma, R\rangle$ can be viewed as a finite presentation and Σ^{*} / \sim_{R} as the corresponding finitely presented pomonoid.

Semi-Thue systems and pomonoids

- Let $\sim_{R}=\rightarrow_{R}^{*} \cap\left(\rightarrow_{R}^{*}\right)^{-1}$.
- Then Σ^{*} / \sim_{R} is a pomonoid $\left(x / \sim_{R} \leq y / \sim_{R}\right.$ iff $\left.x \rightarrow_{R}^{*} y\right)$.
- Every Semi-Thue system $\langle\Sigma, R\rangle$ can be viewed as a finite presentation and Σ^{*} / \sim_{R} as the corresponding finitely presented pomonoid.

Lemma
Let $\left\langle\Sigma,\left\{t_{1} \rightarrow s_{1}, \ldots, t_{n} \rightarrow s_{n}\right\}\right\rangle$ be a Semi-Thue system and $u, v \in \Sigma^{*}$.

Semi-Thue systems and pomonoids

- Let $\sim_{R}=\rightarrow_{R}^{*} \cap\left(\rightarrow_{R}^{*}\right)^{-1}$.
- Then Σ^{*} / \sim_{R} is a pomonoid $\left(x / \sim_{R} \leq y / \sim_{R}\right.$ iff $\left.x \rightarrow_{R}^{*} y\right)$.
- Every Semi-Thue system $\langle\Sigma, R\rangle$ can be viewed as a finite presentation and Σ^{*} / \sim_{R} as the corresponding finitely presented pomonoid.

Lemma

Let $\left\langle\Sigma,\left\{t_{1} \rightarrow s_{1}, \ldots, t_{n} \rightarrow s_{n}\right\}\right\rangle$ be a Semi-Thue system and $u, v \in \Sigma^{*}$.
(1) If $u \rightarrow_{R}^{*} v$ then

$$
\begin{equation*}
t_{1} \leq s_{1} \& \ldots \& t_{n} \leq s_{n} \Longrightarrow u \leq v \tag{q}
\end{equation*}
$$

holds in every pomonoid.

Semi-Thue systems and pomonoids

- Let $\sim_{R}=\rightarrow_{R}^{*} \cap\left(\rightarrow_{R}^{*}\right)^{-1}$.
- Then Σ^{*} / \sim_{R} is a pomonoid $\left(x / \sim_{R} \leq y / \sim_{R}\right.$ iff $\left.x \rightarrow_{R}^{*} y\right)$.
- Every Semi-Thue system $\langle\Sigma, R\rangle$ can be viewed as a finite presentation and Σ^{*} / \sim_{R} as the corresponding finitely presented pomonoid.

Lemma

Let $\left\langle\Sigma,\left\{t_{1} \rightarrow s_{1}, \ldots, t_{n} \rightarrow s_{n}\right\}\right\rangle$ be a Semi-Thue system and $u, v \in \Sigma^{*}$.
(1) If $u \rightarrow_{R}^{*} v$ then

$$
\begin{equation*}
t_{1} \leq s_{1} \& \ldots \& t_{n} \leq s_{n} \Longrightarrow u \leq v \tag{q}
\end{equation*}
$$

holds in every pomonoid.
(2) If $u \nrightarrow_{R}^{*} v$ then Σ^{*} / \sim_{R} does not satisfy (q).

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

- Transition function is captured by the set R of rewriting rules:

$$
\begin{array}{rlrl}
& \tau\left(q_{i}\right)=\left\langle+, 1, q_{j}\right\rangle: & & q_{i} \rightarrow a q_{j} \\
& \tau\left(q_{i}\right)=\left\langle+, 2, q_{j}\right\rangle: & & q_{i} \rightarrow q_{j} a \\
& \tau\left(q_{i}\right)=\left\langle-, 1, q_{j}, q_{k}\right\rangle: & & a q_{i} \rightarrow q_{j}, A q_{i} \rightarrow A q_{k} \\
-\tau\left(q_{i}\right)=\left\langle-, 2, q_{j}, q_{k}\right\rangle: & & q_{i} a \rightarrow q_{j}, q_{i} A \rightarrow q_{k} A
\end{array}
$$

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

- Transition function is captured by the set R of rewriting rules:

$$
\begin{aligned}
\tau\left(q_{i}\right) & =\left\langle+, 1, q_{j}\right\rangle: & & q_{i} \rightarrow a q_{j} \\
-\tau\left(q_{i}\right) & =\left\langle+, 2, q_{j}\right\rangle: & & q_{i} \rightarrow q_{j} a \\
& \tau\left(q_{i}\right)=\left\langle-, 1, q_{j}, q_{k}\right\rangle: & & a q_{i} \rightarrow q_{j}, A q_{i} \rightarrow A q_{k} \\
-\tau\left(q_{i}\right) & =\left\langle-, 2, q_{j}, q_{k}\right\rangle: & & q_{i} a \rightarrow q_{j}, q_{i} A \rightarrow q_{k} A
\end{aligned}
$$

