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Introduction

@ Burnside groups are finitely generated groups satisfying x” = 1.
@ Studied questions: finiteness, word problem...

@ Burnside semigroups/monoids are defined analogously as finitely
generated semigroups/monoids where x” = x" holds.

@ Burnside partially ordered monoids should be defined by x™ < x".

@ In the theory of residuated lattices are known as knotted rules/axioms
(Hori, Ono, Schellinx).

@ The aim of my talk: (un)decidability of the word problem for
“Burnside” residuated lattices.
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Pomonoids and residuated lattices

Definition

A structure A = (A, -, 1 <) is called pomonoid if (A,-,1) is a monoid and
for all a,b,c € A:

a<b = ca<cb, ac < bc.
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Pomonoids and residuated lattices

Definition

A structure A = (A, -, 1 <) is called pomonoid if (A,-,1) is a monoid and
for all a,b,c € A:

a<b = ca<cb, ac < bc.

A residuated lattice A = (A, A, V, -, \,/,1) is a pomonoid such that
(A, A, V) is a lattice and for all a, b, c € A:

ab<c iff b<a\c iff a<c/b.

Let m,n € N and m # n. The variety of residuated lattices satisfying
x™ < x"is denoted RL .
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Word problem

Let /C be a class of residuated lattices.

A quasi-inequality:

h<s1& ... &t <s, = tHh<s.

K has (un)decidable uniform word problem if the set of all
quasi-inequalities valid in X is (un)decidable.

K has undecidable (local) word problem if there are fixed premises
t1 < sp,...,t < sk such that the set of all quasi-inequalities

h<s51& ... & t, <s, — th<sp.

valid in IC is undecidable.
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Word problem

Let /IC be a class of residuated lattices.

A quasi-inequality:

tlSSl& &tkgsk —— tOSSO-

K has (un)decidable uniform word problem if the set of all
quasi-inequalities valid in X is (un)decidable.

K has undecidable (local) word problem if there are fixed premises
t1 < sp,...,t < sk such that the set of all quasi-inequalities

h<s51& ... & t, <s, — th<sp.
valid in K is undecidable.

Theorem (van Alten)

Let CRL,, be the variety of commutative residuated lattices satisfying
x™ < x". Then the universal theory (word problem) for CRL}, is
decidable for all m # n.
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Minsky machines (2CM)

o Finite number of states: qo,q1,...,qn

Rostislav Hor¢ik (ICS) Knotted rules



Minsky machines (2CM)

o Finite number of states: qo,q1,...,qn

o Final state: qg

Rostislav Hor¢ik (ICS) Knotted rules



Minsky machines (2CM)

@ Finite number of states: qo,q1,...,9n
o Final state: qg

@ 2 counters: ¢, € N

Rostislav Hor¢ik (ICS) Knotted rules LATD 2012 5/28



Minsky machines (2CM)

@ Finite number of states: qo,q1,...,9n
o Final state: qg

@ 2 counters: ¢, € N

e Transition function 7 (i > 0):

Rostislav Hor¢ik (ICS) Knotted rules LATD 2012 5/28



Minsky machines (2CM)

@ Finite number of states: qo,q1,...,9n
o Final state: qg

@ 2 counters: ¢, € N

e Transition function 7 (i > 0):

= 1
» 7(q;) = (+,1, q;):

Rostislav Hor&ik (ICS) Knotted rules LATD 2012 5/28



Minsky machines (2CM)

@ Finite number of states: qo,q1,...,9n
o Final state: qg

@ 2 counters: ¢, € N

e Transition function 7 (i > 0):

= 1
» 7(q;) = (+,1, q;):

> T(qf) = <_7 17 qja qk>:

Rostislav Hor&ik (ICS) Knotted rules LATD 2012 5/28



Minsky machines (2CM)

@ Finite number of states: qo,q1,...,9n
o Final state: qg

@ 2 counters: ¢, € N

e Transition function 7 (i > 0):

= 1
» 7(q;) = (+,1, q;):

> T(qf) = <_7 17 qja qk>:

» Analogously for the second counter.
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A simple example

c2:=c2+1
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Minsky machines

o Note that (qj, c1, c2) fully determines the state of the computation of
a Minsky machine.
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Minsky machines

o Note that (qj, c1, c2) fully determines the state of the computation of
a Minsky machine.

