Quasiequational Theory of Square-increasing Residuated Lattices is Undecidable

Rostislav Horčík

Institute of Computer Science Academy of Sciences of the Czech Republic

Logic, Algebra and Truth Degrees Kanazawa, 10–14 September 2012

• Burnside groups are finitely generated groups satisfying $x^n = 1$.

- Burnside groups are finitely generated groups satisfying $x^n = 1$.
- Studied questions: finiteness, word problem...

- Burnside groups are finitely generated groups satisfying $x^n = 1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^m = x^n$ holds.

- Burnside groups are finitely generated groups satisfying $x^n = 1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^m = x^n$ holds.
- Burnside partially ordered monoids should be defined by $x^m \leq x^n$.

- Burnside groups are finitely generated groups satisfying $x^n = 1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^m = x^n$ holds.
- Burnside partially ordered monoids should be defined by $x^m \leq x^n$.
- In the theory of residuated lattices are known as knotted rules/axioms (Hori, Ono, Schellinx).

- Burnside groups are finitely generated groups satisfying $x^n = 1$.
- Studied questions: finiteness, word problem...
- Burnside semigroups/monoids are defined analogously as finitely generated semigroups/monoids where $x^m = x^n$ holds.
- Burnside partially ordered monoids should be defined by $x^m \leq x^n$.
- In the theory of residuated lattices are known as knotted rules/axioms (Hori, Ono, Schellinx).
- The aim of my talk: (un)decidability of the word problem for "Burnside" residuated lattices.

Pomonoids and residuated lattices

Definition

A structure $\mathbf{A} = \langle A, \cdot, 1 \leq \rangle$ is called pomonoid if $\langle A, \cdot, 1 \rangle$ is a monoid and for all $a, b, c \in A$:

$$\mathsf{a} \leq \mathsf{b} \implies \mathsf{ca} \leq \mathsf{cb} \,, \; \mathsf{ac} \leq \mathsf{bc} \,.$$

Pomonoids and residuated lattices

Definition

A structure $\mathbf{A} = \langle A, \cdot, 1 \leq \rangle$ is called pomonoid if $\langle A, \cdot, 1 \rangle$ is a monoid and for all $a, b, c \in A$:

$$a \leq b \implies ca \leq cb \,, \, ac \leq bc \,.$$

A residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, /, 1 \rangle$ is a pomonoid such that $\langle A, \wedge, \vee \rangle$ is a lattice and for all $a, b, c \in A$:

$$ab \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

Pomonoids and residuated lattices

Definition

A structure $\mathbf{A} = \langle A, \cdot, 1 \leq \rangle$ is called pomonoid if $\langle A, \cdot, 1 \rangle$ is a monoid and for all $a, b, c \in A$:

$$\mathsf{a} \leq \mathsf{b} \implies \mathsf{ca} \leq \mathsf{cb} \,, \; \mathsf{ac} \leq \mathsf{bc} \,.$$

A residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, /, 1 \rangle$ is a pomonoid such that $\langle A, \wedge, \vee \rangle$ is a lattice and for all $a, b, c \in A$:

$$ab \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

Let $m, n \in \mathbb{N}$ and $m \neq n$. The variety of residuated lattices satisfying $x^m \leq x^n$ is denoted \mathcal{RL}_m^n .

 $\bullet\,$ Let ${\cal K}$ be a class of residuated lattices.

- $\bullet\,$ Let ${\cal K}$ be a class of residuated lattices.
- A quasi-inequality:

$$t_1 \leq s_1 \& \ldots \& t_k \leq s_k \implies t_0 \leq s_0$$
.

- Let ${\mathcal K}$ be a class of residuated lattices.
- A quasi-inequality:

$$t_1 \leq s_1 \& \ldots \& t_k \leq s_k \implies t_0 \leq s_0$$
.

• \mathcal{K} has (un)decidable uniform word problem if the set of all quasi-inequalities valid in \mathcal{K} is (un)decidable.

- Let ${\mathcal K}$ be a class of residuated lattices.
- A quasi-inequality:

$$t_1 \leq s_1 \& \ldots \& t_k \leq s_k \implies t_0 \leq s_0$$
.

- \mathcal{K} has (un)decidable uniform word problem if the set of all quasi-inequalities valid in \mathcal{K} is (un)decidable.
- \mathcal{K} has undecidable (local) word problem if there are fixed premises $t_1 \leq s_1, \ldots, t_k \leq s_k$ such that the set of all quasi-inequalities

$$t_1 \leq s_1 \& \ldots \& t_k \leq s_k \implies t_0 \leq s_0$$
.

valid in \mathcal{K} is undecidable.

- Let ${\mathcal K}$ be a class of residuated lattices.
- A quasi-inequality:

$$t_1 \leq s_1 \& \ldots \& t_k \leq s_k \implies t_0 \leq s_0$$
.

