Densification via Polynomial Extensions

Rostislav Horčík
joint work with Nikolaos Galatos
Institute of Computer Science
Academy of Sciences of the Czech Republic
Logic, Algebra and Truth Degrees
Vienna, 16-19 July 2014

Introduction

Theorem (Cantor)
Every at most countable chain $\langle A, \leq\rangle$ is embeddable into the dense chain of rational numbers $\langle\mathbb{Q}, \leq\rangle$.

Introduction

Theorem (Cantor)
Every at most countable chain $\langle A, \leq\rangle$ is embeddable into the dense chain of rational numbers $\langle\mathbb{Q}, \leq\rangle$.

What happens if $\langle A, \leq\rangle$ bears other structure, e.g. $\langle A, \leq\rangle$ being a monoid or a residuated lattice?

Introduction

Theorem (Cantor)

Every at most countable chain $\langle A, \leq\rangle$ is embeddable into the dense chain of rational numbers $\langle\mathbb{Q}, \leq\rangle$.

What happens if $\langle A, \leq\rangle$ bears other structure, e.g. $\langle A, \leq\rangle$ being a monoid or a residuated lattice?

Question

Let \mathbf{A} be a totally ordered (countable) monoid (resp. residuated lattice). Is there a dense totally ordered (countable) monoid (resp. residuated lattice) $\overline{\mathbf{A}}$ into which \mathbf{A} is embeddable?

Introduction (cont.)

The answer for \mathbf{A} being a totally ordered residuated lattice (residuated chain) is in general negative.

Introduction (cont.)

The answer for \mathbf{A} being a totally ordered residuated lattice (residuated chain) is in general negative.

Theorem

The class of dense residuated chains satisfies the identity $x \backslash 1=1 / x$ or equivalently $x y \leq 1 \Longrightarrow y x \leq 1$.

Introduction (cont.)

The answer for \mathbf{A} being a totally ordered residuated lattice (residuated chain) is in general negative.

Theorem

The class of dense residuated chains satisfies the identity $x \backslash 1=1 / x$ or equivalently $x y \leq 1 \Longrightarrow y x \leq 1$.

Theorem (Metcalfe, Montagna, Ciabattoni, Terui, Galatos, RH)
Let A be a commutative totally ordered (countable) monoid (resp. residuated lattice). Then \mathbf{A} is embeddable into a dense totally ordered (countable) monoid (resp. residuated lattice).

One-step densification

Definition

A class \mathbb{K} of ordered algebras is said to be densifiable if every gap (g, h) of a chain in \mathbb{K} can be filled by another chain in \mathbb{K}.

One-step densification

Definition

A class \mathbb{K} of ordered algebras is said to be densifiable if every gap (g, h) of a chain in \mathbb{K} can be filled by another chain in \mathbb{K}.

Theorem

Let \mathbb{K} be a densifiable variety. Then every (nontrivial) at most countable chain in \mathbb{K} is embeddable into a countable dense chain in \mathbb{K}.

Naive approach

Let \mathbf{A} be a totally ordered commutative monoid (or residuated lattice) with a gap $g<h$.

Naive approach

Let \mathbf{A} be a totally ordered commutative monoid (or residuated lattice) with a gap $g<h$.

The naive way to create a one-step densification is of course to add a single new element p to the algebra \mathbf{A}.

Naive approach

Let \mathbf{A} be a totally ordered commutative monoid (or residuated lattice) with a gap $g<h$.

The naive way to create a one-step densification is of course to add a single new element p to the algebra \mathbf{A}.

By order preservation and $g \leq p \leq h$, we have for all $a \in A$:

$$
a g \leq a p \leq a h
$$

Naive approach

Let \mathbf{A} be a totally ordered commutative monoid (or residuated lattice) with a gap $g<h$.

The naive way to create a one-step densification is of course to add a single new element p to the algebra \mathbf{A}.

By order preservation and $g \leq p \leq h$, we have for all $a \in A$:

$$
a g \leq a p \leq a h
$$

Therefore, we have to define $a \cdot p=a h$ (or similarly $a \cdot g=a g$) excluding $a=1$, as we surely want $1 \cdot p=p$.

Naive approach

Let \mathbf{A} be a totally ordered commutative monoid (or residuated lattice) with a gap $g<h$.

The naive way to create a one-step densification is of course to add a single new element p to the algebra \mathbf{A}.

By order preservation and $g \leq p \leq h$, we have for all $a \in A$:

$$
a g \leq a p \leq a h
$$

Therefore, we have to define $a \cdot p=a h$ (or similarly $a \cdot g=a g$) excluding $a=1$, as we surely want $1 \cdot p=p$.