$A a q_{1} a A \rightarrow_{R}$

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

- Transition function is captured by the set R of rewriting rules:

$$
\begin{aligned}
\tau\left(q_{i}\right) & =\left\langle+, 1, q_{j}\right\rangle: & & q_{i} \rightarrow a q_{j} \\
-\tau\left(q_{i}\right) & =\left\langle+, 2, q_{j}\right\rangle: & & q_{i} \rightarrow q_{j} a \\
& \tau\left(q_{i}\right)=\left\langle-, 1, q_{j}, q_{k}\right\rangle: & & a q_{i} \rightarrow q_{j}, A q_{i} \rightarrow A q_{k} \\
-\tau\left(q_{i}\right) & =\left\langle-, 2, q_{j}, q_{k}\right\rangle: & & q_{i} a \rightarrow q_{j}, q_{i} A \rightarrow q_{k} A
\end{aligned}
$$

$A a a q_{1} a A \rightarrow_{R} \quad A a q_{2} a A$

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

- Transition function is captured by the set R of rewriting rules:

$$
\begin{aligned}
\tau\left(q_{i}\right) & =\left\langle+, 1, q_{j}\right\rangle: & & q_{i} \rightarrow a q_{j} \\
-\tau\left(q_{i}\right) & =\left\langle+, 2, q_{j}\right\rangle: & & q_{i} \rightarrow q_{j} a \\
& \tau\left(q_{i}\right)=\left\langle-, 1, q_{j}, q_{k}\right\rangle: & & a q_{i} \rightarrow q_{j}, A q_{i} \rightarrow A q_{k} \\
-\tau\left(q_{i}\right) & =\left\langle-, 2, q_{j}, q_{k}\right\rangle: & & q_{i} a \rightarrow q_{j}, q_{i} A \rightarrow q_{k} A
\end{aligned}
$$

$A a a q_{1} a A \rightarrow_{R} A a q_{2} a A$
$\rightarrow_{R} \quad A a q_{1} a a A$

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

- Transition function is captured by the set R of rewriting rules:

$$
\begin{aligned}
\tau\left(q_{i}\right) & =\left\langle+, 1, q_{j}\right\rangle: & & q_{i} \rightarrow a q_{j} \\
-\tau\left(q_{i}\right) & =\left\langle+, 2, q_{j}\right\rangle: & & q_{i} \rightarrow q_{j} a \\
& \tau\left(q_{i}\right)=\left\langle-, 1, q_{j}, q_{k}\right\rangle: & & a q_{i} \rightarrow q_{j}, A q_{i} \rightarrow A q_{k} \\
-\tau\left(q_{i}\right) & =\left\langle-, 2, q_{j}, q_{k}\right\rangle: & & q_{i} a \rightarrow q_{j}, q_{i} A \rightarrow q_{k} A
\end{aligned}
$$

$A a a q_{1} a A \rightarrow_{R} \quad A a q_{2} a A$
$\rightarrow_{R} \quad A a q_{1} a a A$
$\rightarrow_{R} \quad A q_{2} a a A$

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

- Transition function is captured by the set R of rewriting rules:

$$
\begin{aligned}
-\tau\left(q_{i}\right) & =\left\langle+, 1, q_{j}\right\rangle: & & q_{i} \rightarrow a q_{j} \\
-\tau\left(q_{i}\right) & =\left\langle+, 2, q_{j}\right\rangle: & & q_{i} \rightarrow q_{j} a \\
-\tau\left(q_{i}\right) & =\left\langle-, 1, q_{j}, q_{k}\right\rangle: & & a q_{i} \rightarrow q_{j}, A q_{i} \rightarrow A q_{k} \\
-\tau\left(q_{i}\right) & =\left\langle-, 2, q_{j}, q_{k}\right\rangle: & & q_{i} a \rightarrow q_{j}, q_{i} A \rightarrow q_{k} A
\end{aligned}
$$

$A a a q_{1} a A \rightarrow_{R} \quad A a q_{2} a A$
$\rightarrow_{R} \quad A a q_{1} a a A$
$\rightarrow_{R} \quad A q_{2} a a A$
$\rightarrow_{R} \quad A q_{1} a a_{a} A$

Simulating 2CM by Semi-Thue system

- Configurations are encoded by words over a finite alphabet $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, A\right\}$.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \quad \rightsquigarrow \quad A a^{c_{1}} q_{i} a^{c_{2}} A
$$