- \mathcal{K} has (un)decidable uniform word problem if the set of all quasi-inequalities valid in \mathcal{K} is (un)decidable.
- \mathcal{K} has undecidable (local) word problem if there are fixed premises $t_1 \leq s_1, \ldots, t_k \leq s_k$ such that the set of all quasi-inequalities

$$t_1 \leq s_1 \& \ldots \& t_k \leq s_k \implies t_0 \leq s_0.$$

valid in \mathcal{K} is undecidable.

Theorem (van Alten)

Let CRL_m^n be the variety of commutative residuated lattices satisfying $x^m \leq x^n$. Then the universal theory (word problem) for CRL_m^n is decidable for all $m \neq n$.

• Finite number of states: q_0, q_1, \ldots, q_n

- Finite number of states: q_0, q_1, \ldots, q_n
- Final state: q_0

- Finite number of states: q_0, q_1, \ldots, q_n
- Final state: q_0
- 2 counters: $c_1, c_2 \in \mathbb{N}$

- Finite number of states: q_0, q_1, \ldots, q_n
- Final state: q_0
- 2 counters: $c_1, c_2 \in \mathbb{N}$
- Transition function τ (i > 0):

- Finite number of states: q_0, q_1, \ldots, q_n
- Final state: q₀
- 2 counters: $c_1, c_2 \in \mathbb{N}$
- Transition function τ (i > 0):

$$\blacktriangleright \tau(q_i) = \langle +, 1, q_j \rangle$$

- Finite number of states: q_0, q_1, \ldots, q_n
- Final state: q₀
- 2 counters: $c_1, c_2 \in \mathbb{N}$
- Transition function τ (i > 0):
 - $\tau(q_i) = \langle +, 1, q_j \rangle$:

• $\tau(q_i) = \langle -, 1, q_j, q_k \rangle$:

- Finite number of states: q_0, q_1, \ldots, q_n
- Final state: q_0
- 2 counters: $c_1, c_2 \in \mathbb{N}$
- Transition function τ (i > 0):
 - $c_1 := c_1 + 1$ $\tau(q_i) = \langle +, 1, q_i \rangle:$ q_i if c1 ≡ 0 $\overbrace{c_1 := c_1 - 1}^{if c_1 \ge 0} q_j$ $\tau(q_i) = \langle -, 1, q_i, q_k \rangle :$ q_i
 - Analogously for the second counter.

 q_i

 q_k

 Note that (q_i, c₁, c₂) fully determines the state of the computation of a Minsky machine.

- Note that (q_i, c₁, c₂) fully determines the state of the computation of a Minsky machine.
- Such triples are called configurations.

- Note that (q_i, c₁, c₂) fully determines the state of the computation of a Minsky machine.
- Such triples are called configurations.
- A configuration ⟨q_i, c1, c2⟩ is accepted by the machine if the computation terminates at ⟨q₀, 0, 0⟩.

- Note that (q_i, c₁, c₂) fully determines the state of the computation of a Minsky machine.
- Such triples are called configurations.
- A configuration ⟨q_i, c1, c2⟩ is accepted by the machine if the computation terminates at ⟨q₀, 0, 0⟩.

Theorem (Minsky, Lambek)

There is a Minsky machine (2CM) whose set of accepted configurations is undecidable.

2 counters are more than 1 counter

• Σ a finite alphabet, Σ^* the set of words over Σ

- Σ a finite alphabet, Σ^* the set of words over Σ
- *R* a finite set of rules, i.e., pairs $x \to y$ for $x, y \in \Sigma^*$

- Σ a finite alphabet, Σ^* the set of words over Σ
- *R* a finite set of rules, i.e., pairs $x \to y$ for $x, y \in \Sigma^*$
- Then $\langle \Sigma, R \rangle$ is called a semi-Thue system.

- Σ a finite alphabet, Σ^* the set of words over Σ
- *R* a finite set of rules, i.e., pairs $x \to y$ for $x, y \in \Sigma^*$
- Then $\langle \Sigma, R \rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_R on Σ^* defined by:

 $uxv \rightarrow_R uyv$ iff $x \rightarrow y \in R$.

- Σ a finite alphabet, Σ^* the set of words over Σ
- *R* a finite set of rules, i.e., pairs $x \to y$ for $x, y \in \Sigma^*$
- Then $\langle \Sigma, R \rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_R on Σ^* defined by:

 $uxv \rightarrow_R uyv$ iff $x \rightarrow y \in R$.

• Then \rightarrow_R^* denotes the reflexive and transitive closure of \rightarrow_R .

- Σ a finite alphabet, Σ^* the set of words over Σ
- *R* a finite set of rules, i.e., pairs $x \to y$ for $x, y \in \Sigma^*$
- Then $\langle \Sigma, R \rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_R on Σ^* defined by:

 $uxv \rightarrow_R uyv$ iff $x \rightarrow y \in R$.

