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Introduction

Motivation

There are only two atoms in the subvariety lattice of cancellative
residuated lattices (Galatos 2005).

The first one is the variety V(Z) of Abelian `-groups and the
second one is the variety V(Z−) of negative cones of Abelian
`-groups.

What is above V(Z−)? It is known that V(Z) has uncountably
many covers (Holand 1994) and therefore V(Z−) as well.

The question is what happens if we restrict the covers to satisfy
other well-known identities like commutativity, integrality,
representability.
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R. Horčík (ICS, ASCR) 2-generated submonoids of N Linz Seminar 2010 2 / 20



Introduction

Motivation

There are only two atoms in the subvariety lattice of cancellative
residuated lattices (Galatos 2005).

The first one is the variety V(Z) of Abelian `-groups and the
second one is the variety V(Z−) of negative cones of Abelian
`-groups.

What is above V(Z−)? It is known that V(Z) has uncountably
many covers (Holand 1994) and therefore V(Z−) as well.

The question is what happens if we restrict the covers to satisfy
other well-known identities like commutativity, integrality,
representability.
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Introduction

Motivation (cont.)

In order to obtain algebras generating covers of V(Z−),
I considered several 2-generated submonoids of Z− and found
countably many commutative, integral and representable covers of
V(Z−) .

In this talk I will consider all varieties generated by any
2-generated submonoid of Z− and describe which of them cover
V(Z−).

Moreover, I will characterize the inclusion relation among these
varieties (i.e., the order in the subvariety lattice).

In order to apply some facts from elementar number theory, I will
work in the dual (term-wise equivalent) setting and consider
2-generated sumonoids of natural numbers.
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Preliminaries

Algebras of interest

A dual integral commutative residuated lattice (dICRL) is an
algebra A = (A,∧,∨,+, .−,0), where the following conditions are
satisfied:

(A,+,0) is a commutative monoid,
(A,∧,∨,0) is a lattice with a bottom element 0,
x + y ≥ z iff x ≥ z .− y .

A dICRL is cancellative if + is cancellative; (x + y) .− y = x .
A dICRL is divisible if it satisfies x ∨ y = (y .− x) + x .
N = 〈N,min,max,+, .−,0〉, where y .− x = max(y − x ,0), is a
cancellative divisible dICRL.
N is the term-wise equivalent dual of Z−.

Theorem (Blok, Ferreirim)
Let A be a totally ordered cancellative dICRL. Then A ∈ V(N) iff A is
divisible.
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Preliminaries

Submonoids of N

Let a1, . . . ,ak ∈ N. Then M(a1, . . . ,ak ) = {
∑k

i=1 niai | ni ∈ N}
denotes the subuniverse of 〈N,+,0〉 generated by {a1, . . . ,ak}.

If a1, . . . ,an are coprime, then N \M(a1, . . . ,ak ) is always finite
and the greatest number which does not belong to M(a1, . . . ,ak )
is called the Frobenius number. This number is usually denoted
g(a1, . . . ,ak ).

For k = 2 Sylvester found in 1884 an explicit expression
g(a1,a2) = a1a2 − a1 − a2.

If a1, . . . ,ak are not coprime and d = gcd(a1, . . . ,ak ), then for any
b > g(a1/d , . . . ,ak/d) we have bd ∈ M(a1, . . . ,ak ).
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R. Horčík (ICS, ASCR) 2-generated submonoids of N Linz Seminar 2010 5 / 20



Preliminaries

Submonoids of N

Let a1, . . . ,ak ∈ N. Then M(a1, . . . ,ak ) = {
∑k

i=1 niai | ni ∈ N}
denotes the subuniverse of 〈N,+,0〉 generated by {a1, . . . ,ak}.

If a1, . . . ,an are coprime, then N \M(a1, . . . ,ak ) is always finite
and the greatest number which does not belong to M(a1, . . . ,ak )
is called the Frobenius number. This number is usually denoted
g(a1, . . . ,ak ).

For k = 2 Sylvester found in 1884 an explicit expression
g(a1,a2) = a1a2 − a1 − a2.

