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Introduction

Theorem (Cantor)
Every at most countable chain 〈A,≤〉 is embeddable into the dense chain
of rational numbers 〈Q,≤〉.

What happens if 〈A,≤〉 bears other structure, e.g. 〈A,≤〉 being a monoid
or a residuated lattice?

Question
Let A be a totally ordered (countable) monoid (resp. residuated lattice).
Is there a dense totally ordered (countable) monoid (resp. residuated
lattice) Ā into which A is embeddable?
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Introduction (cont.)

The answer for A being a totally ordered residuated lattice (residuated
chain) is in general negative.

Theorem
The class of dense residuated chains satisfies the identity x \ 1 = 1/x or
equivalently xy ≤ 1 =⇒ yx ≤ 1.

Theorem (Metcalfe, Montagna, Ciabattoni, Terui, Galatos, RH)
Let A be a commutative totally ordered (countable) monoid (resp.
residuated lattice). Then A is embeddable into a dense totally ordered
(countable) monoid (resp. residuated lattice).

Rostislav Horčík (ICS) Densification LATD 2014 3 / 17



Introduction (cont.)

The answer for A being a totally ordered residuated lattice (residuated
chain) is in general negative.

Theorem
The class of dense residuated chains satisfies the identity x \ 1 = 1/x or
equivalently xy ≤ 1 =⇒ yx ≤ 1.

Theorem (Metcalfe, Montagna, Ciabattoni, Terui, Galatos, RH)
Let A be a commutative totally ordered (countable) monoid (resp.
residuated lattice). Then A is embeddable into a dense totally ordered
(countable) monoid (resp. residuated lattice).

Rostislav Horčík (ICS) Densification LATD 2014 3 / 17



Introduction (cont.)

The answer for A being a totally ordered residuated lattice (residuated
chain) is in general negative.

Theorem
The class of dense residuated chains satisfies the identity x \ 1 = 1/x or
equivalently xy ≤ 1 =⇒ yx ≤ 1.

Theorem (Metcalfe, Montagna, Ciabattoni, Terui, Galatos, RH)
Let A be a commutative totally ordered (countable) monoid (resp.
residuated lattice). Then A is embeddable into a dense totally ordered
(countable) monoid (resp. residuated lattice).

Rostislav Horčík (ICS) Densification LATD 2014 3 / 17



One-step densification
Definition
A class K of ordered algebras is said to be densifiable if every gap (g , h) of
a chain in K can be filled by another chain in K.

g

h

e(g)

e(h)
pembedding e

A ∈ K B ∈ K

Theorem
Let K be a densifiable variety. Then every (nontrivial) at most countable
chain in K is embeddable into a countable dense chain in K.
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Naive approach
Let A be a totally ordered commutative monoid (or residuated lattice)
with a gap g < h.

The naive way to create a one-step densification is of course to add a
single new element p to the algebra A.

By order preservation and g ≤ p ≤ h, we have for all a ∈ A:

ag ≤ ap ≤ ah .

Therefore, we have to define a · p = ah (or similarly a · g = ag) excluding
a = 1, as we surely want 1 · p = p.

If ab = 1 for some a, b ∈ A, then

p = 1 · p = (ab) · p = a(b · p) = a(bh) = (ab)h = h > p .
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Idempotent semirings and residuated lattices
Definition
An idempotent commutative semiring (ic-semiring) is an algebra
A = 〈A,∨, ·, 1〉 such that
〈A,∨〉 is semilattice,
〈A, ·, 1〉 is a commutative monoid,
a(b ∨ c) = ab ∨ ac.

Definition
A commutative residuated lattice is an algebra A = 〈A,∧,∨, ·,→, 1〉 such
that

〈A,∨, ·, 1〉 is an ic-semiring,
〈A,∧,∨〉 is a lattice,
ab ≤ c iff b ≤ a→ c.

We assume that our algebras always have a bottom element ⊥.
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Nuclei
Let A be a commutative residuated lattice. Then the following concepts
are equivalent:

1 A nucleus on A is a closure operator γ : A→ A such that

γ(a)γ(b) ≤ γ(ab) .

2 A nuclear retraction is a subset C ⊆ A forming a closure system such
that

a ∈ A and c ∈ C =⇒ a→ c ∈ C .
3 A semiring congruence θ ⊆ A× A such that

max [a]θ exists for all a ∈ A .

Fact
The semiring A/θ forms a commutative residuated lattice Aγ .
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Fields extensions

1 Suppose we want to extend the field of rational numbers Q by
√
2.

{a + b
√
2 | a, b ∈ Q},

(a + b
√
2)(c + d

√
2) = (ac + 2bd) + (ad + bc)

√
2 .

2 First, consider the polynomial ring Q[X ] and the take a quotient by
the principal congruence Θ(X 2, 2).

Then the congruence class of X plays the role of
√
2.