@ Such triples are called configurations.

e A configuration (g;, c1, c2) is accepted by the machine if the
computation terminates at (qo, 0, 0).
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Minsky machines

o Note that (qj, c1, c2) fully determines the state of the computation of
a Minsky machine.

@ Such triples are called configurations.
e A configuration (g;, c1, c2) is accepted by the machine if the

computation terminates at (qo, 0, 0).

Theorem (Minsky, Lambek)

There is a Minsky machine (2CM) whose set of accepted configurations is
undecidable.
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2 counters are more than 1 counter

Two Bytes Are Better Than One

TMS 9900
16BIT
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@ R a finite set of rules, i.e., pairs x — y for x,y € &*
@ Then (X, R) is called a semi-Thue system.

@ A rewriting relation —g on ¥* defined by:
uxv »g uyv iff x > yeR.

@ Then — denotes the reflexive and transitive closure of —g.
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Semi-Thue systems

@ X a finite alphabet, X* the set of words over X
@ R a finite set of rules, i.e., pairs x — y for x,y € &*
@ Then (X, R) is called a semi-Thue system.

@ A rewriting relation —g on ¥* defined by:

uxv »g uyv iff x > yeR.

Then — denotes the reflexive and transitive closure of —g.

Observation
© X* together with concatenation as multiplication forms a free monoid.

@ —% is the least quasi-order on X* compatible with multiplication
R
containing R.
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Semi-Thue systems and pomonoids

o Let vg=—5N(—%)"L
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and X*/~g as the corresponding finitely presented pomonoid.

Lemma
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Semi-Thue systems and pomonoids

o Let ~g=—5N(=%)"h
@ Then X*/~g is a pomonoid (x/~gr < y/~g iff x =% y).

@ Every Semi-Thue system (X, R) can be viewed as a finite presentation
and X*/~g as the corresponding finitely presented pomonoid.

Lemma
Let (X,{t1 — s1,...,t, — S}) be a Semi-Thue system and u,v € *.

Q /fu—% v then
h<s1 & ... &t,<s, = u<v (a)

holds in every pomonoid.
Q Ifu /% v then ¥* /~g does not satisfy (q).
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Simulating 2CM by Semi-Thue system

@ Configurations are encoded by words over a finite alphabet
z = {q07"‘7qn7a7A}'

(gi,c1,02) ~  Aa“ga“A
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Simulating 2CM by Semi-Thue system

@ Configurations are encoded by words over a finite alphabet
z = {q07"‘7qnuaaA}'
(gic1, @) ~  Aa“ga®A

@ Transition function is captured by the set R of rewriting rules:

> (@) = (+,1, ) qi — ag;
> 7(a) = (+, 2 qj): qi = q;a
> 7(ai) = (= 1,95, 9): aq; — qj, Aq; — Aqx
> () = (= 2,95, q): gia = qj, GiA = GiA
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Simulating 2CM by Semi-Thue system

@ Configurations are encoded by words over a finite alphabet
z = {q07"‘7qnuaaA}'
(gic1, @) ~  Aa“ga®A

@ Transition function is captured by the set R of rewriting rules:

> 7(qi) = (+,1,q5): qi — aq;
> 7(qi) = (+, 2 qj): qi — qja
> 7(qi) = (— 1, g, qx): aqi — qj, Aqi — Adqx
» 7(qi) = (=2, g5, q): gia = qj, GiA = qiA
c2:=c2+1
cl
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Simulating 2CM by Semi-Thue system

@ Configurations are encoded by words over a finite alphabet
z = {q07"‘7qnuaaA}'
(gic1, @) ~  Aa“ga®A