• Then \rightarrow_R^* denotes the reflexive and transitive closure of \rightarrow_R .

Observation

- Σ a finite alphabet, Σ^* the set of words over Σ
- *R* a finite set of rules, i.e., pairs $x \to y$ for $x, y \in \Sigma^*$
- Then $\langle \Sigma, R \rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_R on Σ^* defined by:

 $uxv \rightarrow_R uyv$ iff $x \rightarrow y \in R$.

• Then \rightarrow_R^* denotes the reflexive and transitive closure of \rightarrow_R .

Observation

 $\label{eq:states} \textbf{0} \ \boldsymbol{\Sigma}^* \ \text{together with concatenation as multiplication forms a free monoid.}$

- Σ a finite alphabet, Σ^* the set of words over Σ
- *R* a finite set of rules, i.e., pairs $x \to y$ for $x, y \in \Sigma^*$
- Then $\langle \Sigma, R \rangle$ is called a semi-Thue system.
- A rewriting relation \rightarrow_R on Σ^* defined by:

 $uxv \rightarrow_R uyv$ iff $x \rightarrow y \in R$.

• Then \rightarrow_R^* denotes the reflexive and transitive closure of \rightarrow_R .

Observation

- $\textbf{0} \hspace{0.1in} \Sigma^* \hspace{0.1in} \text{together with concatenation as multiplication forms a free monoid. }$
- →^{*}_R is the least quasi-order on Σ^{*} compatible with multiplication containing *R*.

• Let
$$\sim_R = \rightarrow_R^* \cap (\rightarrow_R^*)^{-1}$$
.

• Let
$$\sim_R =
ightarrow_R^* \cap (
ightarrow_R^*)^{-1}$$
.

• Then Σ^*/\sim_R is a pomonoid $(x/\sim_R \leq y/\sim_R \text{ iff } x \rightarrow_R^* y)$.

• Let
$$\sim_R =
ightarrow_R^* \cap (
ightarrow_R^*)^{-1}$$
.

- Then Σ^*/\sim_R is a pomonoid $(x/\sim_R \leq y/\sim_R \text{ iff } x \rightarrow^*_R y)$.
- Every Semi-Thue system (Σ, R) can be viewed as a finite presentation and Σ*/∼_R as the corresponding finitely presented pomonoid.

• Let
$$\sim_R =
ightarrow_R^* \cap (
ightarrow_R^*)^{-1}$$
.

- Then Σ^*/\sim_R is a pomonoid $(x/\sim_R \leq y/\sim_R \text{ iff } x \rightarrow^*_R y)$.
- Every Semi-Thue system (Σ, R) can be viewed as a finite presentation and Σ*/∼_R as the corresponding finitely presented pomonoid.

Lemma

Let $\langle \Sigma, \{t_1 \rightarrow s_1, \dots, t_n \rightarrow s_n\} \rangle$ be a Semi-Thue system and $u, v \in \Sigma^*$.

• Let
$$\sim_R =
ightarrow_R^* \cap (
ightarrow_R^*)^{-1}$$
.

- Then Σ^*/\sim_R is a pomonoid $(x/\sim_R \leq y/\sim_R \text{ iff } x \rightarrow^*_R y)$.
- Every Semi-Thue system (Σ, R) can be viewed as a finite presentation and Σ*/∼_R as the corresponding finitely presented pomonoid.

Lemma

Let
$$\langle \Sigma, \{t_1 \to s_1, \dots, t_n \to s_n\} \rangle$$
 be a Semi-Thue system and $u, v \in \Sigma^*$.
If $u \to_R^* v$ then

$$t_1 \leq s_1 \& \ldots \& t_n \leq s_n \implies u \leq v \tag{q}$$

holds in every pomonoid.

• Let
$$\sim_R =
ightarrow_R^* \cap (
ightarrow_R^*)^{-1}$$
.

- Then Σ^*/\sim_R is a pomonoid $(x/\sim_R \leq y/\sim_R \text{ iff } x \rightarrow^*_R y)$.
- Every Semi-Thue system (Σ, R) can be viewed as a finite presentation and Σ*/∼_R as the corresponding finitely presented pomonoid.

Lemma

Let
$$\langle \Sigma, \{t_1 \to s_1, \dots, t_n \to s_n\} \rangle$$
 be a Semi-Thue system and $u, v \in \Sigma^*$.
If $u \to_R^* v$ then

$$t_1 \leq s_1 \& \ldots \& t_n \leq s_n \implies u \leq v \tag{q}$$

holds in every pomonoid.

2) If
$$u \not\to_R^* v$$
 then Σ^* / \sim_R does not satisfy (q).