If a1, . . . ,ak are not coprime and d = gcd(a1, . . . ,ak ), then for any
b > g(a1/d , . . . ,ak/d) we have bd ∈ M(a1, . . . ,ak ).
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Results

dICRLs arising from M(a,b)

Let 〈a,b〉 ∈ N2. Then M(a,b) = (M(a,b),min,max,+, .−,0) is a
simple cancellative dICRL, where

x .− y = min{z ∈ M(a,b) | z ≥ x − y} ,

i.e., x .− y = x − y if x − y ∈ M(a,b) and x .− y > x − y otherwise.

We will consider varieties V(M(a,b)) for 1 < a < b, a,b coprime.

Gen = {〈a,b〉 ∈ N2 | 1 < a < b, a,b coprime} .
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Results

Generators – the set Gen

3

2

5 7 9 11 13 15

b

4

6

8

10

12

14
a
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Results

Is mapping 〈a,b〉 ∈ Gen 7→ V(M(a,b)) bijection?

We want to show that different tuples from Gen generate different
varieties.

This can be done for tuples with different first components by
using the following identities for k ∈ N:

kx ∨ ky = (ky .− kx) + kx ,

which we call k -divisibility.

Lemma
Let 〈a,b〉 ∈ Gen. Then M(a,b) satisfies the a-divisibility. In addition,
M(a,b) does not satisfy k-divisibility for any k ∈ [1,a− 1].
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Results

Is mapping 〈a,b〉 ∈ Gen 7→ V(M(a,b)) bijection?

In order to separate the varieties generated by tuples with the
same first component, we introduce the following identities for
each n ∈ N:

z ∧
((

(y .− x) + x
) .− (x ∨ y)

)
≤ (x + nz) .− y . (1n)

Lemma

Let 〈a,b〉 ∈ Gen. Then M(a,b) satisfies the identity (1n) for
n = dg(a,b)/ae.

Lemma

Let 〈a,b〉, 〈a, c〉 ∈ Gen and b < c. Then M(a, c) does not satisfy the
identity (1n) for n = dg(a,b)/ae.
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Results

Is mapping 〈a,b〉 ∈ Gen 7→ V(M(a,b)) bijection?

Summary
Let 〈a,b〉, 〈c,d〉 ∈ Gen such that 〈a,b〉 6= 〈c,d〉. Then

1 V(M(a,b)) 6= V(M(c,d)),

2 V(N) ( V(M(a,b)).
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Results

Subalgebras of M(a,b)

Lemma

Let a,b ∈ N. Then each divisible nontrivial subalgebra B of M(a,b) is
isomorphic to N.

Thus we are interested only in subalgebras which are not divisible.

Lemma

Let 〈a,b〉 ∈ Gen and B a subalgebra of M(a,b). If B is not divisible
then a ∈ B and nb ∈ B for some n ∈ [1,a− 1].

Thus if we want to show that an algebra M(a,b) does not contain
non-divisible subalgebras, it suffices to show that {a,nb} for some
n ∈ [1,a− 1] generates M(a,b).
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Results

Subalgebras of M(a,b)

Let ρa(b) be the remainder on division of b by a.

We will split our discussion into two cases:

1 The case ρa(b) = 1 when it is possible to have non-divisible
subalgebras.

2 The case ρa(b) 6= 1 when there are only divisible subalgebras.
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Results

Case ρa(b) = 1 (example)

Consider the algebra M(4,5) and its submonoid M(4,10).

Then N \M(4,5) = C1 ∪ C2 ∪ C3 where

C1 = {1,2,3} , C2 = {6,7} , C3 = {11} .

The sets Ci ’s are convex subsets of missing elements in M(4,5).

Observe that 1 + max Ci ∈ M(4,10) for each i ∈ {1,2,3}.

Whenever y − x 6∈ M(4,5) then
y .− x = min{z ∈ M(4,5) | z ≥ y − x} = 1 + max Ci ∈ M(4,10).

Thus it is impossible (using .−) to produce an element which does
not belong to M(4,10).

Consequently, M(4,10) is a subalgebra isomorphic to M(2,5).
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not belong to M(4,10).

Consequently, M(4,10) is a subalgebra isomorphic to M(2,5).
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R. Horčík (ICS, ASCR) 2-generated submonoids of N Linz Seminar 2010 13 / 20



Results

Case ρa(b) = 1 (example)

Consider the algebra M(4,5) and its submonoid M(4,10).

Then N \M(4,5) = C1 ∪ C2 ∪ C3 where

C1 = {1,2,3} , C2 = {6,7} , C3 = {11} .

