A Weaker Form of Wajsberg's Axiom

Rostislav Horčík joint work with Franco Montagna

Institute of Computer Science Academy of Sciences of the Czech Republic

Shanks Workshop on Proof Theory and Algebra Vanderbilt University 2008

R. Horčík (ICS, ASCR)

A Weaker Form of Wajsberg's Axiom

Vanderbilt 2008 1 / 31

4 D N 4 B N 4 B N 4 B

R. Horčík (ICS, ASCR)

2

2

R. Horčík (ICS, ASCR)

A Weaker Form of Wajsberg's Axiom

크

R. Horčík (ICS, ASCR)

크

Outline

R. Horčík (ICS, ASCR)

2

• ICRL (ICRC) stands for integral commutative residuated lattice (chain).

ъ

- ICRL (ICRC) stands for integral commutative residuated lattice (chain).
- Hájek posed the question whether the variety of representable cancellative ICRLs V is generated by its Archimedean members.

- ICRL (ICRC) stands for integral commutative residuated lattice (chain).
- Hájek posed the question whether the variety of representable cancellative ICRLs V is generated by its Archimedean members.
- He showed that \mathcal{V} is not generated by Archimedean members as a quasivariety.

- ICRL (ICRC) stands for integral commutative residuated lattice (chain).
- Hájek posed the question whether the variety of representable cancellative ICRLs V is generated by its Archimedean members.
- He showed that $\ensuremath{\mathcal{V}}$ is not generated by Archimedean members as a quasivariety.
- Namely, the quasi-identity

$$(Q) \qquad (p \to q) \to q = \mathbf{1} \ \Rightarrow p \lor q = \mathbf{1}$$

holds in any Archimedean member but it does not hold in \mathcal{V} .

< ロ > < 同 > < 回 > < 回 >

Original motivation (cont.)

Equivalently,

$$(Q) \qquad (p
ightarrow q)
ightarrow q = 1 \ \Rightarrow \ (q
ightarrow p)
ightarrow p = 1$$

크

Original motivation (cont.)

Equivalently,

$$(Q) \qquad (p
ightarrow q)
ightarrow q = 1 \ \Rightarrow \ (q
ightarrow p)
ightarrow p = 1$$

Wajsberg's axiom

$$(A_1) \qquad (p
ightarrow q)
ightarrow q \leq (q
ightarrow p)
ightarrow p$$

- < ⊒ →

Original motivation (cont.)

Equivalently,

$$(Q) \qquad (p
ightarrow q)
ightarrow q = 1 \ \Rightarrow \ (q
ightarrow p)
ightarrow p = 1$$

Wajsberg's axiom

$$(A_1) \qquad (p
ightarrow q)
ightarrow q \leq (q
ightarrow p)
ightarrow p$$

• (*Q*) is strictly weaker than (*A*₁). Namely, we will show that it is equivalent to

$$(A_1^2) \qquad ((p
ightarrow q)
ightarrow q)^2 \leq (q
ightarrow p)
ightarrow p$$

< 6 b

Outline

R. Horčík (ICS, ASCR)

2

Algebras of interest

Definition

An integral commutative residuated lattice (ICRL) is an algebra

 $\mathbf{A} = (\mathbf{A}, \cdot, \rightarrow, \wedge, \vee, \mathbf{1})$ where the following conditions are satisfied:

- $(A, \cdot, 1)$ is a commutative monoid,
- (A, \land, \lor) is a lattice,
- 1 is a top element,
- $xy \leq z$ iff $x \leq y \rightarrow z$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algebras of interest

Definition

An integral commutative residuated lattice (ICRL) is an algebra

 $\mathbf{A} = (\mathbf{A}, \cdot, \rightarrow, \wedge, \vee, \mathbf{1})$ where the following conditions are satisfied:

- $(A, \cdot, 1)$ is a commutative monoid,
- (A, \land, \lor) is a lattice,
- 1 is a top element,
- $xy \leq z$ iff $x \leq y \rightarrow z$.
- A totally ordered ICRL is called an ICRC.
- Variety generated by ICRCs is denoted $\mathcal{ICRL}^{\mathcal{C}}$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Definition

 A representable ICRL L is called cancellative if x → xy = y. The corresponding variety CanICRL^C.

