Cancellative residuated lattices arising on 2-generated submonoids of natural numbers

Rostislav Horčík

Institute of Computer Science
Academy of Sciences of the Czech Republic
Lattice-Valued Logic and its Applications 31st Linz Seminar
February 9-13, 2010

Motivation

- There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).

Motivation

- There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).
- The first one is the variety $\mathcal{V}(\mathbf{Z})$ of Abelian ℓ-groups and the second one is the variety $\mathcal{V}\left(\mathbf{Z}^{-}\right)$of negative cones of Abelian ℓ-groups.

Motivation

- There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).
- The first one is the variety $\mathcal{V}(\mathbf{Z})$ of Abelian ℓ-groups and the second one is the variety $\mathcal{V}\left(\mathbf{Z}^{-}\right)$of negative cones of Abelian ℓ-groups.
- What is above $\mathcal{V}\left(\mathbf{Z}^{-}\right)$? It is known that $\mathcal{V}(\mathbf{Z})$ has uncountably many covers (Holand 1994) and therefore $\mathcal{V}\left(\mathbf{Z}^{-}\right)$as well.

Motivation

- There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).
- The first one is the variety $\mathcal{V}(\mathbf{Z})$ of Abelian ℓ-groups and the second one is the variety $\mathcal{V}\left(\mathbf{Z}^{-}\right)$of negative cones of Abelian ℓ-groups.
- What is above $\mathcal{V}\left(\mathbf{Z}^{-}\right)$? It is known that $\mathcal{V}(\mathbf{Z})$ has uncountably many covers (Holand 1994) and therefore $\mathcal{V}\left(\mathbf{Z}^{-}\right)$as well.
- The question is what happens if we restrict the covers to satisfy other well-known identities like commutativity, integrality, representability.

Motivation (cont.)

- In order to obtain algebras generating covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$, I considered several 2-generated submonoids of \mathbf{Z}^{-}and found countably many commutative, integral and representable covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$.

Motivation (cont.)

- In order to obtain algebras generating covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$, I considered several 2-generated submonoids of \mathbf{Z}^{-}and found countably many commutative, integral and representable covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$.
- In this talk I will consider all varieties generated by any 2-generated submonoid of \mathbf{Z}^{-}and describe which of them cover $\mathcal{V}\left(\mathbf{Z}^{-}\right)$.

Motivation (cont.)

- In order to obtain algebras generating covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$, I considered several 2-generated submonoids of \mathbf{Z}^{-}and found countably many commutative, integral and representable covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$.
- In this talk I will consider all varieties generated by any 2-generated submonoid of \mathbf{Z}^{-}and describe which of them cover $\mathcal{V}\left(\mathbf{Z}^{-}\right)$.
- Moreover, I will characterize the inclusion relation among these varieties (i.e., the order in the subvariety lattice).

Motivation (cont.)

- In order to obtain algebras generating covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$, I considered several 2-generated submonoids of \mathbf{Z}^{-}and found countably many commutative, integral and representable covers of $\mathcal{V}\left(\mathbf{Z}^{-}\right)$.
- In this talk I will consider all varieties generated by any 2-generated submonoid of \mathbf{Z}^{-}and describe which of them cover $\mathcal{V}\left(\mathbf{Z}^{-}\right)$.
- Moreover, I will characterize the inclusion relation among these varieties (i.e., the order in the subvariety lattice).
- In order to apply some facts from elementar number theory, I will work in the dual (term-wise equivalent) setting and consider 2-generated sumonoids of natural numbers.

Algebras of interest

- A dual integral commutative residuated lattice (dICRL) is an algebra $\mathbf{A}=(A, \wedge, \vee,+,-, 0)$, where the following conditions are satisfied:
- $(A,+, 0)$ is a commutative monoid,
- $(A, \wedge, \vee, 0)$ is a lattice with a bottom element 0 ,
- $x+y \geq z$ iff $x \geq z \dot{-} y$.

Algebras of interest

- A dual integral commutative residuated lattice (dICRL) is an algebra $\mathbf{A}=(A, \wedge, \vee,+,-, 0)$, where the following conditions are satisfied:
- $(A,+, 0)$ is a commutative monoid,
- $(A, \wedge, \vee, 0)$ is a lattice with a bottom element 0 ,
- $x+y \geq z$ iff $x \geq z \dot{-} y$.
- A dICRL is cancellative if + is cancellative; $(x+y) \doteq y=x$.