Every congruence class has a representative of the form a + bX for
a, b ∈ Q.

Note that Q[X ] is not a field, the divisions are recoved in the quotient
Q[X ]/Θ(X 2, 2).
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Linear polynomials

Let A be a commutative residuated chain with a gap g < h.

Let A(X ) = {p0 ∨ p1X | p0, p1 ∈ A}. Define the following operations on
A(X ):

(p0 ∨ p1X ) ∨ (q0 ∨ q1X ) = (p0 ∨ q0) ∨ (p1 ∨ q1)X
(p0 ∨ p1X ) ∧ (q0 ∨ q1X ) = (p0 ∧ q0) ∨ (p1 ∧ q1)X

(p0 ∨ p1X )(q0 ∨ q1X ) = p0q0 ∨ (p1q0 ∨ p0q1 ∨ p1q1h)X
(p0 ∨ p1X )→ (q0 ∨ q1X ) = [(p0 → q0) ∧ (p1 → q1)] ∨ [(p0 ∨ p1h)→ q1]X

Lemma
The algebra A(X ) = 〈A(X ),∧,∨, ·,→, 1〉 is a commutative residuated
lattice.
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Algebraic construction
Consider the subset C ⊆ A(X ) consisting of the following linear
polynomials for all a ∈ A:

â = a ∨ (h→ a)X ,

ã = (a→ g) ∨ (a→ 1)X .

Theorem
C is a nuclear retraction corresponding to a nucleus γ on A(X ). Thus
A(X )γ is a commutative residuated lattice.
C forms a subchain of A(X ). Thus A(X )γ is totally ordered.
A embeds into A(X )γ via a 7→ â.
ĝ < 1̃ < ĥ.

Thus A(X )γ is a one-step densification of A at the gap g < h.
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ĝ < 1̃ < ĥ.
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Example 1

Let A = L3 be the 3-element MV-chain on the set {0, 1/2, 1} and
g = 1/2, h = 1.

1̂ = 1 ∨ X
1̂
2 =

1
2 ∨

1
2X

0̂ = 0 ∨ 0X

1̃ =
1
2 ∨ X

1̃
2 = 1̂

0̃ = 1̂ A(X )

1̂

1̃

1̂/2

0̂

The resulting residuated chain is isomorphic to L3 ⊕ 2.
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Example 2

Let A = 〈Z,min,max,+,−, 0〉, g = 0 and h = 1.

â = a ∨ (a − 1)X
ã = −a ∨ (−a)X

â · b̃ = b̃ − a

ã · b̃ = ˜a + b − 1

A(X )0̃
1̂

−̃1
2̂

−̃2
3̂

0̂
1̃

−̂1
2̃

−̂3
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Polynomial semiring
Let A be a commutative residuated chain with a gap g < h.

Form the polynomial semiring A[X ] over the semiring reduct of A.

P =
n∨

i=0
aiX i

We are looking for a semiring congruence θ on A[X ] having the following
properties a, b ∈ A:

[a]θ < [b]θ iff a < b,
[g ]θ < [X ]θ < [h]θ,
A[X ]/θ is a commutative residuated chain.

The congruence Θ(X , h) satisfies all above except of [X ]Θ(X ,h) < [h]Θ(X ,h).

Consider the congruence Θ(X 2, hX ). Then A(X ) ∼= A[X ]/Θ(X 2, hX ).
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Syntactic (Leibniz) congruence

Let M be a commutative monoid and L ⊆ M. Then the syntactic
congruence ∼L of L is the following relation:

a ∼L b iff ∀c ∈ M : ca ∈ L⇔ cb ∈ L

The congruence ∼L is the largest monoid
congruence which saturates L.

In particular, a 6∼L b for every a ∈ L and
b 6∈ L.

M

L

If M is an ic-semiring and L an ideal, then ∼L is a semiring congruence.
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Explanation via syntactic congruence

In order to make Θ(X , h) slightly smaller,
we intersect it with a syntactic congruence
which separates X from h.

Let L ⊆ A(X ) be the ideal generated by
{g ,X}, i.e., L = ↓{g ∨ X}.

A(X )

g ∨ X

L Xg
h

Lemma
A(X )γ ∼= A(X )/θ where θ = Θ(X , h) ∩ ∼L.

For other explanations see my webpage: www.cs.cas.cz/∼horcik
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Mixed amalgamation

g
h

g
h

g
p
h

A

g
p
h
Ā

A

B

C

D

fB

fC

gB

gC

Theorem
Let A, C be chains, B a commutative residuated chain and let fB : A→ B
and fC : A→ C be order embeddings. Then there is a commutative
residuated chain D, an order embedding gC : C → D and a residuated
lattice embedding gB : B→ D such that the right diagram commutes.
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Thank you!
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