Densification via Polynomial Extensions

Rostislav Horčík joint work with Nikolaos Galatos

Institute of Computer Science Academy of Sciences of the Czech Republic

Logic, Algebra and Truth Degrees Vienna, 16–19 July 2014

Introduction

Theorem (Cantor)

Every at most countable chain $\langle A, \leq \rangle$ is embeddable into the dense chain of rational numbers $\langle \mathbb{Q}, \leq \rangle$.

Introduction

Theorem (Cantor)

Every at most countable chain $\langle A, \leq \rangle$ is embeddable into the dense chain of rational numbers $\langle \mathbb{Q}, \leq \rangle$.

What happens if $\langle A, \leq \rangle$ bears other structure, e.g. $\langle A, \leq \rangle$ being a monoid or a residuated lattice?

Introduction

Theorem (Cantor)

Every at most countable chain $\langle A, \leq \rangle$ is embeddable into the dense chain of rational numbers $\langle \mathbb{Q}, \leq \rangle$.

What happens if $\langle A, \leq \rangle$ bears other structure, e.g. $\langle A, \leq \rangle$ being a monoid or a residuated lattice?

Question

Let **A** be a totally ordered (countable) monoid (resp. residuated lattice). Is there a dense totally ordered (countable) monoid (resp. residuated lattice) $\bar{\mathbf{A}}$ into which **A** is embeddable?

Introduction (cont.)

The answer for A being a totally ordered residuated lattice (residuated chain) is in general negative.

Introduction (cont.)

The answer for \mathbf{A} being a totally ordered residuated lattice (residuated chain) is in general negative.

Theorem

The class of dense residuated chains satisfies the identity $x \setminus 1 = 1/x$ or equivalently $xy \leq 1 \implies yx \leq 1$.

Introduction (cont.)

The answer for A being a totally ordered residuated lattice (residuated chain) is in general negative.

Theorem

The class of dense residuated chains satisfies the identity $x \setminus 1 = 1/x$ or equivalently $xy \leq 1 \implies yx \leq 1$.

Theorem (Metcalfe, Montagna, Ciabattoni, Terui, Galatos, RH)

Let **A** be a commutative totally ordered (countable) monoid (resp. residuated lattice). Then **A** is embeddable into a dense totally ordered (countable) monoid (resp. residuated lattice).

One-step densification

Definition

A class \mathbb{K} of ordered algebras is said to be densifiable if every gap (g, h) of a chain in \mathbb{K} can be filled by another chain in \mathbb{K} .

One-step densification

Definition

A class \mathbb{K} of ordered algebras is said to be densifiable if every gap (g, h) of a chain in \mathbb{K} can be filled by another chain in \mathbb{K} .

Theorem

Let \mathbb{K} be a densifiable variety. Then every (nontrivial) at most countable chain in \mathbb{K} is embeddable into a countable dense chain in \mathbb{K} .

Rostislav Horčík (ICS)

Densification

Let **A** be a totally ordered commutative monoid (or residuated lattice) with a gap g < h.

Let **A** be a totally ordered commutative monoid (or residuated lattice) with a gap g < h.

The naive way to create a one-step densification is of course to add a single new element p to the algebra **A**.

Let **A** be a totally ordered commutative monoid (or residuated lattice) with a gap g < h.

The naive way to create a one-step densification is of course to add a single new element p to the algebra **A**.

By order preservation and $g \leq p \leq h$, we have for all $a \in A$:

 $ag \leq ap \leq ah$.

Let **A** be a totally ordered commutative monoid (or residuated lattice) with a gap g < h.

The naive way to create a one-step densification is of course to add a single new element p to the algebra **A**.

By order preservation and $g \leq p \leq h$, we have for all $a \in A$:

 $ag \leq ap \leq ah$.

Therefore, we have to define $a \cdot p = ah$ (or similarly $a \cdot g = ag$) excluding a = 1, as we surely want $1 \cdot p = p$.

Let **A** be a totally ordered commutative monoid (or residuated lattice) with a gap g < h.