Algebras of interest

- A dual integral commutative residuated lattice (dICRL) is an algebra $\mathbf{A}=(A, \wedge, \vee,+,-, 0)$, where the following conditions are satisfied:
- $(A,+, 0)$ is a commutative monoid,
- $(A, \wedge, \vee, 0)$ is a lattice with a bottom element 0 ,
- $x+y \geq z$ iff $x \geq z \dot{-} y$.
- A dICRL is cancellative if + is cancellative; $(x+y) \doteq y=x$.
- A dICRL is divisible if it satisfies $x \vee y=(y \dot{-x})+x$.

Algebras of interest

- A dual integral commutative residuated lattice (dICRL) is an algebra $\mathbf{A}=(A, \wedge, \vee,+,-, 0)$, where the following conditions are satisfied:
- $(A,+, 0)$ is a commutative monoid,
- $(A, \wedge, \vee, 0)$ is a lattice with a bottom element 0 ,
- $x+y \geq z$ iff $x \geq z \dot{-} y$.
- A dICRL is cancellative if + is cancellative; $(x+y) \doteq y=x$.
- A dICRL is divisible if it satisfies $x \vee y=(y-x)+x$.
- $\mathbf{N}=\langle\mathbb{N}, \min , \max ,+,-, 0\rangle$, where $y \dot{ } x=\max (y-x, 0)$, is a cancellative divisible dICRL.

Algebras of interest

- A dual integral commutative residuated lattice (dICRL) is an algebra $\mathbf{A}=(A, \wedge, \vee,+,-, 0)$, where the following conditions are satisfied:
- $(A,+, 0)$ is a commutative monoid,
- $(A, \wedge, \vee, 0)$ is a lattice with a bottom element 0 ,
- $x+y \geq z$ iff $x \geq z \dot{-} y$.
- A dICRL is cancellative if + is cancellative; $(x+y) \doteq y=x$.
- A dICRL is divisible if it satisfies $x \vee y=(y \dot{ } x)+x$.
- $\mathbf{N}=\langle\mathbb{N}, \min , \max ,+,-, 0\rangle$, where $y \dot{ } x=\max (y-x, 0)$, is a cancellative divisible dICRL.
- \mathbf{N} is the term-wise equivalent dual of \mathbf{Z}^{-}.

Algebras of interest

- A dual integral commutative residuated lattice (dICRL) is an algebra $\mathbf{A}=(A, \wedge, \vee,+,-, 0)$, where the following conditions are satisfied:
- $(A,+, 0)$ is a commutative monoid,
- $(A, \wedge, \vee, 0)$ is a lattice with a bottom element 0 ,
- $x+y \geq z$ iff $x \geq z$ - y.
- A dICRL is cancellative if + is cancellative; $(x+y) \doteq y=x$.
- A dICRL is divisible if it satisfies $x \vee y=(y \dot{ } x)+x$.
- $\mathbf{N}=\langle\mathbb{N}, \min , \max ,+,-, 0\rangle$, where $y \dot{ } x=\max (y-x, 0)$, is a cancellative divisible dICRL.
- \mathbf{N} is the term-wise equivalent dual of \mathbf{Z}^{-}.

Theorem (Blok, Ferreirim)
Let \mathbf{A} be a totally ordered cancellative dICRL. Then $\mathbf{A} \in \mathcal{V}(\mathbf{N})$ iff \mathbf{A} is divisible.

Submonoids of \mathbb{N}

- Let $a_{1}, \ldots, a_{k} \in \mathbb{N}$. Then $M\left(a_{1}, \ldots, a_{k}\right)=\left\{\sum_{i=1}^{k} n_{i} a_{i} \mid n_{i} \in \mathbb{N}\right\}$ denotes the subuniverse of $\langle\mathbb{N},+, 0\rangle$ generated by $\left\{a_{1}, \ldots, a_{k}\right\}$.