@ Transition function is captured by the set R of rewriting rules:

» 7(qi) = (+,1,q)): qi — agq;
> 7(qi) = (+, 2 q): g — qja
> 7(qi) = (— 1, g, qx): aqi — qj, Aqi — Adqx
» 7(qi) = (=2, g5, q): gia = qj, GiA = qiA
c2:=c2+1
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Simulating 2CM by Semi-Thue system

@ Configurations are encoded by words over a finite alphabet
z = {q07"‘7qnuaaA}'
(gic1, @) ~  Aa“ga®A

@ Transition function is captured by the set R of rewriting rules:

» 7(qi) = (+,1,q;): qi — agq;
> 7(qi) = (+, 2 q): g — qja
» 7(qi) = (= 1, g5, q): aq; — qj, Aqi — Aqx
» 7(qi) = (-2, a;, qk): gia = qj, GiA = qiA
c2:=c2+1
cl
AaagiaA —r AagraA
—r AagiaaA @
—r AgraaA -

—r AgiraaaA
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Simulating 2CM by Semi-Thue system

@ Configurations are encoded by words over a finite alphabet
z = {q07"‘7qnuaaA}'
(gic1, @) ~  Aa“ga®A

@ Transition function is captured by the set R of rewriting rules:

» 7(qi) = (+,1,q)): qi — agq;
> 7(qi) = (+, 2 q): g — qja
» 7(qi) = (= 1, g5, q): aq; — qj, Aqi — Aqx
» 7(qi) = (=2, g5, q): gia = qj, GiA = qiA
c2:=c2+1
cl
AaagiaA —r AagraA
—r AagiaaA @
—r AgraaA N

—r AgiraaaA

—r AqpaaaA
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Burnside inequalities

Lemma
(gi, c1, ) is accepted iff Aa' qia? A =% AqoA.
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Burnside inequalities
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o If our set of rules R is expanded e.g. by x> — x3 for all x € £* then
the above coding is ruined.
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Burnside inequalities

Lemma
(qi, c1, ¢2) is accepted iff Aalqja? A —% AqoA. J

o If our set of rules R is expanded e.g. by x> — x3 for all x € £* then
the above coding is ruined.

@ To prevent the use of x2 — x3, we encode the configurations into
square-free words.

Definition
A word w € ¥* contains square if it is of the form w = uixxu> for some
ui, up, x € ¥*. Words containing no square are called square-free.
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Burnside inequalities

Lemma
(qi, c1, ¢2) is accepted iff Aalqja? A —% AqoA. J

o If our set of rules R is expanded e.g. by x> — x3 for all x € £* then

the above coding is ruined.

3

@ To prevent the use of x2 — x3, we encode the configurations into

square-free words.

Definition
A word w € ¥* contains square if it is of the form w = uixxu> for some
ui, up, x € ¥*. Words containing no square are called square-free.

Theorem (Thue 1906)

There is an infinite square-free word over ¥ for || > 3.
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.

Lemma

The homomorphism h is square-free. Thus h"(a) is a square-free word for
all natural numbers n.
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.

Lemma

The homomorphism h is square-free. Thus h"(a) is a square-free word for
all natural numbers n.

h(a) = a
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.

Lemma

The homomorphism h is square-free. Thus h"(a) is a square-free word for
all natural numbers n.

ht(a) = abc
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.

Lemma

The homomorphism h is square-free. Thus h"(a) is a square-free word for
all natural numbers n.

h?(a) = h(a)h(b)h(c) = abcacbh
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.

Lemma

The homomorphism h is square-free. Thus h"(a) is a square-free word for
all natural numbers n.

h3(a) = h(a)h(b)h(c)h(a)h(c)h(b) = abcacbabcbac
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.

Lemma

The homomorphism h is square-free. Thus h"(a) is a square-free word for
all natural numbers n.