The naive way to create a one-step densification is of course to add a single new element p to the algebra **A**.

By order preservation and $g \leq p \leq h$, we have for all $a \in A$:

 $ag \leq ap \leq ah$.

Therefore, we have to define $a \cdot p = ah$ (or similarly $a \cdot g = ag$) excluding a = 1, as we surely want $1 \cdot p = p$.

If ab = 1 for some $a, b \in A$, then

$$p=1\cdot p=(ab)\cdot p=a(b\cdot p)=a(bh)=(ab)h=h>p\,.$$

Idempotent semirings and residuated lattices

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

- $\mathbf{A}=\langle \textit{A}, \lor, \cdot, 1 \rangle$ such that
 - $\langle A, \lor
 angle$ is semilattice,
 - $\langle A, \cdot, 1
 angle$ is a commutative monoid,
 - $a(b \lor c) = ab \lor ac$.

Idempotent semirings and residuated lattices

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

- $\mathbf{A} = \langle A, ee, \cdot, 1
 angle$ such that
 - $\langle A, \lor
 angle$ is semilattice,
 - $\langle {\it A}, \cdot, 1
 angle$ is a commutative monoid,
 - $a(b \lor c) = ab \lor ac$.

Definition

A commutative residuated lattice is an algebra $\bm{A}=\langle A,\wedge,\vee,\cdot,\rightarrow,1\rangle$ such that

- $\langle {\cal A}, ee, \cdot, 1
 angle$ is an ic-semiring,
- $\langle A, \wedge, \vee
 angle$ is a lattice,
- $ab \leq c$ iff $b \leq a \rightarrow c$.

Idempotent semirings and residuated lattices

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

 $\mathbf{A} = \langle A, ee, \cdot, 1
angle$ such that

- $\langle A, \lor \rangle$ is semilattice,
- $\langle {\it A}, \cdot, 1
 angle$ is a commutative monoid,

•
$$a(b \lor c) = ab \lor ac$$
.

Definition

A commutative residuated lattice is an algebra $\bm{A}=\langle A,\wedge,\vee,\cdot,\rightarrow,1\rangle$ such that

- $\langle {\cal A}, ee, \cdot, 1
 angle$ is an ic-semiring,
- $\langle A, \wedge, \vee
 angle$ is a lattice,
- $ab \leq c$ iff $b \leq a \rightarrow c$.

We assume that our algebras always have a bottom element $\bot.$

Let ${\bf A}$ be a commutative residuated lattice. Then the following concepts are equivalent:

() A nucleus on **A** is a closure operator $\gamma: A \rightarrow A$ such that

 $\gamma(a)\gamma(b)\leq\gamma(ab)$.

Let ${\bf A}$ be a commutative residuated lattice. Then the following concepts are equivalent:

() A nucleus on **A** is a closure operator $\gamma: A \rightarrow A$ such that

 $\gamma(a)\gamma(b) \leq \gamma(ab)$.

A nuclear retraction is a subset C ⊆ A forming a closure system such that

$$a \in A \text{ and } c \in C \implies a
ightarrow c \in C$$
.

Let ${\bf A}$ be a commutative residuated lattice. Then the following concepts are equivalent:

() A nucleus on **A** is a closure operator $\gamma: A \rightarrow A$ such that

$$\gamma(a)\gamma(b) \leq \gamma(ab)$$
.

A nuclear retraction is a subset C ⊆ A forming a closure system such that

$$a \in A \text{ and } c \in C \implies a \rightarrow c \in C$$
.

(3) A semiring congruence $\theta \subseteq A \times A$ such that

 $\max[a]_{\theta}$ exists for all $a \in A$.

Let ${\bf A}$ be a commutative residuated lattice. Then the following concepts are equivalent:

() A nucleus on **A** is a closure operator $\gamma: A \rightarrow A$ such that

$$\gamma(a)\gamma(b) \leq \gamma(ab)$$
.

A nuclear retraction is a subset C ⊆ A forming a closure system such that

$$a \in A \text{ and } c \in C \implies a \rightarrow c \in C$$
.