Submonoids of \mathbb{N}

- Let $a_{1}, \ldots, a_{k} \in \mathbb{N}$. Then $M\left(a_{1}, \ldots, a_{k}\right)=\left\{\sum_{i=1}^{k} n_{i} a_{i} \mid n_{i} \in \mathbb{N}\right\}$ denotes the subuniverse of $\langle\mathbb{N},+, 0\rangle$ generated by $\left\{a_{1}, \ldots, a_{k}\right\}$.
- If a_{1}, \ldots, a_{n} are coprime, then $\mathbb{N} \backslash M\left(a_{1}, \ldots, a_{k}\right)$ is always finite and the greatest number which does not belong to $M\left(a_{1}, \ldots, a_{k}\right)$ is called the Frobenius number. This number is usually denoted $g\left(a_{1}, \ldots, a_{k}\right)$.

Submonoids of \mathbb{N}

- Let $a_{1}, \ldots, a_{k} \in \mathbb{N}$. Then $M\left(a_{1}, \ldots, a_{k}\right)=\left\{\sum_{i=1}^{k} n_{i} a_{i} \mid n_{i} \in \mathbb{N}\right\}$ denotes the subuniverse of $\langle\mathbb{N},+, 0\rangle$ generated by $\left\{a_{1}, \ldots, a_{k}\right\}$.
- If a_{1}, \ldots, a_{n} are coprime, then $\mathbb{N} \backslash M\left(a_{1}, \ldots, a_{k}\right)$ is always finite and the greatest number which does not belong to $M\left(a_{1}, \ldots, a_{k}\right)$ is called the Frobenius number. This number is usually denoted $g\left(a_{1}, \ldots, a_{k}\right)$.
- For $k=2$ Sylvester found in 1884 an explicit expression $g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$.

Submonoids of \mathbb{N}

- Let $a_{1}, \ldots, a_{k} \in \mathbb{N}$. Then $M\left(a_{1}, \ldots, a_{k}\right)=\left\{\sum_{i=1}^{k} n_{i} a_{i} \mid n_{i} \in \mathbb{N}\right\}$ denotes the subuniverse of $\langle\mathbb{N},+, 0\rangle$ generated by $\left\{a_{1}, \ldots, a_{k}\right\}$.
- If a_{1}, \ldots, a_{n} are coprime, then $\mathbb{N} \backslash M\left(a_{1}, \ldots, a_{k}\right)$ is always finite and the greatest number which does not belong to $M\left(a_{1}, \ldots, a_{k}\right)$ is called the Frobenius number. This number is usually denoted $g\left(a_{1}, \ldots, a_{k}\right)$.
- For $k=2$ Sylvester found in 1884 an explicit expression $g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$.
- If a_{1}, \ldots, a_{k} are not coprime and $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)$, then for any $b>g\left(a_{1} / d, \ldots, a_{k} / d\right)$ we have $b d \in M\left(a_{1}, \ldots, a_{k}\right)$.

dICRLs arising from $M(a, b)$

- Let $\langle a, b\rangle \in \mathbb{N}^{2}$. Then $\mathbf{M}(a, b)=(M(a, b), \min , \max ,+, \dot{-}, 0)$ is a simple cancellative dICRL, where

$$
x \dot{-y}=\min \{z \in M(a, b) \mid z \geq x-y\}
$$

i.e., $x \dot{-}=x-y$ if $x-y \in M(a, b)$ and $x \dot{\succ}>x-y$ otherwise.

dICRLs arising from $M(a, b)$

- Let $\langle a, b\rangle \in \mathbb{N}^{2}$. Then $\mathbf{M}(a, b)=(M(a, b), \min , \max ,+, \dot{-}, 0)$ is a simple cancellative dICRL, where

$$
x \doteq y=\min \{z \in M(a, b) \mid z \geq x-y\}
$$

i.e., $x \dot{-}=x-y$ if $x-y \in M(a, b)$ and $x \dot{\succ}>x-y$ otherwise.

- We will consider varieties $\mathcal{V}(\mathbf{M}(a, b))$ for $1<a<b, a, b$ coprime.

$$
\text { Gen }=\left\{\langle a, b\rangle \in \mathbb{N}^{2} \mid 1<a<b, a, b \text { coprime }\right\} .
$$

Generators - the set Gen

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

- We want to show that different tuples from Gen generate different varieties.

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

- We want to show that different tuples from Gen generate different varieties.
- This can be done for tuples with different first components by using the following identities for $k \in \mathbb{N}$:

$$
k x \vee k y=(k y \dot{-k x})+k x
$$

which we call k-divisibility.

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

- We want to show that different tuples from Gen generate different varieties.
- This can be done for tuples with different first components by using the following identities for $k \in \mathbb{N}$:

$$
k x \vee k y=(k y \dot{-k x})+k x,
$$

which we call k-divisibility.

