Cancellative residuated lattices arising on 2-generated submonoids of natural numbers

Rostislav Horčík

Institute of Computer Science Academy of Sciences of the Czech Republic

Lattice-Valued Logic and its Applications 31st Linz Seminar February 9–13, 2010

4 3 5 4 3 5 5

• There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).

- There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).
- The first one is the variety V(Z) of Abelian l-groups and the second one is the variety V(Z⁻) of negative cones of Abelian l-groups.

< ロ > < 同 > < 回 > < 回 >

- There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).
- The first one is the variety V(Z) of Abelian l-groups and the second one is the variety V(Z⁻) of negative cones of Abelian l-groups.
- What is above V(Z⁻)? It is known that V(Z) has uncountably many covers (Holand 1994) and therefore V(Z⁻) as well.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- There are only two atoms in the subvariety lattice of cancellative residuated lattices (Galatos 2005).
- The first one is the variety V(Z) of Abelian l-groups and the second one is the variety V(Z⁻) of negative cones of Abelian l-groups.
- What is above V(Z⁻)? It is known that V(Z) has uncountably many covers (Holand 1994) and therefore V(Z⁻) as well.
- The question is what happens if we restrict the covers to satisfy other well-known identities like commutativity, integrality, representability.

Motivation (cont.)

In order to obtain algebras generating covers of V(Z⁻),
 I considered several 2-generated submonoids of Z⁻ and found countably many commutative, integral and representable covers of V(Z⁻).

4 3 5 4 3 5 5

Introduction

Motivation (cont.)

- In order to obtain algebras generating covers of V(Z⁻),
 I considered several 2-generated submonoids of Z⁻ and found countably many commutative, integral and representable covers of V(Z⁻).
- In this talk I will consider all varieties generated by any 2-generated submonoid of Z⁻ and describe which of them cover V(Z⁻).

4 3 5 4 3 5 5

Motivation (cont.)

- In order to obtain algebras generating covers of V(Z⁻),
 I considered several 2-generated submonoids of Z⁻ and found countably many commutative, integral and representable covers of V(Z⁻).
- In this talk I will consider all varieties generated by any 2-generated submonoid of Z⁻ and describe which of them cover V(Z⁻).
- Moreover, I will characterize the inclusion relation among these varieties (i.e., the order in the subvariety lattice).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation (cont.)

- In order to obtain algebras generating covers of V(Z⁻),
 I considered several 2-generated submonoids of Z⁻ and found countably many commutative, integral and representable covers of V(Z⁻).
- In this talk I will consider all varieties generated by any 2-generated submonoid of Z⁻ and describe which of them cover V(Z⁻).
- Moreover, I will characterize the inclusion relation among these varieties (i.e., the order in the subvariety lattice).
- In order to apply some facts from elementar number theory, I will work in the dual (term-wise equivalent) setting and consider 2-generated sumonoids of natural numbers.

- A dual integral commutative residuated lattice (dICRL) is an algebra A = (A, ∧, ∨, +, -, 0), where the following conditions are satisfied:
 - (*A*, +, 0) is a commutative monoid,
 - $(A, \land, \lor, 0)$ is a lattice with a bottom element 0,
 - $x + y \ge z$ iff $x \ge z y$.

- A dual integral commutative residuated lattice (dICRL) is an algebra A = (A, ∧, ∨, +, -, 0), where the following conditions are satisfied:
 - (*A*, +, 0) is a commutative monoid,
 - $(A, \land, \lor, 0)$ is a lattice with a bottom element 0,
 - $x + y \ge z$ iff $x \ge z y$.
- A dICRL is cancellative if + is cancellative; (x + y) y = x.

(日)

- A dual integral commutative residuated lattice (dICRL) is an algebra A = (A, ∧, ∨, +, -, 0), where the following conditions are satisfied:
 - (*A*, +, 0) is a commutative monoid,
 - $(A, \land, \lor, 0)$ is a lattice with a bottom element 0,
 - $x + y \ge z$ iff $x \ge z y$.
- A dICRL is cancellative if + is cancellative; (x + y) y = x.
- A dICRL is divisible if it satisfies $x \lor y = (y x) + x$.

< 日 > < 同 > < 回 > < 回 > < □ > <

- A dual integral commutative residuated lattice (dICRL) is an algebra A = (A, ∧, ∨, +, -, 0), where the following conditions are satisfied:
 - (*A*, +, 0) is a commutative monoid,
 - $(A, \land, \lor, 0)$ is a lattice with a bottom element 0,
 - $x + y \ge z$ iff $x \ge z y$.
- A dICRL is cancellative if + is cancellative; (x + y) y = x.
- A dICRL is divisible if it satisfies $x \lor y = (y x) + x$.
- N = ⟨ℕ, min, max, +, -, 0⟩, where y x = max(y x, 0), is a cancellative divisible dICRL.