- Transition function is captured by the set R of rewriting rules:

$$
\begin{aligned}
-\tau\left(q_{i}\right) & =\left\langle+, 1, q_{j}\right\rangle: & & q_{i} \rightarrow a q_{j} \\
-\tau\left(q_{i}\right) & =\left\langle+, 2, q_{j}\right\rangle: & & q_{i} \rightarrow q_{j} a \\
-\tau\left(q_{i}\right) & =\left\langle-, 1, q_{j}, q_{k}\right\rangle: & & a q_{i} \rightarrow q_{j}, A q_{i} \rightarrow A q_{k} \\
-\tau\left(q_{i}\right) & =\left\langle-, 2, q_{j}, q_{k}\right\rangle: & & q_{i} a \rightarrow q_{j}, q_{i} A \rightarrow q_{k} A
\end{aligned}
$$

$A a a q_{1} a A \rightarrow_{R} \quad A a q_{2} a A$
$\rightarrow_{R} \quad A a q_{1} a a A$
$\rightarrow_{R} \quad A q_{2} a a A$
$\rightarrow_{R} \quad A q_{1} a a_{a} A$
$\rightarrow_{R} \quad A q_{0} a a a A$

Burnside inequalities

Lemma
$\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A a^{c_{1}} q_{i} a^{c_{2}} A \rightarrow{ }_{R}^{*} A q_{0} A$.

Burnside inequalities

Lemma

$\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A a^{c_{1}} q_{i} a^{c_{2}} A \rightarrow{ }_{R}^{*} A q_{0} A$.

- If our set of rules R is expanded e.g. by $x^{2} \rightarrow x^{3}$ for all $x \in \Sigma^{*}$ then the above coding is ruined.

Burnside inequalities

Lemma

$\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A a^{c_{1}} q_{i} a^{c_{2}} A \rightarrow{ }_{R}^{*} A q_{0} A$.

- If our set of rules R is expanded e.g. by $x^{2} \rightarrow x^{3}$ for all $x \in \Sigma^{*}$ then the above coding is ruined.
- To prevent the use of $x^{2} \rightarrow x^{3}$, we encode the configurations into square-free words.

Burnside inequalities

Lemma

$\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A a^{c_{1}} q_{i} a^{c_{2}} A \rightarrow{ }_{R}^{*} A q_{0} A$.

- If our set of rules R is expanded e.g. by $x^{2} \rightarrow x^{3}$ for all $x \in \Sigma^{*}$ then the above coding is ruined.
- To prevent the use of $x^{2} \rightarrow x^{3}$, we encode the configurations into square-free words.

Definition

A word $w \in \Sigma^{*}$ contains square if it is of the form $w=u_{1} x x u_{2}$ for some $u_{1}, u_{2}, x \in \Sigma^{*}$. Words containing no square are called square-free.

Burnside inequalities

Lemma

$\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A a^{c_{1}} q_{i} a^{c_{2}} A \rightarrow{ }_{R}^{*} A q_{0} A$.

- If our set of rules R is expanded e.g. by $x^{2} \rightarrow x^{3}$ for all $x \in \Sigma^{*}$ then the above coding is ruined.
- To prevent the use of $x^{2} \rightarrow x^{3}$, we encode the configurations into square-free words.

Definition

A word $w \in \Sigma^{*}$ contains square if it is of the form $w=u_{1} x \times u_{2}$ for some $u_{1}, u_{2}, x \in \Sigma^{*}$. Words containing no square are called square-free.

Theorem (Thue 1906)
There is an infinite square-free word over Σ for $|\Sigma| \geq 3$.

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b .
$$

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b .
$$

Lemma

The homomorphism h is square-free. Thus $h^{n}(a)$ is a square-free word for all natural numbers n.

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b .
$$

Lemma

The homomorphism h is square-free. Thus $h^{n}(a)$ is a square-free word for all natural numbers n.

$$
h^{0}(a)=a
$$

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b .
$$

Lemma

The homomorphism h is square-free. Thus $h^{n}(a)$ is a square-free word for all natural numbers n.

$$
h^{1}(a)=a b c
$$

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b
$$

Lemma

The homomorphism h is square-free. Thus $h^{n}(a)$ is a square-free word for all natural numbers n.

$$
h^{2}(a)=h(a) h(b) h(c)=a b c a c b
$$

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b .
$$

Lemma

The homomorphism h is square-free. Thus $h^{n}(a)$ is a square-free word for all natural numbers n.

$$
h^{3}(a)=h(a) h(b) h(c) h(a) h(c) h(b)=a b c a c b a b c b a c
$$

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b .
$$

Lemma

The homomorphism h is square-free. Thus $h^{n}(a)$ is a square-free word for all natural numbers n.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \rightsquigarrow \quad \overline{h^{c_{1}}(a)} q_{i} h^{c_{2}}(a) A
$$

Square-free morphisms - example

Let $\Sigma=\{a, b, c\}$. Define monoid endomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

$$
h(a)=a b c, \quad h(b)=a c, \quad h(c)=b .
$$

Lemma

The homomorphism h is square-free. Thus $h^{n}(a)$ is a square-free word for all natural numbers n.