Lemma

Let $\langle a, b\rangle \in G e n$. Then $\mathbf{M}(a, b)$ satisfies the a-divisibility. In addition, $\mathbf{M}(a, b)$ does not satisfy k-divisibility for any $k \in[1, a-1]$.

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

- In order to separate the varieties generated by tuples with the same first component, we introduce the following identities for each $n \in \mathbb{N}$:

$$
\begin{equation*}
z \wedge(((y \dot{-} x)+x) \dot{-}(x \vee y)) \leq(x+n z) \dot{-} y . \tag{1n}
\end{equation*}
$$

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

- In order to separate the varieties generated by tuples with the same first component, we introduce the following identities for each $n \in \mathbb{N}$:

$$
\begin{equation*}
z \wedge(((y \dot{-x})+x) \dot{ }(x \vee y)) \leq(x+n z) \dot{-} y \tag{1n}
\end{equation*}
$$

Lemma
Let $\langle a, b\rangle \in$ Gen. Then $\mathbf{M}(a, b)$ satisfies the identity (1n) for $n=\lceil g(a, b) / a\rceil$.

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

- In order to separate the varieties generated by tuples with the same first component, we introduce the following identities for each $n \in \mathbb{N}$:

$$
\begin{equation*}
z \wedge(((y \dot{-x})+x) \dot{ }(x \vee y)) \leq(x+n z) \dot{-} y \tag{1n}
\end{equation*}
$$

Lemma

Let $\langle a, b\rangle \in$ Gen. Then $\mathbf{M}(a, b)$ satisfies the identity (1n) for $n=\lceil g(a, b) / a\rceil$.

Lemma
Let $\langle a, b\rangle,\langle a, c\rangle \in G e n$ and $b<c$. Then $\mathbf{M}(a, c)$ does not satisfy the identity $(1 n)$ for $n=\lceil g(a, b) / a\rceil$.

Is mapping $\langle a, b\rangle \in \operatorname{Gen} \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

Summary

Let $\langle a, b\rangle,\langle c, d\rangle \in$ Gen such that $\langle a, b\rangle \neq\langle c, d\rangle$. Then

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

Summary

Let $\langle a, b\rangle,\langle c, d\rangle \in$ Gen such that $\langle a, b\rangle \neq\langle c, d\rangle$. Then
(1) $\mathcal{V}(\mathbf{M}(a, b)) \neq \mathcal{V}(\mathbf{M}(c, d))$,

Is mapping $\langle a, b\rangle \in G e n \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

Summary

Let $\langle a, b\rangle,\langle c, d\rangle \in$ Gen such that $\langle a, b\rangle \neq\langle c, d\rangle$. Then

- $\mathcal{V}(\mathbf{M}(a, b)) \neq \mathcal{V}(\mathbf{M}(c, d))$,
(2) $\mathcal{V}(\mathbf{N}) \subsetneq \mathcal{V}(\mathbf{M}(a, b))$.

Subalgebras of $\mathbf{M}(a, b)$

Lemma

Let $a, b \in \mathbb{N}$. Then each divisible nontrivial subalgebra \mathbf{B} of $\mathbf{M}(a, b)$ is isomorphic to \mathbf{N}.

- Thus we are interested only in subalgebras which are not divisible.

Subalgebras of $\mathbf{M}(a, b)$

Lemma

Let $a, b \in \mathbb{N}$. Then each divisible nontrivial subalgebra \mathbf{B} of $\mathbf{M}(a, b)$ is isomorphic to \mathbf{N}.

- Thus we are interested only in subalgebras which are not divisible.

Lemma
Let $\langle a, b\rangle \in G e n$ and \mathbf{B} a subalgebra of $\mathbf{M}(a, b)$. If \mathbf{B} is not divisible then $a \in B$ and $n b \in B$ for some $n \in[1, a-1]$.

- Thus if we want to show that an algebra $\mathbf{M}(a, b)$ does not contain non-divisible subalgebras, it suffices to show that $\{a, n b\}$ for some $n \in[1, a-1]$ generates $\mathbf{M}(a, b)$.

Subalgebras of $\mathbf{M}(a, b)$

- Let $\rho_{a}(b)$ be the remainder on division of b by a.