- A dual integral commutative residuated lattice (dICRL) is an algebra A = (A, ∧, ∨, +, -, 0), where the following conditions are satisfied:
 - (*A*, +, 0) is a commutative monoid,
 - $(A, \land, \lor, 0)$ is a lattice with a bottom element 0,
 - $x + y \ge z$ iff $x \ge z y$.
- A dICRL is cancellative if + is cancellative; (x + y) y = x.
- A dICRL is divisible if it satisfies $x \lor y = (y x) + x$.
- N = ⟨ℕ, min, max, +, -, 0⟩, where y x = max(y x, 0), is a cancellative divisible dICRL.
- N is the term-wise equivalent dual of Z⁻.

- A dual integral commutative residuated lattice (dICRL) is an algebra A = (A, ∧, ∨, +, -, 0), where the following conditions are satisfied:
 - (A, +, 0) is a commutative monoid,
 - $(A, \land, \lor, 0)$ is a lattice with a bottom element 0,
 - $x + y \ge z$ iff $x \ge z y$.
- A dICRL is cancellative if + is cancellative; (x + y) y = x.
- A dICRL is divisible if it satisfies $x \lor y = (y x) + x$.
- N = ⟨ℕ, min, max, +, -, 0⟩, where y x = max(y x, 0), is a cancellative divisible dICRL.
- N is the term-wise equivalent dual of Z⁻.

Theorem (Blok, Ferreirim)

Let **A** be a totally ordered cancellative dICRL. Then $\mathbf{A} \in \mathcal{V}(\mathbf{N})$ iff **A** is divisible.

R. Horčík (ICS, ASCR)

Submonoids of \mathbb{N}

• Let $a_1, \ldots, a_k \in \mathbb{N}$. Then $M(a_1, \ldots, a_k) = \{\sum_{i=1}^k n_i a_i \mid n_i \in \mathbb{N}\}$ denotes the subuniverse of $\langle \mathbb{N}, +, 0 \rangle$ generated by $\{a_1, \ldots, a_k\}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries

Submonoids of \mathbb{N}

- Let $a_1, \ldots, a_k \in \mathbb{N}$. Then $M(a_1, \ldots, a_k) = \{\sum_{i=1}^k n_i a_i \mid n_i \in \mathbb{N}\}$ denotes the subuniverse of $(\mathbb{N}, +, 0)$ generated by $\{a_1, \ldots, a_k\}$.
- If a₁,..., a_n are coprime, then N \ M(a₁,..., a_k) is always finite and the greatest number which does not belong to M(a₁,..., a_k) is called the Frobenius number. This number is usually denoted g(a₁,..., a_k).

4 3 5 4 3 5 5

Submonoids of $\ensuremath{\mathbb{N}}$

- Let a₁,..., a_k ∈ N. Then M(a₁,..., a_k) = {∑_{i=1}^k n_ia_i | n_i ∈ N} denotes the subuniverse of ⟨N, +, 0⟩ generated by {a₁,..., a_k}.
- If a₁,..., a_n are coprime, then N \ M(a₁,..., a_k) is always finite and the greatest number which does not belong to M(a₁,..., a_k) is called the Frobenius number. This number is usually denoted g(a₁,..., a_k).
- For k = 2 Sylvester found in 1884 an explicit expression $g(a_1, a_2) = a_1a_2 a_1 a_2$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Submonoids of \mathbb{N}

- Let a₁,..., a_k ∈ N. Then M(a₁,..., a_k) = {∑_{i=1}^k n_ia_i | n_i ∈ N} denotes the subuniverse of ⟨N, +, 0⟩ generated by {a₁,..., a_k}.
- If a₁,..., a_n are coprime, then N \ M(a₁,..., a_k) is always finite and the greatest number which does not belong to M(a₁,..., a_k) is called the Frobenius number. This number is usually denoted g(a₁,..., a_k).
- For k = 2 Sylvester found in 1884 an explicit expression $g(a_1, a_2) = a_1a_2 a_1 a_2$.
- If a_1, \ldots, a_k are not coprime and $d = gcd(a_1, \ldots, a_k)$, then for any $b > g(a_1/d, \ldots, a_k/d)$ we have $bd \in M(a_1, \ldots, a_k)$.