If $a b=1$ for some $a, b \in A$, then

$$
p=1 \cdot p=(a b) \cdot p=a(b \cdot p)=a(b h)=(a b) h=h>p .
$$

Idempotent semirings and residuated lattices

Definition

An idempotent commutative semiring (ic-semiring) is an algebra
$\mathbf{A}=\langle A, \vee, \cdot, 1\rangle$ such that

- $\langle A, V\rangle$ is semilattice,
- $\langle A, \cdot, 1\rangle$ is a commutative monoid,
- $a(b \vee c)=a b \vee a c$.

Idempotent semirings and residuated lattices

Definition

An idempotent commutative semiring (ic-semiring) is an algebra
$\mathbf{A}=\langle A, \vee, \cdot, 1\rangle$ such that

- $\langle A, V\rangle$ is semilattice,
- $\langle A, \cdot, 1\rangle$ is a commutative monoid,
- $a(b \vee c)=a b \vee a c$.

Definition

A commutative residuated lattice is an algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \rightarrow, 1\rangle$ such that

- $\langle A, \vee, \cdot, 1\rangle$ is an ic-semiring,
- $\langle A, \wedge, \vee\rangle$ is a lattice,
- $a b \leq c$ iff $b \leq a \rightarrow c$.

Idempotent semirings and residuated lattices

Definition

An idempotent commutative semiring (ic-semiring) is an algebra
$\mathbf{A}=\langle A, \vee, \cdot, 1\rangle$ such that

- $\langle A, V\rangle$ is semilattice,
- $\langle A, \cdot, 1\rangle$ is a commutative monoid,
- $a(b \vee c)=a b \vee a c$.

Definition

A commutative residuated lattice is an algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \rightarrow, 1\rangle$ such that

- $\langle A, \vee, \cdot, 1\rangle$ is an ic-semiring,
- $\langle A, \wedge, \vee\rangle$ is a lattice,
- $a b \leq c$ iff $b \leq a \rightarrow c$.

We assume that our algebras always have a bottom element \perp.

Nuclei

Let \mathbf{A} be a commutative residuated lattice. Then the following concepts are equivalent:
(1) A nucleus on \mathbf{A} is a closure operator $\gamma: A \rightarrow A$ such that

$$
\gamma(a) \gamma(b) \leq \gamma(a b)
$$

Nuclei

Let \mathbf{A} be a commutative residuated lattice. Then the following concepts are equivalent:
(1) A nucleus on \mathbf{A} is a closure operator $\gamma: A \rightarrow A$ such that

$$
\gamma(a) \gamma(b) \leq \gamma(a b)
$$

(2) A nuclear retraction is a subset $C \subseteq A$ forming a closure system such that

$$
a \in A \text { and } c \in C \Longrightarrow a \rightarrow c \in C
$$

Nuclei

Let \mathbf{A} be a commutative residuated lattice. Then the following concepts are equivalent:
(1) A nucleus on \mathbf{A} is a closure operator $\gamma: A \rightarrow A$ such that

$$
\gamma(a) \gamma(b) \leq \gamma(a b)
$$

(2) A nuclear retraction is a subset $C \subseteq A$ forming a closure system such that

$$
a \in A \text { and } c \in C \Longrightarrow a \rightarrow c \in C
$$

(3) A semiring congruence $\theta \subseteq A \times A$ such that

$$
\max [a]_{\theta} \text { exists for all } a \in A
$$

Nuclei

Let \mathbf{A} be a commutative residuated lattice. Then the following concepts are equivalent:
(1) A nucleus on \mathbf{A} is a closure operator $\gamma: A \rightarrow A$ such that

$$
\gamma(a) \gamma(b) \leq \gamma(a b)
$$

(2) A nuclear retraction is a subset $C \subseteq A$ forming a closure system such that

$$
a \in A \text { and } c \in C \Longrightarrow a \rightarrow c \in C
$$

(3) A semiring congruence $\theta \subseteq A \times A$ such that

$$
\max [a]_{\theta} \text { exists for all } a \in A
$$

Fact

The semiring \mathbf{A} / θ forms a commutative residuated lattice \mathbf{A}_{γ}.