Subalgebras of $\mathbf{M}(a, b)$

- Let $\rho_{a}(b)$ be the remainder on division of b by a.
- We will split our discussion into two cases:
(1) The case $\rho_{a}(b)=1$ when it is possible to have non-divisible subalgebras.

Subalgebras of $\mathbf{M}(a, b)$

- Let $\rho_{a}(b)$ be the remainder on division of b by a.
- We will split our discussion into two cases:
(1) The case $\rho_{a}(b)=1$ when it is possible to have non-divisible subalgebras.
(2) The case $\rho_{a}(b) \neq 1$ when there are only divisible subalgebras.

Case $\rho_{a}(b)=1$ (example)

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid $M(4,10)$.

Case $\rho_{a}(b)=1$ (example)

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid $M(4,10)$.
- Then $\mathbb{N} \backslash M(4,5)=C_{1} \cup C_{2} \cup C_{3}$ where

$$
C_{1}=\{1,2,3\}, \quad C_{2}=\{6,7\}, \quad C_{3}=\{11\}
$$

Case $\rho_{a}(b)=1$ (example)

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid $M(4,10)$.
- Then $\mathbb{N} \backslash M(4,5)=C_{1} \cup C_{2} \cup C_{3}$ where

$$
C_{1}=\{1,2,3\}, \quad C_{2}=\{6,7\}, \quad C_{3}=\{11\}
$$

- The sets C_{i} 's are convex subsets of missing elements in $M(4,5)$.

Case $\rho_{a}(b)=1$ (example)

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid $M(4,10)$.
- Then $\mathbb{N} \backslash M(4,5)=C_{1} \cup C_{2} \cup C_{3}$ where

$$
C_{1}=\{1,2,3\}, \quad C_{2}=\{6,7\}, \quad C_{3}=\{11\}
$$

- The sets C_{i} 's are convex subsets of missing elements in $M(4,5)$.
- Observe that $1+\max C_{i} \in M(4,10)$ for each $i \in\{1,2,3\}$.

Case $\rho_{a}(b)=1$ (example)

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid $M(4,10)$.
- Then $\mathbb{N} \backslash M(4,5)=C_{1} \cup C_{2} \cup C_{3}$ where

$$
C_{1}=\{1,2,3\}, \quad C_{2}=\{6,7\}, \quad C_{3}=\{11\}
$$

- The sets C_{i} 's are convex subsets of missing elements in $M(4,5)$.
- Observe that $1+\max C_{i} \in M(4,10)$ for each $i \in\{1,2,3\}$.
- Whenever $y-x \notin M(4,5)$ then
$y \dot{-} x=\min \{z \in M(4,5) \mid z \geq y-x\}=1+\max C_{i} \in M(4,10)$.

Case $\rho_{a}(b)=1$ (example)

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid $M(4,10)$.
- Then $\mathbb{N} \backslash M(4,5)=C_{1} \cup C_{2} \cup C_{3}$ where

$$
C_{1}=\{1,2,3\}, \quad C_{2}=\{6,7\}, \quad C_{3}=\{11\}
$$

- The sets C_{i} 's are convex subsets of missing elements in $M(4,5)$.
- Observe that $1+\max C_{i} \in M(4,10)$ for each $i \in\{1,2,3\}$.
- Whenever $y-x \notin M(4,5)$ then
$y \dot{-x}=\min \{z \in M(4,5) \mid z \geq y-x\}=1+\max C_{i} \in M(4,10)$.
- Thus it is impossible (using -) to produce an element which does not belong to $M(4,10)$.

Case $\rho_{a}(b)=1$ (example)

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid $M(4,10)$.
- Then $\mathbb{N} \backslash M(4,5)=C_{1} \cup C_{2} \cup C_{3}$ where

$$
C_{1}=\{1,2,3\}, \quad C_{2}=\{6,7\}, \quad C_{3}=\{11\}
$$

- The sets C_{i} 's are convex subsets of missing elements in $M(4,5)$.
- Observe that $1+\max C_{i} \in M(4,10)$ for each $i \in\{1,2,3\}$.
- Whenever $y-x \notin M(4,5)$ then $y \dot{-} x=\min \{z \in M(4,5) \mid z \geq y-x\}=1+\max C_{i} \in M(4,10)$.
- Thus it is impossible (using -) to produce an element which does not belong to $M(4,10)$.
- Consequently, $\mathbf{M}(4,10)$ is a subalgebra isomorphic to $\mathbf{M}(2,5)$.