dICRLs arising from M(a, b)

Let ⟨a, b⟩ ∈ N². Then M(a, b) = (M(a, b), min, max, +, -, 0) is a simple cancellative dICRL, where

$$x \div y = \min\{z \in M(a,b) \mid z \ge x - y\},$$

i.e., $x \doteq y = x - y$ if $x - y \in M(a, b)$ and $x \doteq y > x - y$ otherwise.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

dICRLs arising from M(a, b)

Let ⟨a, b⟩ ∈ N². Then M(a, b) = (M(a, b), min, max, +, -, 0) is a simple cancellative dICRL, where

$$x \div y = \min\{z \in M(a,b) \mid z \ge x - y\},$$

i.e., $x \doteq y = x - y$ if $x - y \in M(a, b)$ and $x \doteq y > x - y$ otherwise.

• We will consider varieties $\mathcal{V}(\mathbf{M}(a, b))$ for 1 < a < b, a, b coprime.

$$Gen = \{ \langle a, b \rangle \in \mathbb{N}^2 \mid 1 < a < b, a, b \text{ coprime} \}.$$

Generators – the set Gen

R. Horčík (ICS, ASCR)

2-generated submonoids of $\ensuremath{\mathbb{N}}$

Linz Seminar 2010 7/20

크

• We want to show that different tuples from *Gen* generate different varieties.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We want to show that different tuples from *Gen* generate different varieties.
- This can be done for tuples with different first components by using the following identities for *k* ∈ N:

$$kx \vee ky = (ky \div kx) + kx,$$

which we call *k*-divisibility.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We want to show that different tuples from *Gen* generate different varieties.
- This can be done for tuples with different first components by using the following identities for *k* ∈ N:

$$kx \vee ky = (ky - kx) + kx,$$

which we call *k*-divisibility.

Lemma

Let $\langle a, b \rangle \in$ Gen. Then $\mathbf{M}(a, b)$ satisfies the a-divisibility. In addition, $\mathbf{M}(a, b)$ does not satisfy k-divisibility for any $k \in [1, a - 1]$.

Is mapping $\langle a, b \rangle \in Gen \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

 In order to separate the varieties generated by tuples with the same first component, we introduce the following identities for each n ∈ N:

$$z \wedge \left(\left((y \doteq x) + x \right) \doteq (x \lor y) \right) \leq (x + nz) \doteq y \,. \tag{1n}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Is mapping $\langle a, b \rangle \in Gen \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

 In order to separate the varieties generated by tuples with the same first component, we introduce the following identities for each n ∈ N:

$$z \wedge \left(\left((y \doteq x) + x \right) \doteq (x \lor y) \right) \leq (x + nz) \doteq y$$
. (1*n*)

Lemma

Let $\langle a, b \rangle \in$ Gen. Then $\mathbf{M}(a, b)$ satisfies the identity (1*n*) for $n = \lceil g(a, b)/a \rceil$.

Is mapping $\langle a, b \rangle \in Gen \mapsto \mathcal{V}(\mathbf{M}(a, b))$ bijection?

 In order to separate the varieties generated by tuples with the same first component, we introduce the following identities for each n ∈ N:

$$z \wedge \left(\left((y \div x) + x \right) \div (x \lor y) \right) \leq (x + nz) \div y \,. \tag{1n}$$

Lemma

Let $\langle a, b \rangle \in$ Gen. Then **M**(*a*, *b*) satisfies the identity (1*n*) for $n = \lceil g(a, b)/a \rceil$.

Lemma

Let $\langle a, b \rangle$, $\langle a, c \rangle \in$ Gen and b < c. Then $\mathbf{M}(a, c)$ does not satisfy the identity (1*n*) for $n = \lceil g(a, b)/a \rceil$.

Summary

Let $\langle a, b \rangle, \langle c, d \rangle \in Gen$ such that $\langle a, b \rangle \neq \langle c, d \rangle$. Then

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

Let $\langle a, b \rangle, \langle c, d \rangle \in Gen$ such that $\langle a, b \rangle \neq \langle c, d \rangle$. Then

• $\mathcal{V}(\mathbf{M}(a,b)) \neq \mathcal{V}(\mathbf{M}(c,d)),$

3

Summary

Let $\langle a, b \rangle, \langle c, d \rangle \in Gen$ such that $\langle a, b \rangle \neq \langle c, d \rangle$. Then

•
$$\mathcal{V}(\mathbf{M}(a,b)) \neq \mathcal{V}(\mathbf{M}(c,d)),$$

$$\mathbf{2} \ \mathcal{V}(\mathbf{N}) \subsetneq \mathcal{V}(\mathbf{M}(a,b)).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Let $a, b \in \mathbb{N}$. Then each divisible nontrivial subalgebra **B** of $\mathbf{M}(a, b)$ is isomorphic to **N**.