The sets Ci ’s are convex subsets of missing elements in M(4,5).

Observe that 1 + max Ci ∈ M(4,10) for each i ∈ {1,2,3}.

Whenever y − x 6∈ M(4,5) then
y .− x = min{z ∈ M(4,5) | z ≥ y − x} = 1 + max Ci ∈ M(4,10).

Thus it is impossible (using .−) to produce an element which does
not belong to M(4,10).

Consequently, M(4,10) is a subalgebra isomorphic to M(2,5).
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Results

Case ρa(b) = 1

Lemma

Let 〈a,b〉 ∈ Gen such that ρa(b) = 1. Then for any x , y ∈ M(a,b) such
that y − x 6∈ M(a,b) we have y .− x = ka for k = d(y − x)/ae.

Theorem

Let 〈a,b〉 ∈ Gen such that ρa(b) = 1. For each divisor d of a there is a
nontrivial subalgebra of M(a,b) isomorphic to M(a/d ,b) and each
nontrivial subalgebra of M(a,b) is isomorphic to M(a/d ,b) for a divisor
d of a.

Especially, if a is prime then M(a,b) has only divisible subalgebras.

R. Horčík (ICS, ASCR) 2-generated submonoids of N Linz Seminar 2010 14 / 20



Results

Case ρa(b) = 1

Lemma

Let 〈a,b〉 ∈ Gen such that ρa(b) = 1. Then for any x , y ∈ M(a,b) such
that y − x 6∈ M(a,b) we have y .− x = ka for k = d(y − x)/ae.

Theorem

Let 〈a,b〉 ∈ Gen such that ρa(b) = 1. For each divisor d of a there is a
nontrivial subalgebra of M(a,b) isomorphic to M(a/d ,b) and each
nontrivial subalgebra of M(a,b) is isomorphic to M(a/d ,b) for a divisor
d of a.

Especially, if a is prime then M(a,b) has only divisible subalgebras.
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Results

Case ρa(b) 6= 1 (example)

Consider M(9,11) and subalgebra B generated by {9,33}, i.e.
M(9,33) ⊆ B.

We know that 3k ∈ M(9,33) for sufficiently large k ∈ N since
3 = gcd(9,33).

Thus we can find x , y ∈ M(9,33) such that x − y = 3k for any
k ∈ N, e.g. k = 7.

Consequently, 21 = x − y < x .− y = 22 ∈ B, i.e. M(9,22) ⊆ B.

We have 1k ∈ M(9,22) for sufficiently large k ∈ N since
1 = gcd(9,22).

Thus we can find x , y ∈ M(9,22) such that x − y = k for any
k ∈ N, e.g. k = 10.

Consequently, 10 = x − y < x .− y = 11 ∈ B, i.e. B = M(9,11).
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Results

Case ρa(b) 6= 1

Lemma

Let 〈a,b〉 ∈ Gen, ρa(b) 6= 1, and k ∈ [1,a− 1]. Then {a, kb} generates
M(a,b).

Theorem

Let 〈a,b〉 ∈ Gen. If a is prime or ρa(b) 6= 1 then each nontrivial proper
subalgebra of M(a,b) is isomorphic to N.
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Results

Subalgebras of an ultrapower

Lemma

Let B be a subdirectly irreducible algebra in V(M(a,b)) for
〈a,b〉 ∈ Gen. Then B ∈ V(N) or B ∈ ISPU(M(a,b)).

Lemma

Let 〈a,b〉 ∈ Gen and let B be a subalgebra of an ultrapower
M(a,b)I/U. If B 6∈ V(N) (i.e., not divisible) then a,nb ∈ B for some
n ∈ [1,a− 1].
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Results

Main results

Theorem
Let 〈a,b〉 ∈ Gen. Then

V(M(a,b)) is a cover of V(N) iff a is prime or ρa(b) 6= 1.

Theorem
Let 〈a,b〉, 〈c,d〉 ∈ Gen such that ρa(b) = ρc(d) = 1. Then

V(M(c,d)) ⊆ V(M(a,b)) iff c|a and d = b.
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Results

Covers

3

2

5 7 9 11 13 15

b

4

6

8

10

12

14
a
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Results

Order for b = 13

2 3 5 7 8 9 10 11

4 6

12

Values of a
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