Fields extensions

(1) Suppose we want to extend the field of rational numbers \mathbb{Q} by $\sqrt{2}$.

$$
\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}
$$

$$
(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}
$$

Fields extensions

(1) Suppose we want to extend the field of rational numbers \mathbb{Q} by $\sqrt{2}$.

$$
\begin{aligned}
& \{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} \\
& \quad(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2} .
\end{aligned}
$$

(2) First, consider the polynomial ring $\mathbb{Q}[X]$ and the take a quotient by the principal congruence $\Theta\left(X^{2}, 2\right)$.
Then the congruence class of X plays the role of $\sqrt{2}$.
Every congruence class has a representative of the form $a+b X$ for $a, b \in \mathbb{Q}$.

Note that $\mathbb{Q}[X]$ is not a field, the divisions are recoved in the quotient $\mathbb{Q}[X] / \Theta\left(X^{2}, 2\right)$.

Linear polynomials

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.

Linear polynomials

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Let $A(X)=\left\{p_{0} \vee p_{1} X \mid p_{0}, p_{1} \in A\right\}$.

Linear polynomials

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Let $A(X)=\left\{p_{0} \vee p_{1} X \mid p_{0}, p_{1} \in A\right\}$. Define the following operations on $A(X)$:
$\left(p_{0} \vee p_{1} X\right) \vee\left(q_{0} \vee q_{1} X\right)=\left(p_{0} \vee q_{0}\right) \vee\left(p_{1} \vee q_{1}\right) X$ $\left(p_{0} \vee p_{1} X\right) \wedge\left(q_{0} \vee q_{1} X\right)=\left(p_{0} \wedge q_{0}\right) \vee\left(p_{1} \wedge q_{1}\right) X$

Linear polynomials

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Let $A(X)=\left\{p_{0} \vee p_{1} X \mid p_{0}, p_{1} \in A\right\}$. Define the following operations on $A(X)$:
$\left(p_{0} \vee p_{1} X\right) \vee\left(q_{0} \vee q_{1} X\right)=\left(p_{0} \vee q_{0}\right) \vee\left(p_{1} \vee q_{1}\right) X$
$\left(p_{0} \vee p_{1} X\right) \wedge\left(q_{0} \vee q_{1} X\right)=\left(p_{0} \wedge q_{0}\right) \vee\left(p_{1} \wedge q_{1}\right) X$
$\left(p_{0} \vee p_{1} X\right)\left(q_{0} \vee q_{1} X\right)=p_{0} q_{0} \vee\left(p_{1} q_{0} \vee p_{0} q_{1} \vee p_{1} q_{1} h\right) X$
$\left(p_{0} \vee p_{1} X\right) \rightarrow\left(q_{0} \vee q_{1} X\right)=\left[\left(p_{0} \rightarrow q_{0}\right) \wedge\left(p_{1} \rightarrow q_{1}\right)\right] \vee\left[\left(p_{0} \vee p_{1} h\right) \rightarrow q_{1}\right] X$

Linear polynomials

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Let $A(X)=\left\{p_{0} \vee p_{1} X \mid p_{0}, p_{1} \in A\right\}$. Define the following operations on $A(X)$:
$\left(p_{0} \vee p_{1} X\right) \vee\left(q_{0} \vee q_{1} X\right)=\left(p_{0} \vee q_{0}\right) \vee\left(p_{1} \vee q_{1}\right) X$ $\left(p_{0} \vee p_{1} X\right) \wedge\left(q_{0} \vee q_{1} X\right)=\left(p_{0} \wedge q_{0}\right) \vee\left(p_{1} \wedge q_{1}\right) X$

$$
\left(p_{0} \vee p_{1} X\right)\left(q_{0} \vee q_{1} X\right)=p_{0} q_{0} \vee\left(p_{1} q_{0} \vee p_{0} q_{1} \vee p_{1} q_{1} h\right) X
$$

$\left(p_{0} \vee p_{1} X\right) \rightarrow\left(q_{0} \vee q_{1} X\right)=\left[\left(p_{0} \rightarrow q_{0}\right) \wedge\left(p_{1} \rightarrow q_{1}\right)\right] \vee\left[\left(p_{0} \vee p_{1} h\right) \rightarrow q_{1}\right] X$

Lemma

The algebra $\mathbf{A}(X)=\langle A(X), \wedge, \vee, \cdot, \rightarrow, 1\rangle$ is a commutative residuated lattice.

Algebraic construction

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

$$
\begin{gathered}
\hat{a}=a \vee(h \rightarrow a) X, \\
\tilde{a}=(a \rightarrow g) \vee(a \rightarrow 1) X .
\end{gathered}
$$

Algebraic construction

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

$$
\begin{gathered}
\hat{a}=a \vee(h \rightarrow a) X, \\
\tilde{a}=(a \rightarrow g) \vee(a \rightarrow 1) X .
\end{gathered}
$$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.