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \rightsquigarrow \quad \overline{h^{c_{1}}(a)} q_{i} h^{c_{2}}(a) A
$$

Problem: $q_{i} h^{c_{2}}(a) \rightarrow q_{j} h^{c_{2}+1}(a), q_{i} h^{c_{2}+1}(a) \rightarrow q_{j} h^{c_{2}}(a)$

Addition and substruction

$$
h^{n+1}(a)=h\left(h^{n}(a)\right)=h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right)
$$

Addition and substruction

$$
\begin{gathered}
h^{n+1}(a)=h\left(h^{n}(a)\right)=h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right) \\
C^{+} d \rightarrow h(d) C^{+}
\end{gathered}
$$

Addition and substruction

$$
\begin{gathered}
h^{n+1}(a)=h\left(h^{n}(a)\right)=h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right) \\
C^{+} d \rightarrow h(d) C^{+} \\
C^{+} h^{n}(a)=C^{+} d_{1} d_{2} \ldots d_{k}
\end{gathered}
$$

Addition and substruction

$$
\begin{aligned}
& h^{n+1}(a)=h\left(h^{n}(a)\right)=h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right) \\
& C^{+} d \rightarrow h(d) C^{+} \\
& C^{+} h^{n}(a)=C^{+} d_{1} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) C^{+} d_{2} \ldots d_{k}
\end{aligned}
$$

Addition and substruction

$$
\begin{aligned}
h^{n+1}(a)=h\left(h^{n}(a)\right) & =h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right) \\
& C^{+} d \rightarrow h(d) C^{+} \\
C^{+} h^{n}(a) & =C^{+} d_{1} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) C^{+} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) h\left(d_{2}\right) C^{+} \ldots d_{k}
\end{aligned}
$$

Addition and substruction

$$
\begin{aligned}
h^{n+1}(a)=h\left(h^{n}(a)\right) & =h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right) \\
& C^{+} d \rightarrow h(d) C^{+} \\
C^{+} h^{n}(a) & =C^{+} d_{1} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) C^{+} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) h\left(d_{2}\right) C^{+} \ldots d_{k} \\
& \vdots \\
& \rightarrow h\left(d_{1}\right) h\left(d_{2}\right) \ldots h\left(d_{k}\right) C^{+}
\end{aligned}
$$

Addition and substruction

$$
\begin{aligned}
h^{n+1}(a)=h\left(h^{n}(a)\right) & =h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right) \\
& C^{+} d \rightarrow h(d) C^{+} \\
C^{+} h^{n}(a) & =C^{+} d_{1} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) C^{+} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) h\left(d_{2}\right) C^{+} \ldots d_{k} \\
& \vdots \\
& \rightarrow h\left(d_{1}\right) h\left(d_{2}\right) \ldots h\left(d_{k}\right) C^{+} \\
& =h^{n+1}(a) C^{+}
\end{aligned}
$$

Addition and substruction

$$
\begin{aligned}
h^{n+1}(a)=h\left(h^{n}(a)\right) & =h\left(d_{1} \ldots d_{k}\right)=h\left(d_{1}\right) \ldots h\left(d_{k}\right) \\
& C^{+} d \rightarrow h(d) C^{+} \\
C^{+} h^{n}(a) & =C^{+} d_{1} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) C^{+} d_{2} \ldots d_{k} \\
& \rightarrow h\left(d_{1}\right) h\left(d_{2}\right) C^{+} \ldots d_{k} \\
& \vdots \\
& \rightarrow h\left(d_{1}\right) h\left(d_{2}\right) \ldots h\left(d_{k}\right) C^{+} \\
& =h^{n+1}(a) C^{+}
\end{aligned}
$$

Substruction can be treated similarly by

$$
C^{-} h(d) \rightarrow d C^{-}
$$

Resulting coding

- Alphabet: $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, b, c, A, B, B^{+}, B^{-}, C, C^{+}, C^{-}\right\}$

Resulting coding

- Alphabet: $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, b, c, A, B, B^{+}, B^{-}, C, C^{+}, C^{-}\right\}$
- Configurations:

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \rightsquigarrow \overline{A h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A
$$

Resulting coding

- Alphabet: $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, b, c, A, B, B^{+}, B^{-}, C, C^{+}, C^{-}\right\}$
- Configurations:

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \rightsquigarrow \overline{A h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A
$$