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

 $\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$$

$$\begin{array}{ll} \tau(q_i) = \langle +, 1, q_j \rangle : & q_i \to aq_j \\ \hline \tau(q_i) = \langle +, 2, q_j \rangle : & q_i \to q_j a \\ \hline \tau(q_i) = \langle -, 1, q_j, q_k \rangle : & aq_i \to q_j, \ Aq_i \to Aq_k \\ \hline \tau(q_i) = \langle -, 2, q_j, q_k \rangle : & q_i a \to q_j, \ q_i A \to q_k A \end{array}$$

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$$

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$$

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$$

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$$

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$$

Configurations are encoded by words over a finite alphabet
 Σ = {q₀,..., q_n, a, A}.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad Aa^{c_1}q_ia^{c_2}A$$

Lemma

 $\langle q_i, c_1, c_2 \rangle$ is accepted iff $Aa^{c_1}q_ia^{c_2}A \rightarrow^*_R Aq_0A$.

Lemma

 $\langle q_i, c_1, c_2 \rangle$ is accepted iff $Aa^{c_1}q_ia^{c_2}A \rightarrow^*_R Aq_0A$.

• If our set of rules R is expanded e.g. by $x^2 \rightarrow x^3$ for all $x \in \Sigma^*$ then the above coding is ruined.

Lemma

 $\langle q_i, c_1, c_2 \rangle$ is accepted iff $Aa^{c_1}q_ia^{c_2}A \rightarrow_R^* Aq_0A$.

- If our set of rules R is expanded e.g. by $x^2 \to x^3$ for all $x \in \Sigma^*$ then the above coding is ruined.
- To prevent the use of $x^2 \rightarrow x^3$, we encode the configurations into square-free words.

Lemma

 $\langle q_i, c_1, c_2 \rangle$ is accepted iff $Aa^{c_1}q_ia^{c_2}A \rightarrow_R^* Aq_0A$.

- If our set of rules R is expanded e.g. by $x^2 \to x^3$ for all $x \in \Sigma^*$ then the above coding is ruined.
- To prevent the use of $x^2 \rightarrow x^3$, we encode the configurations into square-free words.

Definition

A word $w \in \Sigma^*$ contains square if it is of the form $w = u_1 x x u_2$ for some $u_1, u_2, x \in \Sigma^*$. Words containing no square are called square-free.

Lemma

 $\langle q_i, c_1, c_2 \rangle$ is accepted iff $Aa^{c_1}q_ia^{c_2}A \rightarrow_R^* Aq_0A$.

- If our set of rules R is expanded e.g. by $x^2 \to x^3$ for all $x \in \Sigma^*$ then the above coding is ruined.
- To prevent the use of $x^2 \rightarrow x^3$, we encode the configurations into square-free words.

Definition

A word $w \in \Sigma^*$ contains square if it is of the form $w = u_1 x x u_2$ for some $u_1, u_2, x \in \Sigma^*$. Words containing no square are called square-free.

Theorem (Thue 1906)

There is an infinite square-free word over Σ for $|\Sigma| \ge 3$.

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h: \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h \colon \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Lemma

The homomorphism h is square-free. Thus $h^n(a)$ is a square-free word for all natural numbers n.

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h \colon \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Lemma

The homomorphism h is square-free. Thus $h^n(a)$ is a square-free word for all natural numbers n.

$$h^0(a) = a$$

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h \colon \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Lemma

The homomorphism h is square-free. Thus $h^n(a)$ is a square-free word for all natural numbers n.

 $h^1(a) = abc$

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h \colon \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Lemma

The homomorphism h is square-free. Thus $h^n(a)$ is a square-free word for all natural numbers n.

$$h^2(a) = h(a)h(b)h(c) = abcacb$$

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h \colon \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Lemma

The homomorphism h is square-free. Thus $h^n(a)$ is a square-free word for all natural numbers n.

 $h^{3}(a) = h(a)h(b)h(c)h(a)h(c)h(b) = abcacbabcbac$

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h \colon \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Lemma

The homomorphism h is square-free. Thus $h^n(a)$ is a square-free word for all natural numbers n.

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad A\overline{h^{c_1}(a)}q_ih^{c_2}(a)A$$

Let $\Sigma = \{a, b, c\}$. Define monoid endomorphism $h: \Sigma^* \to \Sigma^*$ as follows:

$$h(a) = abc$$
, $h(b) = ac$, $h(c) = b$.