• Thus we are interested only in subalgebras which are not divisible.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Let $a, b \in \mathbb{N}$. Then each divisible nontrivial subalgebra **B** of M(a, b) is isomorphic to **N**.

• Thus we are interested only in subalgebras which are not divisible.

Lemma

Let $\langle a, b \rangle \in$ Gen and **B** a subalgebra of **M**(*a*, *b*). If **B** is not divisible then $a \in B$ and $nb \in B$ for some $n \in [1, a - 1]$.

 Thus if we want to show that an algebra M(a, b) does not contain non-divisible subalgebras, it suffices to show that {a, nb} for some n ∈ [1, a − 1] generates M(a, b).

イロト 不得 トイヨト イヨト 二日

• Let $\rho_a(b)$ be the remainder on division of *b* by *a*.

- Let $\rho_a(b)$ be the remainder on division of *b* by *a*.
- We will split our discussion into two cases:
 - The case $\rho_a(b) = 1$ when it is possible to have non-divisible subalgebras.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $\rho_a(b)$ be the remainder on division of *b* by *a*.
- We will split our discussion into two cases:
 - **1** The case $\rho_a(b) = 1$ when it is possible to have non-divisible subalgebras.
 - 2 The case $\rho_a(b) \neq 1$ when there are only divisible subalgebras.

• Consider the algebra M(4,5) and its submonoid M(4,10).

3

イロト 不得 トイヨト イヨト

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid M(4,10).
- Then $\mathbb{N} \setminus M(4,5) = C_1 \cup C_2 \cup C_3$ where

$$\textit{C}_{1} = \left\{1,2,3\right\}, \quad \textit{C}_{2} = \left\{6,7\right\}, \quad \textit{C}_{3} = \left\{11\right\}.$$

- Consider the algebra M(4,5) and its submonoid M(4,10).
- Then $\mathbb{N} \setminus M(4,5) = C_1 \cup C_2 \cup C_3$ where

$$C_1 = \{1, 2, 3\}, \quad C_2 = \{6, 7\}, \quad C_3 = \{11\}.$$

• The sets C_i 's are convex subsets of missing elements in M(4, 5).

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid M(4,10).
- Then $\mathbb{N} \setminus M(4,5) = C_1 \cup C_2 \cup C_3$ where

$$C_1 = \{1, 2, 3\}, \quad C_2 = \{6, 7\}, \quad C_3 = \{11\}.$$

- The sets C_i 's are convex subsets of missing elements in M(4, 5).
- Observe that $1 + \max C_i \in M(4, 10)$ for each $i \in \{1, 2, 3\}$.

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid M(4,10).
- Then $\mathbb{N} \setminus M(4,5) = C_1 \cup C_2 \cup C_3$ where

$$\textit{C}_{1} = \left\{1,2,3\right\}, \quad \textit{C}_{2} = \left\{6,7\right\}, \quad \textit{C}_{3} = \left\{11\right\}.$$

- The sets C_i 's are convex subsets of missing elements in M(4, 5).
- Observe that $1 + \max C_i \in M(4, 10)$ for each $i \in \{1, 2, 3\}$.
- Whenever $y x \notin M(4,5)$ then $y - x = \min\{z \in M(4,5) \mid z \ge y - x\} = 1 + \max C_i \in M(4,10).$

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid M(4,10).
- Then $\mathbb{N} \setminus M(4,5) = C_1 \cup C_2 \cup C_3$ where

$$\textit{C}_{1} = \left\{1,2,3\right\}, \quad \textit{C}_{2} = \left\{6,7\right\}, \quad \textit{C}_{3} = \left\{11\right\}.$$

- The sets C_i 's are convex subsets of missing elements in M(4,5).
- Observe that $1 + \max C_i \in M(4, 10)$ for each $i \in \{1, 2, 3\}$.
- Whenever $y x \notin M(4,5)$ then $y - x = \min\{z \in M(4,5) \mid z \ge y - x\} = 1 + \max C_i \in M(4,10).$
- Thus it is impossible (using -) to produce an element which does not belong to *M*(4, 10).