- The set of rules R :

$$
\nabla \tau\left(q_{i}\right)=\left\langle+, 2, q_{j}\right\rangle:
$$

$$
q_{i} C \rightarrow q_{j} C^{+},
$$

Resulting coding

- Alphabet: $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, b, c, A, B, B^{+}, B^{-}, C, C^{+}, C^{-}\right\}$
- Configurations:

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \rightsquigarrow \overline{A h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A
$$

- The set of rules R :
- $\tau\left(q_{i}\right)=\left\langle+, 2, q_{j}\right\rangle$:

$$
q_{i} C \rightarrow q_{j} C^{+},
$$

- Auxiliary rules for $d \in\{a, b, c\}$:

$$
C^{+} d \rightarrow h(d) C^{+}, C^{+} A \rightarrow C A, d C \rightarrow C d
$$

Resulting coding

- Alphabet: $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, b, c, A, B, B^{+}, B^{-}, C, C^{+}, C^{-}\right\}$
- Configurations:

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \rightsquigarrow \overline{A h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A
$$

- The set of rules R :
- $\tau\left(q_{i}\right)=\left\langle+, 2, q_{j}\right\rangle$:

$$
q_{i} C \rightarrow q_{j} C^{+},
$$

- $\tau\left(q_{i}\right)=\left\langle-, 2, q_{j}, q_{k}\right\rangle:$

$$
q_{i} C a b c \rightarrow q_{j} C^{-} a b c, \quad q_{i} C a A \rightarrow q_{k} C a A,
$$

- Auxiliary rules for $d \in\{a, b, c\}$:

$$
C^{+} d \rightarrow h(d) C^{+}, C^{+} A \rightarrow C A, d C \rightarrow C d,
$$

Resulting coding

- Alphabet: $\Sigma=\left\{q_{0}, \ldots, q_{n}, a, b, c, A, B, B^{+}, B^{-}, C, C^{+}, C^{-}\right\}$
- Configurations:

$$
\left\langle q_{i}, c_{1}, c_{2}\right\rangle \rightsquigarrow \overline{A h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A
$$

- The set of rules R :
- $\tau\left(q_{i}\right)=\left\langle+, 2, q_{j}\right\rangle$:

$$
q_{i} C \rightarrow q_{j} C^{+},
$$

- $\tau\left(q_{i}\right)=\left\langle-, 2, q_{j}, q_{k}\right\rangle:$

$$
q_{i} C a b c \rightarrow q_{j} C^{-} a b c, \quad q_{i} C a A \rightarrow q_{k} C a A,
$$

- Auxiliary rules for $d \in\{a, b, c\}$:

$$
\begin{gathered}
C^{+} d \rightarrow h(d) C^{+}, C^{+} A \rightarrow C A, d C \rightarrow C d \\
C^{-} h(d) \rightarrow d C^{-}, C^{-} A \rightarrow C A
\end{gathered}
$$

What have we achieved?

Lemma
$\mathcal{C}=\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A \overline{h_{1}^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \rightarrow{ }_{R}^{*} A a B q_{0} C a A$

What have we achieved?

Lemma
$\mathcal{C}=\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A \overline{h_{1}^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \rightarrow{ }_{R}^{*} A a B q_{0} C a A$

$$
\begin{equation*}
\&_{t \rightarrow s \in R} t \leq s \Longrightarrow A \overline{h_{1}(a)} B q_{i} C h^{c_{2}}(a) A \leq A a B q_{0} C a A \tag{qC}
\end{equation*}
$$

What have we achieved?

Lemma

$\mathcal{C}=\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is accepted iff $A \overline{h_{1}^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \rightarrow{ }_{R}^{*} A a B q_{0} C a A$

$$
\begin{equation*}
\&_{t \rightarrow s \in R} t \leq s \Longrightarrow A \overline{h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \leq A a B q_{0} C a A \tag{qC}
\end{equation*}
$$

Construction of a residuated lattice

- We want a residuated lattice \mathbf{W}^{+} satisfying as many
(quasi-)identities as possible

Construction of a residuated lattice

- We want a residuated lattice \mathbf{W}^{+} satisfying as many
(quasi-)identities as possible
- but still being a countermodel for all (qC)'s not valid in Σ^{*} / \sim_{R}.

Residuated frames (Galatos, Jipsen)

Closure operator: $\gamma(X)=X^{\triangleright \triangleleft}$
The closed sets form a complete lattice \mathbf{W}^{+}.

Residuated frames (Galatos, Jipsen)

res. lattice $\mathcal{P}(A)$

Nucleus: $\gamma(X)=X^{\triangleright \triangleleft}$
The closed sets form a residuated lattice \mathbf{W}^{+}.

$$
x y N z \quad \text { iff } \quad y N x \| z \quad \text { iff } \quad x N z / / y
$$

Residuated frames (Galatos, Jipsen)

Nucleus: $\gamma(X)=X^{\triangleright \triangleleft}$
The closed sets form a residuated lattice \mathbf{W}^{+}.

$$
x y N z \quad \text { iff } \quad y N x \| z \quad \text { iff } \quad x N z / / y
$$

$f(x)=\gamma\{x\}$ is a monoid homomorphism from A to W^{+}.