Algebraic construction

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

$$
\begin{gathered}
\hat{a}=a \vee(h \rightarrow a) X, \\
\tilde{a}=(a \rightarrow g) \vee(a \rightarrow 1) X .
\end{gathered}
$$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.

Algebraic construction

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

$$
\begin{gathered}
\hat{a}=a \vee(h \rightarrow a) X, \\
\tilde{a}=(a \rightarrow g) \vee(a \rightarrow 1) X .
\end{gathered}
$$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.
- A embeds into $\mathbf{A}(X)_{\gamma}$ via $a \mapsto \hat{a}$.

Algebraic construction

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

$$
\begin{gathered}
\hat{a}=a \vee(h \rightarrow a) X, \\
\tilde{a}=(a \rightarrow g) \vee(a \rightarrow 1) X .
\end{gathered}
$$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.
- A embeds into $\mathbf{A}(X)_{\gamma}$ via $a \mapsto \hat{a}$.
- $\hat{g}<\tilde{1}<\hat{h}$.

Algebraic construction

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

$$
\begin{gathered}
\hat{a}=a \vee(h \rightarrow a) X, \\
\tilde{a}=(a \rightarrow g) \vee(a \rightarrow 1) X .
\end{gathered}
$$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.
- A embeds into $\mathbf{A}(X)_{\gamma}$ via $a \mapsto \hat{a}$.
- $\hat{g}<\tilde{1}<\hat{h}$.

Thus $\mathbf{A}(X)_{\gamma}$ is a one-step densification of \mathbf{A} at the gap $g<h$.

Example 1

Let $\mathbf{A}=\mathbf{L}_{3}$ be the 3-element MV-chain on the set $\{0,1 / 2,1\}$ and $g=1 / 2, h=1$.

Example 1

Let $\mathbf{A}=\mathbf{L}_{3}$ be the 3-element MV-chain on the set $\{0,1 / 2,1\}$ and $g=1 / 2, h=1$.

$$
\begin{aligned}
& \hat{1}=1 \vee X \\
& \frac{\hat{1}}{2}=\frac{1}{2} \vee \frac{1}{2} X \\
& \hat{0}=0 \vee 0 X \\
& \tilde{1}=\frac{1}{2} \vee X \\
& \tilde{1} \frac{1}{2}=\hat{1} \\
& \tilde{0}=\hat{1}
\end{aligned}
$$

$\mathbf{A}(X)$

Example 1

Let $\mathbf{A}=\mathbf{L}_{3}$ be the 3-element MV-chain on the set $\{0,1 / 2,1\}$ and $g=1 / 2, h=1$.

$$
\begin{aligned}
& \hat{1}=1 \vee X \\
& \frac{\hat{1}}{2}=\frac{1}{2} \vee \frac{1}{2} X \\
& \hat{0}=0 \vee 0 X \\
& \tilde{1}=\frac{1}{2} \vee X \\
& \tilde{1}=\hat{2}=\hat{1} \\
& \tilde{0}=\hat{1}
\end{aligned}
$$

$\mathbf{A}(X)$

The resulting residuated chain is isomorphic to $\mathbf{L}_{3} \oplus \mathbf{2}$.

Example 2

Let $\mathbf{A}=\langle\mathbb{Z}, \min , \max ,+,-, 0\rangle, g=0$ and $h=1$.

Example 2

Let $\mathbf{A}=\langle\mathbb{Z}, \min , \max ,+,-, 0\rangle, g=0$ and $h=1$.

$$
\begin{aligned}
& \hat{a}=a \vee(a-1) X \\
& \tilde{a}=-a \vee(-a) X \\
& \hat{a} \cdot \tilde{b}=\widetilde{b-a} \\
& \tilde{a} \cdot \tilde{b}=\widetilde{+b-1}
\end{aligned}
$$

$\mathbf{A}(X)$

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A}.

$$
P=\bigvee_{i=0}^{n} a_{i} X^{i}
$$

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A}.

$$
P=\bigvee_{i=0}^{n} a_{i} X^{i}
$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A}.

$$
P=\bigvee_{i=0}^{n} a_{i} X^{i}
$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

- $[a]_{\theta}<[b]_{\theta}$ iff $a<b$,

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A}.

$$
P=\bigvee_{i=0}^{n} a_{i} X^{i}
$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

- $[a]_{\theta}<[b]_{\theta}$ iff $a<b$,
- $[g]_{\theta}<[X]_{\theta}<[h]_{\theta}$,

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A}.

$$
P=\bigvee_{i=0}^{n} a_{i} X^{i}
$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

- $[a]_{\theta}<[b]_{\theta}$ iff $a<b$,
- $[g]_{\theta}<[X]_{\theta}<[h]_{\theta}$,
- $\mathbf{A}[X] / \theta$ is a commutative residuated chain.