Lemma

The homomorphism h is square-free. Thus $h^n(a)$ is a square-free word for all natural numbers n.

$$\langle q_i, c_1, c_2 \rangle \longrightarrow A\overline{h^{c_1}(a)}q_ih^{c_2}(a)A$$

Problem: $q_i h^{c_2}(a) \to q_j h^{c_2+1}(a), \ q_i h^{c_2+1}(a) \to q_j h^{c_2}(a)$

Addition and substruction

$$h^{n+1}(a) = h(h^n(a)) = h(d_1 \dots d_k) = h(d_1) \dots h(d_k)$$

$$h^{n+1}(a) = h(h^n(a)) = h(d_1 \dots d_k) = h(d_1) \dots h(d_k)$$

 $C^+d \rightarrow h(d)C^+$

$$h^{n+1}(a) = h(h^n(a)) = h(d_1 \dots d_k) = h(d_1) \dots h(d_k)$$

 $\mathcal{C}^+ d \rightarrow h(d)\mathcal{C}^+$

$$C^+h^n(a) = C^+d_1d_2\ldots d_k$$

$$h^{n+1}(a) = h(h^n(a)) = h(d_1 \dots d_k) = h(d_1) \dots h(d_k)$$

 $C^+ d \rightarrow h(d)C^+$

$$C^{+}h^{n}(a) = C^{+}d_{1}d_{2}\dots d_{k}$$

$$\rightarrow h(d_{1})C^{+}d_{2}\dots d_{k}$$

$$h^{n+1}(a) = h(h^n(a)) = h(d_1 \dots d_k) = h(d_1) \dots h(d_k)$$

 $\mathcal{C}^+ d \rightarrow h(d)\mathcal{C}^+$

$$C^{+}h^{n}(a) = C^{+}d_{1}d_{2}\dots d_{k}$$

$$\rightarrow h(d_{1})C^{+}d_{2}\dots d_{k}$$

$$\rightarrow h(d_{1})h(d_{2})C^{+}\dots d_{k}$$

$$h^{n+1}(a) = h(h^n(a)) = h(d_1 \dots d_k) = h(d_1) \dots h(d_k)$$

 $C^+ d \rightarrow h(d)C^+$

$$C^{+}h^{n}(a) = C^{+}d_{1}d_{2}\dots d_{k}$$

$$\rightarrow h(d_{1})C^{+}d_{2}\dots d_{k}$$

$$\rightarrow h(d_{1})h(d_{2})C^{+}\dots d_{k}$$

$$\vdots$$

$$\rightarrow h(d_{1})h(d_{2})\dots h(d_{k})C^{+}$$

$$h^{n+1}(a) = h(h^n(a)) = h(d_1 \dots d_k) = h(d_1) \dots h(d_k)$$

 $C^+ d \rightarrow h(d)C^+$

$$C^{+}h^{n}(a) = C^{+}d_{1}d_{2}\dots d_{k}$$

$$\rightarrow h(d_{1})C^{+}d_{2}\dots d_{k}$$

$$\rightarrow h(d_{1})h(d_{2})C^{+}\dots d_{k}$$

$$\vdots$$

$$\rightarrow h(d_{1})h(d_{2})\dots h(d_{k})C^{+}$$

$$= h^{n+1}(a)C^{+}$$

$$h^{n+1}(a) = h(h^{n}(a)) = h(d_{1} \dots d_{k}) = h(d_{1}) \dots h(d_{k})$$

$$C^{+}d \rightarrow h(d)C^{+}$$

$$C^{+}h^{n}(a) = C^{+}d_{1}d_{2} \dots d_{k}$$

$$\rightarrow h(d_{1})C^{+}d_{2} \dots d_{k}$$

$$\rightarrow h(d_{1})h(d_{2})C^{+} \dots d_{k}$$

$$\vdots$$

$$= h^{n+1}(a)C^+$$

Substruction can be treated similarly by

$$C^-h(d) \rightarrow dC^-$$

 $\rightarrow h(d_1)h(d_2)\dots h(d_k)C^+$

• Alphabet:
$$\Sigma = \{q_0, ..., q_n, a, b, c, A, B, B^+, B^-, C, C^+, C^-\}$$

- Alphabet: $\Sigma = \{q_0, \dots, q_n, a, b, c, A, B, B^+, B^-, C, C^+, C^-\}$
- Configurations:

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad A \overline{h^{c_1}(a)} B q_i C h^{c_2}(a) A$$

- Alphabet: $\Sigma = \{q_0, \dots, q_n, a, b, c, A, B, B^+, B^-, C, C^+, C^-\}$
- Configurations:

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad A \overline{h^{c_1}(a)} B q_i C h^{c_2}(a) A$$

• The set of rules R:

•
$$au(q_i) = \langle +, 2, q_j \rangle$$
:
 $q_i C \to q_j C^+$,

- Alphabet: $\Sigma = \{q_0, \dots, q_n, a, b, c, A, B, B^+, B^-, C, C^+, C^-\}$
- Configurations:

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad A \overline{h^{c_1}(a)} B q_i C h^{c_2}(a) A$$

,

• The set of rules R:

►
$$\tau(q_i) = \langle +, 2, q_j \rangle$$
:
 $q_i C \rightarrow q_j C^+$

• Auxiliary rules for
$$d \in \{a, b, c\}$$
:
 $C^+d \to h(d)C^+, \ C^+A \to CA, \ dC \to Cd,$

- Alphabet: $\Sigma = \{q_0, \dots, q_n, a, b, c, A, B, B^+, B^-, C, C^+, C^-\}$
- Configurations:

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad A \overline{h^{c_1}(a)} B q_i C h^{c_2}(a) A$$

• The set of rules R:

$$au(q_i) = \langle +,2,q_j
angle
angle \ q_i C o q_j C^+ \, ,$$

►
$$\tau(q_i) = \langle -, 2, q_j, q_k \rangle$$
:
 $q_i Cabc \rightarrow q_j C^- abc, \quad q_i CaA \rightarrow q_k CaA,$
► Auxiliary rules for $d \in \{a, b, c\}$:

$$C^+d
ightarrow h(d)C^+, \ C^+A
ightarrow CA, \ dC
ightarrow Cd,$$

- Alphabet: $\Sigma = \{q_0, \dots, q_n, a, b, c, A, B, B^+, B^-, C, C^+, C^-\}$
- Configurations:

$$\langle q_i, c_1, c_2 \rangle \quad \rightsquigarrow \quad A \overline{h^{c_1}(a)} B q_i C h^{c_2}(a) A$$

• The set of rules R:

$$au(q_i) = \langle +, 2, q_j
angle
angle ,
onumber \ q_i C o q_j C^+ \, ,$$

►
$$\tau(q_i) = \langle -, 2, q_j, q_k \rangle$$
:
 $q_i Cabc \rightarrow q_j C^- abc, \quad q_i CaA \rightarrow q_k CaA,$
► Auxiliary rules for $d \in \{a, b, c\}$:

$$C^+d
ightarrow h(d)C^+\,, \ C^+A
ightarrow CA\,, \ dC
ightarrow Cd\,,$$

$$C^-h(d)
ightarrow dC^-, \ C^-A
ightarrow CA.$$

What have we achieved?

Lemma

 $\mathcal{C} = \langle q_i, c_1, c_2 \rangle$ is accepted iff $A\overline{h^{c_1}(a)}Bq_iCh^{c_2}(a)A \rightarrow_R^* AaBq_0CaA$

What have we achieved?

Lemma

 $C = \langle q_i, c_1, c_2 \rangle$ is accepted iff $A\overline{h^{c_1}(a)}Bq_iCh^{c_2}(a)A \rightarrow_R^* AaBq_0CaA$

$$\&_{t \to s \in R} \ t \leq s \implies A\overline{h^{c_1}(a)}Bq_iCh^{c_2}(a)A \leq AaBq_0CaA$$
 (q \mathcal{C})

What have we achieved?

Lemma

$$C = \langle q_i, c_1, c_2 \rangle$$
 is accepted iff $A\overline{h^{c_1}(a)}Bq_iCh^{c_2}(a)A \rightarrow^*_R AaBq_0CaA$

$$\&_{t
ightarrow s \in R} \ t \leq s \implies A \overline{h^{c_1}(a)} Bq_i Ch^{c_2}(a) A \leq A a Bq_0 C a A \qquad (q \mathcal{C})$$

Construction of a residuated lattice

 We want a residuated lattice W⁺ satisfying as many (quasi-)identities as possible

Construction of a residuated lattice

- We want a residuated lattice W⁺ satisfying as many (quasi-)identities as possible
- but still being a countermodel for all (qC)'s not valid in Σ^*/\sim_R .

Residuated frames (Galatos, Jipsen)

Closure operator: $\gamma(X) = X^{\rhd \lhd}$ The closed sets form a complete lattice \mathbf{W}^+ .

Residuated frames (Galatos, Jipsen)

Nucleus: $\gamma(X) = X^{\rhd \lhd}$ The closed sets form a residuated lattice \mathbf{W}^+ .

xy N z iff $y N x \| z$ iff x N z // y

Residuated frames (Galatos, Jipsen)

Nucleus: $\gamma(X) = X^{\rhd \lhd}$ The closed sets form a residuated lattice \mathbf{W}^+ .

$$xy N z$$
 iff $y N x \| z$ iff $x N z \| y$

 $f(x) = \gamma\{x\}$ is a monoid homomorphism from A to W^+ .

Lemma

• N is nuclear and $\gamma\{t\} \subseteq \gamma\{s\}$ for all $t \to s \in R$.

Lemma

- N is nuclear and $\gamma\{t\} \subseteq \gamma\{s\}$ for all $t \to s \in R$.
- 2 If $w \neq^*_R AaBq_0CaA$ then

 $\gamma\{w\} \not\subseteq \gamma\{AaBq_0CaA\}.$

 $x N \langle u, v \rangle$ iff $uxv \rightarrow^*_R AaBq_0CaA$

Lemma

- **1** N is nuclear and $\gamma\{t\} \subseteq \gamma\{s\}$ for all $t \to s \in R$.
- 2 If $w \neq^*_R A_a Bq_0 CaA$ then

 $\gamma\{w\} \not\subseteq \gamma\{AaBq_0CaA\}.$

③ In particular, if a configuration $C = \langle q_i, c_1, c_2 \rangle$ is not accepted then

$$\&_{t \to s \in R} \ t \leq s \implies A\overline{h^{c_1}(a)}Bq_iCh^{c_2}(a)A \leq AaBq_0CaA \qquad (q\mathcal{C})$$

does not hold in \mathbf{W}^+ .