- Consider the algebra $\mathbf{M}(4,5)$ and its submonoid M(4,10).
- Then $\mathbb{N} \setminus M(4,5) = C_1 \cup C_2 \cup C_3$ where

$$\textit{C}_{1} = \left\{1,2,3\right\}, \quad \textit{C}_{2} = \left\{6,7\right\}, \quad \textit{C}_{3} = \left\{11\right\}.$$

- The sets C_i 's are convex subsets of missing elements in M(4,5).
- Observe that $1 + \max C_i \in M(4, 10)$ for each $i \in \{1, 2, 3\}$.
- Whenever $y x \notin M(4,5)$ then $y - x = \min\{z \in M(4,5) \mid z \ge y - x\} = 1 + \max C_i \in M(4,10).$
- Thus it is impossible (using -) to produce an element which does not belong to *M*(4, 10).
- Consequently, M(4, 10) is a subalgebra isomorphic to M(2, 5).

Case $\rho_a(b) = 1$

Lemma

Let $\langle a, b \rangle \in$ Gen such that $\rho_a(b) = 1$. Then for any $x, y \in M(a, b)$ such that $y - x \notin M(a, b)$ we have y - x = ka for $k = \lfloor (y - x)/a \rfloor$.

3

イロト 不得 トイヨト イヨト

Case $\rho_a(b) = 1$

Lemma

Let $\langle a, b \rangle \in$ Gen such that $\rho_a(b) = 1$. Then for any $x, y \in M(a, b)$ such that $y - x \notin M(a, b)$ we have y - x = ka for $k = \lfloor (y - x)/a \rfloor$.

Theorem

Let $\langle a, b \rangle \in$ Gen such that $\rho_a(b) = 1$. For each divisor d of a there is a nontrivial subalgebra of $\mathbf{M}(a, b)$ isomorphic to $\mathbf{M}(a/d, b)$ and each nontrivial subalgebra of $\mathbf{M}(a, b)$ is isomorphic to $\mathbf{M}(a/d, b)$ for a divisor d of a.

Especially, if a is prime then $\mathbf{M}(a, b)$ has only divisible subalgebras.

• Consider M(9, 11) and subalgebra **B** generated by $\{9, 33\}$, i.e. $M(9, 33) \subseteq B$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Consider M(9, 11) and subalgebra **B** generated by $\{9, 33\}$, i.e. $M(9, 33) \subseteq B$.
- We know that $3k \in M(9, 33)$ for sufficiently large $k \in \mathbb{N}$ since $3 = \gcd(9, 33)$.

3

- Consider M(9, 11) and subalgebra **B** generated by $\{9, 33\}$, i.e. $M(9, 33) \subseteq B$.
- We know that $3k \in M(9, 33)$ for sufficiently large $k \in \mathbb{N}$ since $3 = \gcd(9, 33)$.
- Thus we can find $x, y \in M(9, 33)$ such that x y = 3k for any $k \in \mathbb{N}$, e.g. k = 7.

- Consider M(9, 11) and subalgebra **B** generated by $\{9, 33\}$, i.e. $M(9, 33) \subseteq B$.
- We know that $3k \in M(9, 33)$ for sufficiently large $k \in \mathbb{N}$ since $3 = \gcd(9, 33)$.
- Thus we can find $x, y \in M(9, 33)$ such that x y = 3k for any $k \in \mathbb{N}$, e.g. k = 7.
- Consequently, $21 = x y < x y = 22 \in B$, i.e. $M(9, 22) \subseteq B$.

- Consider M(9, 11) and subalgebra **B** generated by $\{9, 33\}$, i.e. $M(9, 33) \subseteq B$.
- We know that $3k \in M(9, 33)$ for sufficiently large $k \in \mathbb{N}$ since $3 = \gcd(9, 33)$.
- Thus we can find $x, y \in M(9, 33)$ such that x y = 3k for any $k \in \mathbb{N}$, e.g. k = 7.
- Consequently, $21 = x y < x y = 22 \in B$, i.e. $M(9, 22) \subseteq B$.
- We have $1k \in M(9, 22)$ for sufficiently large $k \in \mathbb{N}$ since $1 = \gcd(9, 22)$.