< ロ > < 同 > < 回 > < 回 >

Definition

- A representable ICRL L is called cancellative if x → xy = y. The corresponding variety CanICRL^C.
- Let $\mathbf{L} \in \mathcal{ICRL}^{\mathcal{C}}$. L is called basic hoop if it satisfies $x \wedge y = x(x \rightarrow y)$.

< ロ > < 同 > < 回 > < 回 >

Definition

- A representable ICRL L is called cancellative if x → xy = y. The corresponding variety CanICRL^C.
- Let $\mathbf{L} \in \mathcal{ICRL}^{\mathcal{C}}$. **L** is called basic hoop if it satisfies $x \wedge y = x(x \rightarrow y)$.
- A basic hoop satisfying (*A*₁) is called Wajsberg hoop.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- A representable ICRL L is called cancellative if x → xy = y. The corresponding variety CanICRL^C.
- Let $\mathbf{L} \in \mathcal{ICRL}^{\mathcal{C}}$. **L** is called basic hoop if it satisfies $x \wedge y = x(x \rightarrow y)$.
- A basic hoop satisfying (A_1) is called Wajsberg hoop.

Theorem

Let $L \in ICRL^{C}$. Then L is a Wajsberg hoop iff it satisfies (A₁).

< ロ > < 同 > < 回 > < 回 >

Convex subalgebras and congruences

Theorem (Hart, Rafter, Tsinakis)

Let **L** be an ICRL. Then its congruence lattice Con **L** is isomorphic to the lattice of all convex subalgebras of **L**. The isomorphism is established via the assignments $\theta \mapsto F_{\theta}$ and $F \mapsto \theta_{F}$, where

$$F_{\theta} = \{ \boldsymbol{a} \in \boldsymbol{L} \mid \langle \boldsymbol{a}, \boldsymbol{1} \rangle \in \theta \},\$$

and

$$\theta_{\mathsf{F}} = \{ \langle \mathsf{a}, \mathsf{b} \rangle \in \mathsf{L} \times \mathsf{L} \mid \mathsf{a} \to \mathsf{b} \in \mathsf{F} \text{ and } \mathsf{b} \to \mathsf{a} \in \mathsf{F} \} \,.$$

Archimedean classes

Definition

Let **L** be an ICRC. An Archimedean class is a maximal Archimedean subsemigroup of **L**.

∃ > < ∃</p>

< 6 b

Archimedean classes

Definition

Let **L** be an ICRC. An Archimedean class is a maximal Archimedean subsemigroup of **L**.

Theorem

Let (C_L, \leq) be the chain of all Archimedean classes of an ICRC L. Then C_L is dually-isomorphic to the chain of all principal filters \mathcal{P}_L .

Archimedean classes

Definition

Let **L** be an ICRC. An Archimedean class is a maximal Archimedean subsemigroup of **L**.

Theorem

Let (C_L, \leq) be the chain of all Archimedean classes of an ICRC L. Then C_L is dually-isomorphic to the chain of all principal filters \mathcal{P}_L . Let $C \in C_L$. The order-isomorphism $\phi : C_L \to \mathcal{P}_L$ is defined as follows:

$$\phi(\mathcal{C}) = F(b)$$
, for any $b \in \mathcal{C}$.

For the inverse of ϕ we have $\phi^{-1}(F(b)) = F(b) \setminus F$ where F is the predecessor of F(b).

Lexicographic product

Definition

Let $\mathbf{A} = (A, \cdot_A, \rightarrow_A, \leq_A, \mathbf{1}_A)$ and $\mathbf{B} = (B, \cdot_B, \rightarrow_B, \leq_B, \mathbf{1}_B)$ be cancellative ICRCs. Then the lexicographic product of \mathbf{A} and \mathbf{B} is the algebra $\mathbf{A} \times \mathbf{B} = (A \times B, \cdot, \rightarrow, \leq, \langle \mathbf{1}_A, \mathbf{1}_B \rangle)$ where \leq is the lexicographic order and

$$\langle a, b \rangle \cdot \langle c, d \rangle = \langle a \cdot_A c, b \cdot_B d \rangle,$$

 $\langle a, b \rangle \rightarrow \langle c, d \rangle = \begin{cases} \langle a \rightarrow_A c, \mathbf{1}_B \rangle & \text{if } a \cdot (a \rightarrow_A c) <_A c, \\ \langle a \rightarrow_A c, b \rightarrow_B d \rangle & \text{otherwise.} \end{cases}$

.