Rostislav Horčík (ICS)

• γ is the pointwise greatest nucleus s.t.

$$\gamma \{ AaBq_0 CaA \} =$$

 $\{ u \in \Sigma^* \mid u \to_R^* AaBq_0 CaA \}.$

• γ is the pointwise greatest nucleus s.t.

$$\gamma \{ AaBq_0 CaA \} = \{ u \in \Sigma^* \mid u \to_R^* AaBq_0 CaA \}.$$

• If $w \not\rightarrow^*_R AaBq_0CaA$ then

• γ is the pointwise greatest nucleus s.t.

$$\gamma \{ AaBq_0 CaA \} = \{ u \in \Sigma^* \mid u \to_R^* AaBq_0 CaA \}.$$

• If $w \not\rightarrow^*_R AaBq_0CaA$ then

 $\gamma\{w\} \not\subseteq \gamma\{AaBq_0CaA\}.$

• γ is the pointwise greatest nucleus s.t.

$$\gamma \{ AaBq_0 CaA \} = \{ u \in \Sigma^* \mid u \to_R^* AaBq_0 CaA \}.$$

• If $w \not\rightarrow^*_R AaBq_0CaA$ then

 $\gamma\{w\} \not\subseteq \gamma\{AaBq_0CaA\}.$

Since γ{AaBq₀CaA} contains only square-free words, the complex algebra W⁺ is a residuated lattice satisfying x ≤ x² and x³ = x².

Undecidability results

Let $\mathcal{C} = \langle q_i, c_1, c_2 \rangle$ be a configuration. Then \mathcal{C} is accepted iff

$$\&_{t \to s \in R} \ t \leq s \implies A \overline{h^{c_1}(a)} Bq_i Ch^{c_2}(a) A \leq A a Bq_0 C a A$$
 (q C)

holds in $\mathcal{RL}_1^2 \cap \mathcal{RL}_3^2$.

Undecidability results

Let $\mathcal{C} = \langle q_i, c_1, c_2 \rangle$ be a configuration. Then \mathcal{C} is accepted iff

$$\&_{t \to s \in R} \ t \leq s \implies A\overline{h^{c_1}(a)}Bq_iCh^{c_2}(a)A \leq AaBq_0CaA$$
 (q \mathcal{C})

holds in $\mathcal{RL}_1^2 \cap \mathcal{RL}_3^2$.

Theorem

The word problem (quasi-equational theory) is undecidable in \mathcal{RL}_m^n for $1 \le n < m$ and $m < n \le 2$.

Undecidability results

Let $\mathcal{C} = \langle q_i, c_1, c_2 \rangle$ be a configuration. Then \mathcal{C} is accepted iff

$$\&_{t o s \in R} \ t \leq s \implies A\overline{h^{c_1}(a)}Bq_iCh^{c_2}(a)A \leq AaBq_0CaA \qquad (q\mathcal{C})$$

holds in $\mathcal{RL}_1^2 \cap \mathcal{RL}_3^2$.

Theorem

The word problem (quasi-equational theory) is undecidable in \mathcal{RL}_m^n for $1 \le n < m$ and $m < n \le 2$.

Theorem

Let \mathcal{DRL}_m^n be the variety of distributive residuated lattices satisfying $x^m \leq x^n$. Then the word problem (quasi-equational theory) is undecidable in \mathcal{DRL}_m^n for $1 \leq n < m$.

What remains?

• $1 \le x^n$ axiomatizes the trivial variety.

What remains?

- $1 \le x^n$ axiomatizes the trivial variety.
- $x^m \leq 1$ is equivalent to integrality, i.e., $x \leq 1$.

What remains?

- $1 \le x^n$ axiomatizes the trivial variety.
- $x^m \leq 1$ is equivalent to integrality, i.e., $x \leq 1$.

Theorem (Blok, van Alten)

The universal theory of integral residuated lattices (i.e., \mathcal{RL}_m^0) is decidable.

What remains?

- $1 \le x^n$ axiomatizes the trivial variety.
- $x^m \leq 1$ is equivalent to integrality, i.e., $x \leq 1$.

Theorem (Blok, van Alten)

The universal theory of integral residuated lattices (i.e., \mathcal{RL}_m^0) is decidable.

• The only remaining unknown cases are $x^m \le x$ for $m \ge 2$.

Finite embeddability property

 A standard way of proving decidability of the uniform word problem (universal theory) is to show the finite embeddability property (FEP).