Case $\rho_{a}(b)=1$

Lemma

Let $\langle a, b\rangle \in G e n$ such that $\rho_{a}(b)=1$. Then for any $x, y \in M(a, b)$ such that $y-x \notin M(a, b)$ we have $y \dot{-x}=k$ for $k=\lceil(y-x) / a\rceil$.

Case $\rho_{a}(b)=1$

Lemma

Let $\langle a, b\rangle \in G e n$ such that $\rho_{a}(b)=1$. Then for any $x, y \in M(a, b)$ such that $y-x \notin M(a, b)$ we have $y \dot{-x}=$ ka for $k=\lceil(y-x) / a\rceil$.

Theorem

Let $\langle a, b\rangle \in$ Gen such that $\rho_{a}(b)=1$. For each divisor d of a there is a nontrivial subalgebra of $\mathbf{M}(a, b)$ isomorphic to $\mathbf{M}(a / d, b)$ and each nontrivial subalgebra of $\mathbf{M}(a, b)$ is isomorphic to $\mathbf{M}(a / d, b)$ for a divisor d of a.

Especially, if a is prime then $\mathbf{M}(a, b)$ has only divisible subalgebras.

Case $\rho_{a}(b) \neq 1$ (example)

- Consider $\mathbf{M}(9,11)$ and subalgebra \mathbf{B} generated by $\{9,33\}$, i.e. $M(9,33) \subseteq B$.

Case $\rho_{a}(b) \neq 1$ (example)

- Consider $\mathbf{M}(9,11)$ and subalgebra \mathbf{B} generated by $\{9,33\}$, i.e. $M(9,33) \subseteq B$.
- We know that $3 k \in M(9,33)$ for sufficiently large $k \in \mathbb{N}$ since $3=\operatorname{gcd}(9,33)$.

Case $\rho_{a}(b) \neq 1$ (example)

- Consider $\mathbf{M}(9,11)$ and subalgebra \mathbf{B} generated by $\{9,33\}$, i.e. $M(9,33) \subseteq B$.
- We know that $3 k \in M(9,33)$ for sufficiently large $k \in \mathbb{N}$ since $3=\operatorname{gcd}(9,33)$.
- Thus we can find $x, y \in M(9,33)$ such that $x-y=3 k$ for any $k \in \mathbb{N}$, e.g. $k=7$.

Case $\rho_{a}(b) \neq 1$ (example)

- Consider $\mathbf{M}(9,11)$ and subalgebra \mathbf{B} generated by $\{9,33\}$, i.e. $M(9,33) \subseteq B$.
- We know that $3 k \in M(9,33)$ for sufficiently large $k \in \mathbb{N}$ since $3=\operatorname{gcd}(9,33)$.
- Thus we can find $x, y \in M(9,33)$ such that $x-y=3 k$ for any $k \in \mathbb{N}$, e.g. $k=7$.
- Consequently, $21=x-y<x \doteq y=22 \in B$, i.e. $M(9,22) \subseteq B$.

Case $\rho_{a}(b) \neq 1$ (example)

- Consider $\mathbf{M}(9,11)$ and subalgebra \mathbf{B} generated by $\{9,33\}$, i.e. $M(9,33) \subseteq B$.
- We know that $3 k \in M(9,33)$ for sufficiently large $k \in \mathbb{N}$ since $3=\operatorname{gcd}(9,33)$.
- Thus we can find $x, y \in M(9,33)$ such that $x-y=3 k$ for any $k \in \mathbb{N}$, e.g. $k=7$.
- Consequently, $21=x-y<x \doteq y=22 \in B$, i.e. $M(9,22) \subseteq B$.
- We have $1 k \in M(9,22)$ for sufficiently large $k \in \mathbb{N}$ since $1=\operatorname{gcd}(9,22)$.

Case $\rho_{a}(b) \neq 1$ (example)

- Consider $\mathbf{M}(9,11)$ and subalgebra \mathbf{B} generated by $\{9,33\}$, i.e. $M(9,33) \subseteq B$.
- We know that $3 k \in M(9,33)$ for sufficiently large $k \in \mathbb{N}$ since $3=\operatorname{gcd}(9,33)$.
- Thus we can find $x, y \in M(9,33)$ such that $x-y=3 k$ for any $k \in \mathbb{N}$, e.g. $k=7$.
- Consequently, $21=x-y<x \doteq y=22 \in B$, i.e. $M(9,22) \subseteq B$.
- We have $1 k \in M(9,22)$ for sufficiently large $k \in \mathbb{N}$ since $1=\operatorname{gcd}(9,22)$.
- Thus we can find $x, y \in M(9,22)$ such that $x-y=k$ for any $k \in \mathbb{N}$, e.g. $k=10$.