- Consider M(9, 11) and subalgebra **B** generated by $\{9, 33\}$, i.e. $M(9, 33) \subseteq B$.
- We know that $3k \in M(9, 33)$ for sufficiently large $k \in \mathbb{N}$ since $3 = \gcd(9, 33)$.
- Thus we can find $x, y \in M(9, 33)$ such that x y = 3k for any $k \in \mathbb{N}$, e.g. k = 7.
- Consequently, $21 = x y < x y = 22 \in B$, i.e. $M(9, 22) \subseteq B$.
- We have $1k \in M(9, 22)$ for sufficiently large $k \in \mathbb{N}$ since $1 = \gcd(9, 22)$.
- Thus we can find $x, y \in M(9, 22)$ such that x y = k for any $k \in \mathbb{N}$, e.g. k = 10.

- Consider M(9, 11) and subalgebra **B** generated by $\{9, 33\}$, i.e. $M(9, 33) \subseteq B$.
- We know that $3k \in M(9, 33)$ for sufficiently large $k \in \mathbb{N}$ since $3 = \gcd(9, 33)$.
- Thus we can find $x, y \in M(9, 33)$ such that x y = 3k for any $k \in \mathbb{N}$, e.g. k = 7.
- Consequently, $21 = x y < x y = 22 \in B$, i.e. $M(9, 22) \subseteq B$.
- We have $1k \in M(9, 22)$ for sufficiently large $k \in \mathbb{N}$ since $1 = \gcd(9, 22)$.
- Thus we can find $x, y \in M(9, 22)$ such that x y = k for any $k \in \mathbb{N}$, e.g. k = 10.
- Consequently, $10 = x y < x y = 11 \in B$, i.e. B = M(9, 11).

Case $\rho_a(b) \neq 1$

Lemma

Let $\langle a, b \rangle \in \text{Gen}$, $\rho_a(b) \neq 1$, and $k \in [1, a - 1]$. Then $\{a, kb\}$ generates M(a, b).

3

イロト 不得 トイヨト イヨト

Case $\rho_a(b) \neq 1$

Lemma

Let $\langle a, b \rangle \in Gen$, $\rho_a(b) \neq 1$, and $k \in [1, a - 1]$. Then $\{a, kb\}$ generates $\mathbf{M}(a, b)$.

Theorem

Let $\langle a, b \rangle \in$ Gen. If a is prime or $\rho_a(b) \neq 1$ then each nontrivial proper subalgebra of $\mathbf{M}(a, b)$ is isomorphic to \mathbf{N} .

3

Subalgebras of an ultrapower

Lemma

Let **B** be a subdirectly irreducible algebra in $\mathcal{V}(\mathbf{M}(a, b))$ for $\langle a, b \rangle \in \text{Gen. Then } \mathbf{B} \in \mathcal{V}(\mathbf{N}) \text{ or } \mathbf{B} \in \mathsf{ISP}_{\mathsf{U}}(\mathbf{M}(a, b)).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subalgebras of an ultrapower

Lemma

Let **B** be a subdirectly irreducible algebra in $\mathcal{V}(\mathbf{M}(a, b))$ for $\langle a, b \rangle \in \text{Gen. Then } \mathbf{B} \in \mathcal{V}(\mathbf{N})$ or $\mathbf{B} \in \text{ISP}_{U}(\mathbf{M}(a, b))$.

Lemma

Let $\langle a, b \rangle \in$ Gen and let **B** be a subalgebra of an ultrapower $\mathbf{M}(a, b)^{I}/U$. If $\mathbf{B} \notin \mathcal{V}(\mathbf{N})$ (i.e., not divisible) then $a, nb \in B$ for some $n \in [1, a - 1]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main results

Theorem

Let $\langle a, b \rangle \in$ Gen. Then

 $\mathcal{V}(\mathbf{M}(a, b))$ is a cover of $\mathcal{V}(\mathbf{N})$ iff a is prime or $\rho_a(b) \neq 1$.

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main results

Theorem

Let $\langle a, b \rangle \in$ Gen. Then

 $\mathcal{V}(\mathbf{M}(a, b))$ is a cover of $\mathcal{V}(\mathbf{N})$ iff a is prime or $\rho_a(b) \neq 1$.

Theorem

Let $\langle a, b \rangle$, $\langle c, d \rangle \in$ Gen such that $\rho_a(b) = \rho_c(d) = 1$. Then $\mathcal{V}(\mathbf{M}(c, d)) \subseteq \mathcal{V}(\mathbf{M}(a, b))$ iff c | a and d = b.

Covers

R. Horčík (ICS, ASCR)

Linz Seminar 2010 19/20

Order for b = 13

Values of a

R. Horčík (ICS, ASCR)

2-generated submonoids of $\ensuremath{\mathbb{N}}$

Linz Seminar 2010 20 / 20

2

イロト イヨト イヨト イヨト