<qi7 C1, C2> ~ Ahcl(a)qihC2(a)A
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Square-free morphisms — example

Let ¥ = {a, b, c}. Define monoid endomorphism h: ©* — ¥* as follows:

h(a) = abc, h(b)=ac, h(c)=b.

Lemma

The homomorphism h is square-free. Thus h"(a) is a square-free word for
all natural numbers n.

<qi7 C1, C2> ~ Ahcl(a)qihC2(a)A

Problem: g;ih%(a) — q;h%*1(a), qih®t1(a) — q;h%2(a)
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Addition and substruction

h"t1(a) = h(h"(a)) = h(d: ... dk) = h(ds) ... h(d)

Rostislav Hor&ik (ICS) Knotted rules



Addition and substruction
htL(a) = h(h"(a)) = h(d; ... dx) = h(dy)... h(dk)

Ctd — h(d)C*

Rostislav Hor&ik (ICS) Knotted rules



Addition and substruction
htL(a) = h(h"(a)) = h(d; ... dx) = h(dy)... h(dk)

Ctd — h(d)C*

C+h"(a) = C+d1d2 . dk
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Addition and substruction
htL(a) = h(h"(a)) = h(d; ... dx) = h(dy)... h(dk)

Ctd — h(d)C*

C+h"(a) = C+d1d2...dk
— h(dl)C+d2...dk
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Addition and substruction
h”+1(a) = h(h"(a)) = h(dy...dx) = h(d1) ... h(dk)
Ctd — h(d)C"
C+h"(a) = C+d1d2 . dk

— h(dl)C+d2...dk
— h(dl)h(dg)c+...dk
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Addition and substruction
htL(a) = h(h"(a)) = h(d; ... dx) = h(dy)... h(dk)

Ctd — h(d)C*

C+h"(a) = C+d1d2...dk
h(di)Chdy ... dy
h(d)h(do)CT ... d

Ll

h(dy)h(da) . .. h(di)C*

4
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Addition and substruction
htL(a) = h(h"(a)) = h(d; ... dx) = h(dy)... h(dk)

Ctd — h(d)C*

C+h"(a) = C+d1d2...dk
h(di)Chdy ... dy
h(d)h(do)CT ... d

Ll

h(dy)h(do) ... h(dk)CT
— hn+1(a) C+

4
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Addition and substruction
htL(a) = h(h"(a)) = h(d; ... dx) = h(dy)... h(dk)

Ctd — h(d)C*

C+h"(a) = C+d1d2...dk
h(di)Chdy ... dy
h(di)h(do)CT ... dy

Ll

—  h(d1)h(d2) ... h(dk)CT

= m(a)ct
Substruction can be treated similarly by

C h(d)—dC™
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Resulting coding
e Alphabet: ¥ = {qo,...,qn,3,b,¢c,A,B,B", B~,C,C", C}
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o Configurations:

(gi,c1,c2)  ~  Ah%(a)Bg;Ch?(a)A
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e Alphabet: ¥ = {qo,...,qn,3,b,¢c,A,B,B", B~,C,C", C}

o Configurations:

(gi,c1,c2)  ~  Ah%(a)Bg;Ch?(a)A
@ The set of rules R:

> T(qi) = <+32a qj>:
qiC = q;C*,

Rostislav Hor¢ik (ICS) Knotted rules LATD 2012 15 / 28



Resulting coding
e Alphabet: ¥ = {qo,...,qn,3,b,¢c,A,B,B", B~,C,C", C}

e Configurations:

(gi,c1,c2)  ~  Ah%(a)Bg;Ch?(a)A

@ The set of rules R:

> 7—(qi) = <+a2a qj>:
qiC = q;C*,

» Auxiliary rules for d € {a, b, c}:
Ctd — h(d)CT, CTA— CA, dC — Cd,
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Resulting coding
e Alphabet: ¥ = {qo,...,qn,3,b,¢c,A,B,B", B~,C,C", C}

e Configurations:

(gi,c1,c2)  ~  Ah%(a)Bg;Ch?(a)A

@ The set of rules R:

> 7—(qi) = <+a2a qj>:
qiC = q;C*,

> 7(qi) = (= 2,9, qx):

qgiCabc — q;C~abc, qjCaA— qxCaA,
» Auxiliary rules for d € {a, b, c}:

Ctd — h(d)CT, CTA— CA, dC — Cd,
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Resulting coding
e Alphabet: ¥ = {qo,...,qn,3,b,¢c,A,B,B", B~,C,C", C}

e Configurations:

(gi,c1,c2)  ~  Ah%(a)Bg;Ch?(a)A

@ The set of rules R:

» 7(qi) = (+,2,q):
qiC = q;C*,

> 7(qi) = (= 2,9, qx):

qgiCabc — q;C~abc, qjCaA— qxCaA,
» Auxiliary rules for d € {a, b, c}:

Ctd — h(d)CT, CTA— CA, dC — Cd,

C h(d) — dC~, C"A— CA.

Rostislav Hor¢ik (ICS) Knotted rules LATD 2012
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What have we achieved?

Lemma
C = (qi, c1, @) is accepted iff Ah(a)Bq;Ch®(a)A —% AaBqoCaA
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C = (qi, c1, @) is accepted iff Ah(a)Bq;Ch®(a)A —% AaBqoCaA J

&t yscr t <s = Ah(a)Bq;Ch?(a)A < AaBgoCaA (aC)
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What have we achieved?

Lemma
C = (qi, 1, ) is accepted iff Ahet(a)Bgq; Ch(a)A —% AaBgoCaA J

&t yscr t <s = Ah(a)Bq;Ch?(a)A < AaBgoCaA (aC)

/CqC ) holds in all pomonoids (residuated IattlcesD
N
ot aCc
(qC) does not hold in Z*/ND_,@
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Construction of a residuated lattice

o We want a residuated lattice W™
satisfying as many

(quasi-)identities as possible @
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Construction of a residuated lattice

0 RL

o We want a residuated lattice W™
satisfying as many

(quasi-)identities as possible @

@ but still being a countermodel for
all (qC)’s not valid in X*/~pg.
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Residuated frames (Galatos, Jipsen)

Closure operator: v(X) = X"
The closed sets form a complete lattice W™,
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Residuated frames (Galatos, Jipsen)

monoid A A B

res. lattice P(A) P(B)

Nucleus: v(X) = X"<
The closed sets form a residuated lattice WT.

xyNz iff yNx\z iff xNzjJy
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Residuated frames (Galatos, Jipsen)

N
monoid A A B

|

res. lattice P(A) P(B)

Nucleus: v(X) = X"<
The closed sets form a residuated lattice WT.

xyNz iff yNx\z iff xNzjJy

f(x) = v{x} is a monoid homomorphism from A to W,
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Residuated frame from STS

N
T+ / T x T
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Residuated frame from STS

N
T+ / T x T

x N (u,v) iff uxv — AaBqgyCaA
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Residuated frame from STS

N
3 ¥ // Y*F o YF

x N (u,v) iff uxv — AaBqgyCaA

Lemma
Q@ N is nuclear and y{t} C y{s} forallt - s € R.
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Residuated frame from STS

N
3 ¥ // Y*F o YF

x N (u,v) iff uxv — AaBqgyCaA

Lemma
Q@ N is nuclear and y{t} C y{s} forallt - s € R.
Q@ Ifw /A% AaBqgoCaA then

v{w} € v{AaBqoCaA} .
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Residuated frame from STS

N
3 * // Y*F o YF

x N (u,v) iff uxv — AaBqgyCaA

Lemma
Q@ N is nuclear and y{t} C y{s} forallt - s € R.
Q@ Ifw /A% AaBqgoCaA then

v{w} € v{AaBqoCaA} .
@ In particular, if a configuration C = (q;, c1, ¢2) is not accepted then
&t ,scr t < s = Ah(a)Bq;Ch%(a)A < AaBgqyCaA (aC)

does not hold in WT.