(3) A semiring congruence $\theta \subseteq A \times A$ such that

 $\max[a]_{\theta}$ exists for all $a \in A$.

Fact

The semiring \mathbf{A}/θ forms a commutative residuated lattice \mathbf{A}_{γ} .

Fields extensions

Suppose we want to extend the field of rational numbers Q by √2.
 {a + b√2 | a, b ∈ Q},

$$(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}$$
 .

Fields extensions

Suppose we want to extend the field of rational numbers \mathbb{Q} by $\sqrt{2}$. $\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\},\$

$$(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}.$$

Solution First, consider the polynomial ring $\mathbb{Q}[X]$ and the take a quotient by the principal congruence $\Theta(X^2, 2)$.

Then the congruence class of X plays the role of $\sqrt{2}$.

Every congruence class has a representative of the form a + bX for $a, b \in \mathbb{Q}$.

Note that $\mathbb{Q}[X]$ is not a field, the divisions are recoved in the quotient $\mathbb{Q}[X]/\Theta(X^2, 2)$.

Let **A** be a commutative residuated chain with a gap g < h.

Let **A** be a commutative residuated chain with a gap g < h.

Let $A(X) = \{p_0 \lor p_1 X \mid p_0, p_1 \in A\}.$

Let **A** be a commutative residuated chain with a gap g < h.

Let $A(X) = \{p_0 \lor p_1 X \mid p_0, p_1 \in A\}$. Define the following operations on A(X):

 $(p_0 \lor p_1 X) \lor (q_0 \lor q_1 X) = (p_0 \lor q_0) \lor (p_1 \lor q_1) X \ (p_0 \lor p_1 X) \land (q_0 \lor q_1 X) = (p_0 \land q_0) \lor (p_1 \land q_1) X$

Let **A** be a commutative residuated chain with a gap g < h.

Let $A(X) = \{p_0 \lor p_1 X \mid p_0, p_1 \in A\}$. Define the following operations on A(X):

$$\begin{array}{l} (p_0 \lor p_1 X) \lor (q_0 \lor q_1 X) = (p_0 \lor q_0) \lor (p_1 \lor q_1) X \\ (p_0 \lor p_1 X) \land (q_0 \lor q_1 X) = (p_0 \land q_0) \lor (p_1 \land q_1) X \\ (p_0 \lor p_1 X) (q_0 \lor q_1 X) = p_0 q_0 \lor (p_1 q_0 \lor p_0 q_1 \lor p_1 q_1 h) X \\ (p_0 \lor p_1 X) \to (q_0 \lor q_1 X) = [(p_0 \to q_0) \land (p_1 \to q_1)] \lor [(p_0 \lor p_1 h) \to q_1] X \end{array}$$

Let **A** be a commutative residuated chain with a gap g < h.

Let $A(X) = \{p_0 \lor p_1 X \mid p_0, p_1 \in A\}$. Define the following operations on A(X):

$$(p_0 \lor p_1 X) \lor (q_0 \lor q_1 X) = (p_0 \lor q_0) \lor (p_1 \lor q_1) X$$

 $(p_0 \lor p_1 X) \land (q_0 \lor q_1 X) = (p_0 \land q_0) \lor (p_1 \land q_1) X$
 $(p_0 \lor p_1 X) (q_0 \lor q_1 X) = p_0 q_0 \lor (p_1 q_0 \lor p_0 q_1 \lor p_1 q_1 h) X$
 $(p_0 \lor p_1 X) \to (q_0 \lor q_1 X) = [(p_0 \to q_0) \land (p_1 \to q_1)] \lor [(p_0 \lor p_1 h) \to q_1] X$

Lemma

The algebra $\mathbf{A}(X) = \langle A(X), \wedge, \vee, \cdot, \rightarrow, 1 \rangle$ is a commutative residuated lattice.