Residuated frame from STS

Residuated frame from STS

Residuated frame from STS

$$
\Sigma^{*} \xrightarrow{N} \Sigma^{*} \times \Sigma^{*}
$$

Lemma
(1) N is nuclear and $\gamma\{t\} \subseteq \gamma\{s\}$ for all $t \rightarrow s \in R$.

Residuated frame from STS

$$
\Sigma^{*} \xrightarrow{N} \Sigma^{*} \times \Sigma^{*}
$$

Lemma

(1) N is nuclear and $\gamma\{t\} \subseteq \gamma\{s\}$ for all $t \rightarrow s \in R$.
(2) If $w \nrightarrow \rightarrow_{R}^{*} A a B q_{0} C a A$ then

$$
\gamma\{w\} \nsubseteq \gamma\left\{A a B q_{0} C a A\right\}
$$

Residuated frame from STS

$$
\Sigma^{*} \xrightarrow{N} \sum^{N} \times \Sigma^{*}
$$

Lemma

(1) N is nuclear and $\gamma\{t\} \subseteq \gamma\{s\}$ for all $t \rightarrow s \in R$.
(2) If $w \nrightarrow \rightarrow_{R}^{*} A a B q_{0} C a A$ then

$$
\gamma\{w\} \nsubseteq \gamma\left\{A a B q_{0} C a A\right\}
$$

(3) In particular, if a configuration $\mathcal{C}=\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ is not accepted then

$$
\begin{equation*}
\&_{t \rightarrow s \in R} t \leq s \Longrightarrow A \overline{h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \leq A a B q_{0} C a A \tag{qC}
\end{equation*}
$$

does not hold in \mathbf{W}^{+}.

Properties

- γ is the pointwise greatest nucleus
s.t.
$\gamma\left\{A a B q_{0} C a A\right\}=$

$$
\left\{u \in \Sigma^{*} \mid u \rightarrow_{R}^{*} A a B q_{0} C a A\right\}
$$

Properties

- γ is the pointwise greatest nucleus
s.t.

$$
\begin{aligned}
& \gamma\left\{A a B q_{0} C a A\right\}= \\
& \quad\left\{u \in \Sigma^{*} \mid u \rightarrow_{R}^{*} A a B q_{0} C a A\right\} .
\end{aligned}
$$

- If $w \nrightarrow \rightarrow_{R}^{*} A a B q_{0} C a A$ then

Properties

- γ is the pointwise greatest nucleus
s.t.

$$
\begin{aligned}
& \gamma\left\{A a B q_{0} C a A\right\}= \\
& \quad\left\{u \in \Sigma^{*} \mid u \rightarrow_{R}^{*} A a B q_{0} C a A\right\} .
\end{aligned}
$$

- If $w \nrightarrow \rightarrow_{R}^{*} A a B q_{0} C a A$ then

$$
\gamma\{w\} \nsubseteq \gamma\left\{A_{a} B q_{0} C a A\right\} .
$$

Properties

- γ is the pointwise greatest nucleus
s.t.

$$
\begin{aligned}
& \gamma\left\{A a B q_{0} C a A\right\}= \\
& \quad\left\{u \in \Sigma^{*} \mid u \rightarrow_{R}^{*} A a B q_{0} C a A\right\} .
\end{aligned}
$$

- If $w \nrightarrow \rightarrow_{R}^{*} A a B q_{0} C a A$ then

$$
\gamma\{w\} \nsubseteq \gamma\left\{A a B q_{0} C a A\right\} .
$$

- Since $\gamma\left\{A a B q_{0} C a A\right\}$ contains only square-free words, the complex algebra \mathbf{W}^{+}is a residuated lattice satisfying $x \leq x^{2}$ and $x^{3}=x^{2}$.

Undecidability results

Let $\mathcal{C}=\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ be a configuration. Then \mathcal{C} is accepted iff

$$
\&_{t \rightarrow s \in R} t \leq s \Longrightarrow A \overline{h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \leq A a B q_{0} C a A
$$

holds in $\mathcal{R} \mathcal{L}_{1}^{2} \cap \mathcal{R} \mathcal{L}_{3}^{2}$.