Rostislav Hor¢ik (ICS) Knotted rules LATD 2012 19 /28
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Properties

@ 7 is the pointwise greatest nucleus
s.t.

v{AaBqyCaA} = r

{ue X | u—pk AaBqyCaA} .

AaBqyCaA
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Properties

@ 7 is the pointwise greatest nucleus
s.t.

v{AaBqyCaA} = r

{ue X | u—pk AaBqyCaA} .

o If w /% AaBqoCaA then

2

AaBqyCaA
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Properties

@ 7 is the pointwise greatest nucleus
s.t.

v{AaBqyCaA} =
{ue X | u—pk AaBqyCaA} .

o If w /% AaBqoCaA then

Y{w} Z y{AaBqgoCaA} .

AaBqyCaA
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Properties

@ 7 is the pointwise greatest nucleus
s.t.

v{AaBqyCaA} =
{ue X | u—pk AaBqyCaA} .

o If w 4% AaBgoCaA then AaBgoCaA

Y{w} Z y{AaBqgoCaA} .

e Since v{AaBqgyCaA} contains only
square-free words, the complex
algebra W is a residuated lattice

satisfying x < x? and x3 = x°.
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Undecidability results

Let C = (q;, c1, c2) be a configuration. Then C is accepted iff
&t yscr t <s = Ah9(a)BqiCh?(a)A < AaBgoCaA (aC)

holds in RL? NRL3.
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Undecidability results

Let C = (q;, c1, c2) be a configuration. Then C is accepted iff

&t yscr t <s = Ah9(a)BqiCh?(a)A < AaBgoCaA (aC)
holds in RL? NRL3.

Theorem

The word problem (quasi-equational theory) is undecidable in RL. for
1<n<mandm<n<2.
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Undecidability results

Let C = (q;, c1, c2) be a configuration. Then C is accepted iff

&t yscr t <s = Ah9(a)BqiCh?(a)A < AaBgoCaA (aC)
holds in RL? NRL3.

Theorem

The word problem (quasi-equational theory) is undecidable in RL. for
1<n<mandm<n<2.

Theorem

Let DRL;, be the variety of distributive residuated lattices satisfying
x™ < x". Then the word problem (quasi-equational theory) is undecidable
in DRL), for1 < n < m.
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What remains?

o 1 < x" axiomatizes the trivial variety.
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What remains?

o 1 < x" axiomatizes the trivial variety.

o x™ < 1 is equivalent to integrality, i.e., x < 1.
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What remains?

o 1 < x" axiomatizes the trivial variety.

o x™ < 1 is equivalent to integrality, i.e., x < 1.

Theorem (Blok, van Alten)
The universal theory of integral residuated lattices (i.e., RLY ) is decidable.J
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What remains?

o 1 < x" axiomatizes the trivial variety.

o x™ < 1 is equivalent to integrality, i.e., x < 1.

Theorem (Blok, van Alten)
The universal theory of integral residuated lattices (i.e., RLY ) is decidable.J

@ The only remaining unknown cases are x™ < x for m > 2.
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Finite embeddability property

@ A standard way of proving decidability of the uniform word problem
(universal theory) is to show the finite embeddability property (FEP).
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Finite embeddability property

@ A standard way of proving decidability of the uniform word problem
(universal theory) is to show the finite embeddability property (FEP).

e A quasi-ordered set P = (P,C) is called dually well quasi-ordered if P
contains neither infinite ascending chains nor infinite antichains.
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Finite embeddability property

@ A standard way of proving decidability of the uniform word problem
(universal theory) is to show the finite embeddability property (FEP).

e A quasi-ordered set P = (P,C) is called dually well quasi-ordered if P
contains neither infinite ascending chains nor infinite antichains.