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

 $\hat{a} = a \lor (h
ightarrow a) X \, ,$ $\tilde{a} = (a
ightarrow g) \lor (a
ightarrow 1) X \, .$

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

 $\hat{a} = a \lor (h
ightarrow a) X \, ,$ $\tilde{a} = (a
ightarrow g) \lor (a
ightarrow 1) X \, .$

Theorem

• C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

 $\hat{a} = a \lor (h
ightarrow a) X \, ,$ $\tilde{a} = (a
ightarrow g) \lor (a
ightarrow 1) X \, .$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

 $\hat{a} = a \lor (h
ightarrow a) X \, ,$ $\tilde{a} = (a
ightarrow g) \lor (a
ightarrow 1) X \, .$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.
- A embeds into $A(X)_{\gamma}$ via $a \mapsto \hat{a}$.

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

 $\hat{a} = a \lor (h
ightarrow a) X \, ,$ $\tilde{a} = (a
ightarrow g) \lor (a
ightarrow 1) X \, .$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.
- A embeds into $A(X)_{\gamma}$ via $a \mapsto \hat{a}$.
- $\hat{g} < \tilde{1} < \hat{h}$.

Consider the subset $C \subseteq \mathbf{A}(X)$ consisting of the following linear polynomials for all $a \in A$:

 $\hat{a} = a \lor (h
ightarrow a) X \, ,$ $\tilde{a} = (a
ightarrow g) \lor (a
ightarrow 1) X \, .$

Theorem

- C is a nuclear retraction corresponding to a nucleus γ on $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is a commutative residuated lattice.
- C forms a subchain of $\mathbf{A}(X)$. Thus $\mathbf{A}(X)_{\gamma}$ is totally ordered.
- A embeds into $A(X)_{\gamma}$ via $a \mapsto \hat{a}$.
- $\hat{g} < \tilde{1} < \hat{h}$.

Thus $\mathbf{A}(X)_{\gamma}$ is a one-step densification of \mathbf{A} at the gap g < h.

Let $\mathbf{A} = \mathbf{L}_3$ be the 3-element MV-chain on the set $\{0, 1/2, 1\}$ and g = 1/2, h = 1.

Let $\mathbf{A} = \mathbf{L}_3$ be the 3-element MV-chain on the set $\{0, 1/2, 1\}$ and g = 1/2, h = 1.

Let $\mathbf{A} = \mathbf{L}_3$ be the 3-element MV-chain on the set $\{0, 1/2, 1\}$ and g = 1/2, h = 1.

The resulting residuated chain is isomorphic to $L_3 \oplus 2$.

Let $\mathbf{A} = \langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$, g = 0 and h = 1.

Let $\mathbf{A} = \langle \mathbb{Z}, \min, \max, +, -, 0 \rangle$, g = 0 and h = 1.

$$\hat{a} \cdot \tilde{b} = \widetilde{b-a}$$

 $\tilde{a} \cdot \tilde{b} = \widetilde{a+b-1}$

Let **A** be a commutative residuated chain with a gap g < h.

Let **A** be a commutative residuated chain with a gap g < h.

Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A} .

$$P = \bigvee_{i=0}^{n} a_i X^i$$

Let **A** be a commutative residuated chain with a gap g < h.

Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A} .

$$P = \bigvee_{i=0}^{n} a_i X^i$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

Let **A** be a commutative residuated chain with a gap g < h.

Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A} .

$$P = \bigvee_{i=0}^{n} a_i X^i$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

•
$$[a]_{\theta} < [b]_{\theta}$$
 iff $a < b$,

Let **A** be a commutative residuated chain with a gap g < h.

Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A} .

$$P = \bigvee_{i=0}^{n} a_i X^i$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

•
$$[a]_{ heta} < [b]_{ heta}$$
 iff $a < b$,

• $[g]_{\theta} < [X]_{\theta} < [h]_{\theta}$,

Let **A** be a commutative residuated chain with a gap g < h.

Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A} .

$$P = \bigvee_{i=0}^{n} a_i X^i$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

•
$$[a]_{\theta} < [b]_{\theta}$$
 iff $a < b$,

•
$$[g]_{ heta} < [X]_{ heta} < [h]_{ heta}$$
,

• $\mathbf{A}[X]/\theta$ is a commutative residuated chain.