Case $\rho_{a}(b) \neq 1$ (example)

- Consider $\mathbf{M}(9,11)$ and subalgebra \mathbf{B} generated by $\{9,33\}$, i.e. $M(9,33) \subseteq B$.
- We know that $3 k \in M(9,33)$ for sufficiently large $k \in \mathbb{N}$ since $3=\operatorname{gcd}(9,33)$.
- Thus we can find $x, y \in M(9,33)$ such that $x-y=3 k$ for any $k \in \mathbb{N}$, e.g. $k=7$.
- Consequently, $21=x-y<x \doteq y=22 \in B$, i.e. $M(9,22) \subseteq B$.
- We have $1 k \in M(9,22)$ for sufficiently large $k \in \mathbb{N}$ since $1=\operatorname{gcd}(9,22)$.
- Thus we can find $x, y \in M(9,22)$ such that $x-y=k$ for any $k \in \mathbb{N}$, e.g. $k=10$.
- Consequently, $10=x-y<x \dot{-}=11 \in B$, i.e. $B=M(9,11)$.

Case $\rho_{a}(b) \neq 1$

Lemma

Let $\langle a, b\rangle \in G e n, \rho_{a}(b) \neq 1$, and $k \in[1, a-1]$. Then $\{a, k b\}$ generates $\mathbf{M}(a, b)$.

Case $\rho_{\mathrm{a}}(b) \neq 1$

Lemma

Let $\langle a, b\rangle \in G e n, \rho_{a}(b) \neq 1$, and $k \in[1, a-1]$. Then $\{a, k b\}$ generates $\mathbf{M}(a, b)$.

Theorem

Let $\langle a, b\rangle \in$ Gen. If a is prime or $\rho_{a}(b) \neq 1$ then each nontrivial proper subalgebra of $\mathbf{M}(a, b)$ is isomorphic to \mathbf{N}.

Subalgebras of an ultrapower

Lemma
Let \mathbf{B} be a subdirectly irreducible algebra in $\mathcal{V}(\mathbf{M}(a, b))$ for $\langle a, b\rangle \in G e n$. Then $\mathbf{B} \in \mathcal{V}(\mathbf{N})$ or $\mathbf{B} \in \operatorname{ISP}(\mathbf{M}(a, b))$.

Subalgebras of an ultrapower

Lemma
Let \mathbf{B} be a subdirectly irreducible algebra in $\mathcal{V}(\mathbf{M}(a, b))$ for $\langle a, b\rangle \in G e n$. Then $\mathbf{B} \in \mathcal{V}(\mathbf{N})$ or $\mathbf{B} \in \operatorname{ISP}(\mathbf{M}(a, b))$.

Lemma
Let $\langle a, b\rangle \in$ Gen and let \mathbf{B} be a subalgebra of an ultrapower $\mathbf{M}(a, b)^{\prime} / U$. If $\mathbf{B} \notin \mathcal{V}(\mathbf{N})$ (i.e., not divisible) then $a, n b \in B$ for some $n \in[1, a-1]$.

Main results

Theorem
Let $\langle a, b\rangle \in$ Gen. Then
$\mathcal{V}(\mathbf{M}(a, b))$ is a cover of $\mathcal{V}(\mathbf{N})$ iff a is prime or $\rho_{a}(b) \neq 1$.

Main results

Theorem
Let $\langle a, b\rangle \in$ Gen. Then
$\mathcal{V}(\mathbf{M}(a, b))$ is a cover of $\mathcal{V}(\mathbf{N})$ iff a is prime or $\rho_{a}(b) \neq 1$.
Theorem
Let $\langle a, b\rangle,\langle c, d\rangle \in$ Gen such that $\rho_{a}(b)=\rho_{c}(d)=1$. Then
$\mathcal{V}(\mathbf{M}(c, d)) \subseteq \mathcal{V}(\mathbf{M}(a, b))$ iff $c \mid a$ and $d=b$.

Covers

Order for $b=13$