Undecidability results

Let $\mathcal{C}=\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ be a configuration. Then \mathcal{C} is accepted iff

$$
\begin{equation*}
\&_{t \rightarrow s \in R} t \leq s \Longrightarrow A \overline{h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \leq A a B q_{0} C a A \tag{qC}
\end{equation*}
$$

holds in $\mathcal{R} \mathcal{L}_{1}^{2} \cap \mathcal{R} \mathcal{L}_{3}^{2}$.
Theorem
The word problem (quasi-equational theory) is undecidable in $\mathcal{R} \mathcal{L}_{m}^{n}$ for $1 \leq n<m$ and $m<n \leq 2$.

Undecidability results

Let $\mathcal{C}=\left\langle q_{i}, c_{1}, c_{2}\right\rangle$ be a configuration. Then \mathcal{C} is accepted iff

$$
\begin{equation*}
\&_{t \rightarrow s \in R} t \leq s \Longrightarrow A \overline{h^{c_{1}}(a)} B q_{i} C h^{c_{2}}(a) A \leq A a B q_{0} C a A \tag{qC}
\end{equation*}
$$

holds in $\mathcal{R} \mathcal{L}_{1}^{2} \cap \mathcal{R} \mathcal{L}_{3}^{2}$.
Theorem
The word problem (quasi-equational theory) is undecidable in $\mathcal{R} \mathcal{L}_{m}^{n}$ for $1 \leq n<m$ and $m<n \leq 2$.

Theorem

Let $\mathcal{D R} \mathcal{L}_{m}^{n}$ be the variety of distributive residuated lattices satisfying $x^{m} \leq x^{n}$. Then the word problem (quasi-equational theory) is undecidable in $\mathcal{D R}^{2}{ }_{m}^{n}$ for $1 \leq n<m$.

What remains?

- $1 \leq x^{n}$ axiomatizes the trivial variety.

What remains?

- $1 \leq x^{n}$ axiomatizes the trivial variety.
- $x^{m} \leq 1$ is equivalent to integrality, i.e., $x \leq 1$.

What remains?

- $1 \leq x^{n}$ axiomatizes the trivial variety.
- $x^{m} \leq 1$ is equivalent to integrality, i.e., $x \leq 1$.

Theorem (Blok, van Alten)

The universal theory of integral residuated lattices (i.e., $\mathcal{R} \mathcal{L}_{m}^{0}$) is decidable.

What remains?

- $1 \leq x^{n}$ axiomatizes the trivial variety.
- $x^{m} \leq 1$ is equivalent to integrality, i.e., $x \leq 1$.

Theorem (Blok, van Alten)

The universal theory of integral residuated lattices (i.e., $\mathcal{R} \mathcal{L}_{m}^{0}$) is decidable.

- The only remaining unknown cases are $x^{m} \leq x$ for $m \geq 2$.

Finite embeddability property

- A standard way of proving decidability of the uniform word problem (universal theory) is to show the finite embeddability property (FEP).

Finite embeddability property

- A standard way of proving decidability of the uniform word problem (universal theory) is to show the finite embeddability property (FEP).
- A quasi-ordered set $\mathbf{P}=\langle P, \sqsubseteq\rangle$ is called dually well quasi-ordered if \mathbf{P} contains neither infinite ascending chains nor infinite antichains.

Finite embeddability property

- A standard way of proving decidability of the uniform word problem (universal theory) is to show the finite embeddability property (FEP).
- A quasi-ordered set $\mathbf{P}=\langle P, \sqsubseteq\rangle$ is called dually well quasi-ordered if \mathbf{P} contains neither infinite ascending chains nor infinite antichains.

```
Theorem (Blok, van Alten)
If for each \mathbf{A}\in\mathcal{R}\mp@subsup{\mathcal{L}}{m}{1}\mathrm{ every finitely generated submonoid B of A}\mathrm{ is dually} well quasi-ordered then \(\mathcal{R} \mathcal{L}_{m}^{1}\) has the FEP.
```


Mingle $x^{2} \leq x$

- Pomonoid subreducts of residuated lattices satisfying $x^{2} \leq x$ are axiomatized by

$$
\begin{equation*}
u x v \leq z \& u x^{\prime} v \leq z \Longrightarrow u x x^{\prime} v \leq z \tag{q}
\end{equation*}
$$

Mingle $x^{2} \leq x$

- Pomonoid subreducts of residuated lattices satisfying $x^{2} \leq x$ are axiomatized by

$$
\begin{equation*}
u x v \leq z \& u x^{\prime} v \leq z \Longrightarrow u x x^{\prime} v \leq z \tag{q}
\end{equation*}
$$

- Consider a closure operator $\delta: \mathcal{P}\left(\Sigma^{*}\right) \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ s.t. its closed sets are closed under the following rule:

$$
u x v, u x^{\prime} v \in S \Longrightarrow u x x^{\prime} v \in S
$$

Mingle $x^{2} \leq x$

- Pomonoid subreducts of residuated lattices satisfying $x^{2} \leq x$ are axiomatized by

$$
\begin{equation*}
u x v \leq z \& u x^{\prime} v \leq z \Longrightarrow u x x^{\prime} v \leq z \tag{q}
\end{equation*}
$$