Theorem (Blok, van Alten)

If for each A € RLL every finitely generated submonoid B of A is dually
well quasi-ordered then RLL has the FEP.
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Mingle x? < x

e Pomonoid subreducts of residuated lattices satisfying x> < x are
axiomatized by

uxv<z& ux'v<z = uxx'v<z (a)
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Mingle x? < x

e Pomonoid subreducts of residuated lattices satisfying x> < x are
axiomatized by

uxv<z& ux'v<z = uxx'v<z (a)

e Consider a closure operator 6: P(X*) — P(X*) s.t. its closed sets are
closed under the following rule:

uxv,ux've S = uxx've s

Rostislav Hor¢ik (ICS) Knotted rules LATD 2012 24 /28



Mingle x? < x

e Pomonoid subreducts of residuated lattices satisfying x> < x are
axiomatized by

uxv<z& ux'v<z = uxx'v<z (a)

e Consider a closure operator 6: P(X*) — P(X*) s.t. its closed sets are
closed under the following rule:

uxv,ux've S = uxx've s

@ Define a quasi-order on ¥*:

xCy iff 6{x} Co{y} iff xedé{y}.
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Mingle x? < x

e Pomonoid subreducts of residuated lattices satisfying x> < x are
axiomatized by

uxv<z& ux'v<z = uxx'v<z

(a)

e Consider a closure operator 6: P(X*) — P(X*) s.t. its closed sets are

closed under the following rule:
uxv,ux've S = uxx've s
@ Define a quasi-order on ¥*:
xCy iff 6{x} Co{y} iff xedé{y}.
Lemma

Every finitely generated pomonoid A satisfying (q) is a homomorphic
image of (X*,C) for some finite ¥.
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Well quasi-order

@ Thus it suffices to show that C is a dual well quasi-order.
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Well quasi-order

@ Thus it suffices to show that C is a dual well quasi-order.

Lemma

Let w € X* and Alph(w) =T. Then wuw € 6{w} (i.e., wuw C w) for
every u € [*.
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Well quasi-order

@ Thus it suffices to show that C is a dual well quasi-order.

Lemma

Let w € X* and Alph(w) =T. Then wuw € 6{w} (i.e., wuw C w) for
every u € [*.

e By a modification of Higman's lemma one can prove:
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Well quasi-order

@ Thus it suffices to show that C is a dual well quasi-order.

Lemma

Let w € X* and Alph(w) =T. Then wuw € 6{w} (i.e., wuw C w) for
every u € [*.

e By a modification of Higman's lemma one can prove:

Lemma J

The quasi-order C is a dual well quasi-order.
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Decidability result

Theorem

The variety of residuated lattices satisfying x> < x (i.e., RL3) has the
FEP.
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Decidability result

Theorem

The variety of residuated lattices satisfying x> < x (i.e., RL}) has the
FEP.

Corollary

The universal theory of RL3 is decidable.
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Conclusion

@ What about x™ < x for m > 37
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Conclusion

@ What about x™ < x for m > 37
e Since idempotent (x? = x) monoids satisfy
uxv =z & ux'v=z = ux'v=z,

it follows from our result that finitely generated idempotent monoids
are finite.
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Conclusion

@ What about x™ < x for m > 37
e Since idempotent (x? = x) monoids satisfy
uxv =z & ux'v=z = ux'v=z,

it follows from our result that finitely generated idempotent monoids
are finite.

Theorem (Green, Rees)

The free n-generated Burnside monoid satisfying x™ 1 = x is finite iff the
free n-generated Burnside group satisfying x™ = 1 is finite.
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Conclusion

@ What about x™ < x for m > 37
e Since idempotent (x? = x) monoids satisfy
uxv =z & ux'v=z = ux'v=z,

it follows from our result that finitely generated idempotent monoids
are finite.

Theorem (Green, Rees)

The free n-generated Burnside monoid satisfying x™ 1 = x is finite iff the
free n-generated Burnside group satisfying x™ = 1 is finite.

@ Is there a similar relation also for m > 37
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Thank you!
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