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A}.

$$
P=\bigvee_{i=0}^{n} a_{i} X^{i}
$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

- $[a]_{\theta}<[b]_{\theta}$ iff $a<b$,
- $[g]_{\theta}<[X]_{\theta}<[h]_{\theta}$,
- $\mathbf{A}[X] / \theta$ is a commutative residuated chain.

The congruence $\Theta(X, h)$ satisfies all above except of $[X]_{\Theta(X, h)}<[h]_{\Theta(X, h)}$.

Polynomial semiring

Let \mathbf{A} be a commutative residuated chain with a gap $g<h$.
Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A}.

$$
P=\bigvee_{i=0}^{n} a_{i} X^{i}
$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

- $[a]_{\theta}<[b]_{\theta}$ iff $a<b$,
- $[g]_{\theta}<[X]_{\theta}<[h]_{\theta}$,
- $\mathbf{A}[X] / \theta$ is a commutative residuated chain.

The congruence $\Theta(X, h)$ satisfies all above except of $[X]_{\Theta(X, h)}<[h]_{\Theta(X, h)}$.
Consider the congruence $\Theta\left(X^{2}, h X\right)$. Then $\mathbf{A}(X) \cong \mathbf{A}[X] / \Theta\left(X^{2}, h X\right)$.

Syntactic (Leibniz) congruence

Let \mathbf{M} be a commutative monoid and $L \subseteq M$. Then the syntactic congruence \sim_{L} of L is the following relation:

$$
a \sim_{L} b \quad \text { iff } \quad \forall c \in M: c a \in L \Leftrightarrow c b \in L
$$

Syntactic (Leibniz) congruence

Let \mathbf{M} be a commutative monoid and $L \subseteq M$. Then the syntactic congruence \sim_{L} of L is the following relation:

$$
a \sim_{L} b \quad \text { iff } \quad \forall c \in M: c a \in L \Leftrightarrow c b \in L
$$

The congruence \sim_{L} is the largest monoid congruence which saturates L.

In particular, $a \not \chi_{L} b$ for every $a \in L$ and $b \notin L$.

Syntactic (Leibniz) congruence

Let \mathbf{M} be a commutative monoid and $L \subseteq M$. Then the syntactic congruence \sim_{L} of L is the following relation:

$$
a \sim_{L} b \quad \text { iff } \quad \forall c \in M: c a \in L \Leftrightarrow c b \in L
$$

The congruence \sim_{L} is the largest monoid congruence which saturates L.

In particular, $a \not \chi_{L} b$ for every $a \in L$ and $b \notin L$.

If \mathbf{M} is an ic-semiring and L an ideal, then \sim_{L} is a semiring congruence.

Explanation via syntactic congruence

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Explanation via syntactic congruence

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by
$\{g, X\}$, i.e., $L=\downarrow\{g \vee X\}$.

Explanation via syntactic congruence

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by $\{g, X\}$, i.e., $L=\downarrow\{g \vee X\}$.

$\mathbf{A}(X)$

Explanation via syntactic congruence

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by $\{g, X\}$, i.e., $L=\downarrow\{g \vee X\}$.

$\mathbf{A}(X)$

Lemma

$\mathbf{A}(X)_{\gamma} \cong \mathbf{A}(X) / \theta$ where $\theta=\Theta(X, h) \cap \sim_{L}$.

Explanation via syntactic congruence

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by $\{g, X\}$, i.e., $L=\downarrow\{g \vee X\}$.

$\mathbf{A}(X)$

Lemma

$\mathbf{A}(X)_{\gamma} \cong \mathbf{A}(X) / \theta$ where $\theta=\Theta(X, h) \cap \sim_{L}$.

For other explanations see my webpage: www.cs.cas.cz/~horcik

Mixed amalgamation

Theorem
Let A, C be chains, \mathbf{B} a commutative residuated chain and let $f_{B}: A \rightarrow B$ and $f_{C}: A \rightarrow C$ be order embeddings. Then there is a commutative residuated chain \mathbf{D}, an order embedding $g_{C}: C \rightarrow D$ and a residuated lattice embedding $g_{B}: \mathbf{B} \rightarrow \mathbf{D}$ such that the right diagram commutes.

Thank you!