- Consider a closure operator $\delta: \mathcal{P}\left(\Sigma^{*}\right) \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ s.t. its closed sets are closed under the following rule:

$$
u x v, u x^{\prime} v \in S \Longrightarrow u x x^{\prime} v \in S
$$

- Define a quasi-order on Σ^{*} :

$$
x \sqsubseteq y \quad \text { iff } \quad \delta\{x\} \subseteq \delta\{y\} \quad \text { iff } \quad x \in \delta\{y\}
$$

Mingle $x^{2} \leq x$

- Pomonoid subreducts of residuated lattices satisfying $x^{2} \leq x$ are axiomatized by

$$
\begin{equation*}
u x v \leq z \& u x^{\prime} v \leq z \Longrightarrow u x x^{\prime} v \leq z \tag{q}
\end{equation*}
$$

- Consider a closure operator $\delta: \mathcal{P}\left(\Sigma^{*}\right) \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ s.t. its closed sets are closed under the following rule:

$$
u x v, u x^{\prime} v \in S \Longrightarrow u x x^{\prime} v \in S
$$

- Define a quasi-order on Σ^{*} :

$$
x \sqsubseteq y \quad \text { iff } \quad \delta\{x\} \subseteq \delta\{y\} \quad \text { iff } \quad x \in \delta\{y\}
$$

Lemma

Every finitely generated pomonoid A satisfying (q) is a homomorphic image of $\left\langle\Sigma^{*}, \sqsubseteq\right\rangle$ for some finite Σ.

Well quasi-order

- Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

Well quasi-order

- Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

```
Lemma
Let w}\in\mp@subsup{\Sigma}{}{*}\mathrm{ and }\operatorname{Alph}(w)=\Gamma.Then wuw \in\delta{w} (i.e., wuw \sqsubseteqw) for
every u\in 「*.
```


Well quasi-order

- Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

```
Lemma
Let w}\in\mp@subsup{\Sigma}{}{*}\mathrm{ and }\operatorname{Alph}(w)=\Gamma.Then wuw \in\delta{w} (i.e., wuw \sqsubseteqw) for
every u }\in\mp@subsup{\Gamma}{}{*}\mathrm{ .
```

- By a modification of Higman's lemma one can prove:

Well quasi-order

- Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

Lemma

Let $w \in \Sigma^{*}$ and $\operatorname{Alph}(w)=\Gamma$. Then wuw $\in \delta\{w\}$ (i.e., wuw $\sqsubseteq w$) for every $u \in \Gamma^{*}$.

- By a modification of Higman's lemma one can prove:

Lemma

The quasi-order \sqsubseteq is a dual well quasi-order.

Decidability result

Theorem
The variety of residuated lattices satisfying $x^{2} \leq x$ (i.e., $\mathcal{R} \mathcal{L}_{2}^{1}$) has the FEP.

Decidability result

Theorem
The variety of residuated lattices satisfying $x^{2} \leq x$ (i.e., $\mathcal{R} \mathcal{L}_{2}^{1}$) has the FEP.

Corollary

The universal theory of $\mathcal{R L}_{2}^{1}$ is decidable.

Conclusion

- What about $x^{m} \leq x$ for $m \geq 3$?

Conclusion

- What about $x^{m} \leq x$ for $m \geq 3$?
- Since idempotent $\left(x^{2}=x\right)$ monoids satisfy

$$
u x v=z \& u x^{\prime} v=z \Longrightarrow u x x^{\prime} v=z
$$

it follows from our result that finitely generated idempotent monoids are finite.

Conclusion

- What about $x^{m} \leq x$ for $m \geq 3$?
- Since idempotent $\left(x^{2}=x\right)$ monoids satisfy

$$
u x v=z \& u x^{\prime} v=z \Longrightarrow u x x^{\prime} v=z
$$

it follows from our result that finitely generated idempotent monoids are finite.

Theorem (Green, Rees)

The free n-generated Burnside monoid satisfying $x^{m+1}=x$ is finite iff the free n-generated Burnside group satisfying $x^{m}=1$ is finite.

Conclusion

- What about $x^{m} \leq x$ for $m \geq 3$?
- Since idempotent $\left(x^{2}=x\right)$ monoids satisfy

$$
u x v=z \& u x^{\prime} v=z \Longrightarrow u x x^{\prime} v=z
$$

it follows from our result that finitely generated idempotent monoids are finite.

Theorem (Green, Rees)

The free n-generated Burnside monoid satisfying $x^{m+1}=x$ is finite iff the free n-generated Burnside group satisfying $x^{m}=1$ is finite.

- Is there a similar relation also for $m \geq 3$?

Thank you!