Finite embeddability property

- A standard way of proving decidability of the uniform word problem (universal theory) is to show the finite embeddability property (FEP).
- A quasi-ordered set P = ⟨P, ⊑⟩ is called dually well quasi-ordered if P contains neither infinite ascending chains nor infinite antichains.

Finite embeddability property

- A standard way of proving decidability of the uniform word problem (universal theory) is to show the finite embeddability property (FEP).
- A quasi-ordered set P = ⟨P, ⊑⟩ is called dually well quasi-ordered if P contains neither infinite ascending chains nor infinite antichains.

Theorem (Blok, van Alten)

If for each $\mathbf{A} \in \mathcal{RL}_m^1$ every finitely generated submonoid B of \mathbf{A} is dually well quasi-ordered then \mathcal{RL}_m^1 has the FEP.

$$uxv \le z \& ux'v \le z \implies uxx'v \le z$$
 (q)

$$uxv \le z \& ux'v \le z \implies uxx'v \le z$$
 (q)

Consider a closure operator δ: P(Σ*) → P(Σ*) s.t. its closed sets are closed under the following rule:

$$uxv, ux'v \in S \implies uxx'v \in S$$

$$uxv \le z \& ux'v \le z \implies uxx'v \le z$$
 (q)

Consider a closure operator δ: P(Σ*) → P(Σ*) s.t. its closed sets are closed under the following rule:

$$uxv, ux'v \in S \implies uxx'v \in S$$

Define a quasi-order on Σ*:

$$x \sqsubseteq y$$
 iff $\delta\{x\} \subseteq \delta\{y\}$ iff $x \in \delta\{y\}$.

$$uxv \le z \& ux'v \le z \implies uxx'v \le z$$
 (q)

Consider a closure operator δ: P(Σ*) → P(Σ*) s.t. its closed sets are closed under the following rule:

$$uxv, ux'v \in S \implies uxx'v \in S$$

Define a quasi-order on Σ*:

$$x \sqsubseteq y$$
 iff $\delta\{x\} \subseteq \delta\{y\}$ iff $x \in \delta\{y\}$.

Lemma

Every finitely generated pomonoid **A** satisfying (q) is a homomorphic image of $\langle \Sigma^*, \sqsubseteq \rangle$ for some finite Σ .

Rostislav Horčík (ICS)

• Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

• Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

Lemma

Let $w \in \Sigma^*$ and Alph $(w) = \Gamma$. Then $w u w \in \delta\{w\}$ (i.e., $w u w \sqsubseteq w$) for every $u \in \Gamma^*$.

• Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

Lemma

Let $w \in \Sigma^*$ and Alph $(w) = \Gamma$. Then $w u w \in \delta\{w\}$ (i.e., $w u w \sqsubseteq w$) for every $u \in \Gamma^*$.

• By a modification of Higman's lemma one can prove:

• Thus it suffices to show that \sqsubseteq is a dual well quasi-order.

Lemma

Let $w \in \Sigma^*$ and Alph $(w) = \Gamma$. Then $w u w \in \delta\{w\}$ (i.e., $w u w \sqsubseteq w$) for every $u \in \Gamma^*$.

• By a modification of Higman's lemma one can prove:

Lemma

The quasi-order \sqsubseteq is a dual well quasi-order.

Decidability result

Theorem

The variety of residuated lattices satisfying $x^2 \leq x$ (i.e., \mathcal{RL}_2^1) has the FEP.

Decidability result

Theorem

The variety of residuated lattices satisfying $x^2 \leq x$ (i.e., \mathcal{RL}_2^1) has the FEP.

Corollary

The universal theory of \mathcal{RL}_2^1 is decidable.

• What about $x^m \leq x$ for $m \geq 3$?

• What about $x^m \leq x$ for $m \geq 3$?

• Since idempotent $(x^2 = x)$ monoids satisfy

$$uxv = z \& ux'v = z \implies uxx'v = z,$$

it follows from our result that finitely generated idempotent monoids are finite.

• What about $x^m \leq x$ for $m \geq 3$?

• Since idempotent $(x^2 = x)$ monoids satisfy

$$uxv = z \& ux'v = z \implies uxx'v = z,$$

it follows from our result that finitely generated idempotent monoids are finite.

Theorem (Green, Rees)

The free n-generated Burnside monoid satisfying $x^{m+1} = x$ is finite iff the free n-generated Burnside group satisfying $x^m = 1$ is finite.

• What about $x^m \leq x$ for $m \geq 3$?

• Since idempotent $(x^2 = x)$ monoids satisfy

$$uxv = z \& ux'v = z \implies uxx'v = z,$$

it follows from our result that finitely generated idempotent monoids are finite.

Theorem (Green, Rees)

The free n-generated Burnside monoid satisfying $x^{m+1} = x$ is finite iff the free n-generated Burnside group satisfying $x^m = 1$ is finite.

• Is there a similar relation also for
$$m \ge 3$$
?

Thank you!