Let **A** be a commutative residuated chain with a gap g < h.

Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A} .

$$P = \bigvee_{i=0}^{n} a_i X^i$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

- $[a]_{\theta} < [b]_{\theta}$ iff a < b,
- $[g]_{\theta} < [X]_{\theta} < [h]_{\theta}$,
- $\mathbf{A}[X]/\theta$ is a commutative residuated chain.

The congruence $\Theta(X, h)$ satisfies all above except of $[X]_{\Theta(X,h)} < [h]_{\Theta(X,h)}$.

Let **A** be a commutative residuated chain with a gap g < h.

Form the polynomial semiring $\mathbf{A}[X]$ over the semiring reduct of \mathbf{A} .

$$P = \bigvee_{i=0}^{n} a_i X^i$$

We are looking for a semiring congruence θ on $\mathbf{A}[X]$ having the following properties $a, b \in A$:

•
$$[a]_{\theta} < [b]_{\theta}$$
 iff $a < b$,

- $[g]_{\theta} < [X]_{\theta} < [h]_{\theta}$,
- $\mathbf{A}[X]/\theta$ is a commutative residuated chain.

The congruence $\Theta(X, h)$ satisfies all above except of $[X]_{\Theta(X,h)} < [h]_{\Theta(X,h)}$. Consider the congruence $\Theta(X^2, hX)$. Then $\mathbf{A}(X) \cong \mathbf{A}[X]/\Theta(X^2, hX)$.

Syntactic (Leibniz) congruence

Let **M** be a commutative monoid and $L \subseteq M$. Then the syntactic congruence \sim_L of *L* is the following relation:

 $a \sim_L b$ iff $\forall c \in M : ca \in L \Leftrightarrow cb \in L$

Syntactic (Leibniz) congruence

Let **M** be a commutative monoid and $L \subseteq M$. Then the syntactic congruence \sim_L of *L* is the following relation:

 $a \sim_L b$ iff $\forall c \in M : ca \in L \Leftrightarrow cb \in L$

The congruence \sim_L is the largest monoid congruence which saturates *L*.

In particular, $a \not\sim_L b$ for every $a \in L$ and $b \notin L$.

Syntactic (Leibniz) congruence

Let **M** be a commutative monoid and $L \subseteq M$. Then the syntactic congruence \sim_L of *L* is the following relation:

 $a \sim_L b$ iff $\forall c \in M : ca \in L \Leftrightarrow cb \in L$

The congruence \sim_L is the largest monoid congruence which saturates *L*.

In particular, $a \not\sim_L b$ for every $a \in L$ and $b \notin L$.

If **M** is an ic-semiring and L an ideal, then \sim_L is a semiring congruence.

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by $\{g, X\}$, i.e., $L = \downarrow \{g \lor X\}$.

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by $\{g, X\}$, i.e., $L = \downarrow \{g \lor X\}$.

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by $\{g, X\}$, i.e., $L = \downarrow \{g \lor X\}$.

Lemma

$$\mathbf{A}(X)_{\gamma} \cong \mathbf{A}(X)/\theta$$
 where $\theta = \Theta(X, h) \cap \sim_L$.

In order to make $\Theta(X, h)$ slightly smaller, we intersect it with a syntactic congruence which separates X from h.

Let $L \subseteq A(X)$ be the ideal generated by $\{g, X\}$, i.e., $L = \downarrow \{g \lor X\}$.

Lemma

$$\mathbf{A}(X)_{\gamma} \cong \mathbf{A}(X)/ heta$$
 where $\theta = \Theta(X, h) \cap \sim_L$.

For other explanations see my webpage: www.cs.cas.cz/~horcik

Theorem

Let A, C be chains, **B** a commutative residuated chain and let $f_B : A \to B$ and $f_C : A \to C$ be order embeddings. Then there is a commutative residuated chain **D**, an order embedding $g_C : C \to D$ and a residuated lattice embedding $g_B : \mathbf{B} \to \mathbf{D}$ such that the right diagram commutes.

Thank you!