Lexicographic product

Definition

Let $\mathbf{A} = (A, \cdot_A, \rightarrow_A, \leq_A, \mathbf{1}_A)$ and $\mathbf{B} = (B, \cdot_B, \rightarrow_B, \leq_B, \mathbf{1}_B)$ be cancellative ICRCs. Then the lexicographic product of \mathbf{A} and \mathbf{B} is the algebra $\mathbf{A} \times \mathbf{B} = (A \times B, \cdot, \rightarrow, \leq, \langle \mathbf{1}_A, \mathbf{1}_B \rangle)$ where \leq is the lexicographic order and

$$\langle a, b \rangle \cdot \langle c, d \rangle = \langle a \cdot_A c, b \cdot_B d \rangle,$$

 $\langle a, b \rangle \rightarrow \langle c, d \rangle = \begin{cases} \langle a \rightarrow_A c, \mathbf{1}_B \rangle & \text{if } a \cdot (a \rightarrow_A c) <_A c, \\ \langle a \rightarrow_A c, b \rightarrow_B d \rangle & \text{otherwise.} \end{cases}$

Proposition

Let **A** and **B** be cancellative ICRCs. Then $\mathbf{A} \times \mathbf{B}$ is a cancellative ICRC.

Outline

R. Horčík (ICS, ASCR)

æ

Lemma

Let $\textbf{L} \in \mathcal{ICRL}^{\mathcal{C}}.$ Then

• If $p \rightarrow q = q$ then $q = \max[q]_{F(p)}$.

• If F is a filter and $q = \max[q]_F$ then $p \rightarrow q = q$ for all $p \in F$.

4 A N

Lemma

Let L ∈ ICRL^C. Then
 If p → q = q then q = max [q]_{F(p)}.
 If F is a filter and q = max [q]_F then p → q = q for all p ∈ F.

Proof.

• Let
$$z \in [q]_{F(p)}$$
, i.e. $z \rightarrow q \in F(p)$.

E N 4 E N

4 A N

Lemma

Let $\textbf{L} \in \mathcal{ICRL}^{\mathcal{C}}.$ Then

- If $p \rightarrow q = q$ then $q = \max[q]_{F(p)}$.
- If F is a filter and $q = \max[q]_F$ then $p \rightarrow q = q$ for all $p \in F$.

Proof.

- Let $z \in [q]_{F(p)}$, i.e. $z \to q \in F(p)$.
- Then for some $n \in \mathbb{N}$ we have $p^n \leq z \rightarrow q$.

BA 4 BA

Lemma

Let $\mathbf{L} \in \mathcal{ICRL}^{\mathcal{C}}$. Then

- If $p \rightarrow q = q$ then $q = \max[q]_{F(p)}$.
- If F is a filter and $q = \max[q]_F$ then $p \rightarrow q = q$ for all $p \in F$.

Proof.

- Let $z \in [q]_{F(p)}$, i.e. $z \rightarrow q \in F(p)$.
- Then for some $n \in \mathbb{N}$ we have $p^n \leq z \to q$.

• Hence
$$z \leq p^n \rightarrow q = p^{n-1} \rightarrow (p \rightarrow q) = q.$$

BA 4 BA

Lemma

Let $\mathbf{L} \in \mathcal{ICRL}^{\mathcal{C}}$. Then

- If $p \rightarrow q = q$ then $q = \max[q]_{F(p)}$.
- If F is a filter and $q = \max[q]_F$ then $p \rightarrow q = q$ for all $p \in F$.

Proof.

- Let $z \in [q]_{F(p)}$, i.e. $z \to q \in F(p)$.
- Then for some $n \in \mathbb{N}$ we have $p^n \leq z \rightarrow q$.
- Hence $z \leq p^n \rightarrow q = p^{n-1} \rightarrow (p \rightarrow q) = q.$
- Obvious since $p \rightarrow q \ge q$ and $p \rightarrow q \in [q]_F$.

4 D K 4 B K 4 B K 4 B K

Theorem

Let **L** be an ICRC. Then **L** satisfies (Q) iff each $[x]_F$ different from $[\mathbf{1}]_F$ has no maximum for all nontrivial filters *F*.

4 A N

Theorem

Let **L** be an ICRC. Then **L** satisfies (Q) iff each $[x]_F$ different from $[\mathbf{1}]_F$ has no maximum for all nontrivial filters *F*.

Proof.

 (⇒): Suppose F is a nontrivial filter and [x]_F ≠ [1]_F s.t. m = max [x]_F.

Theorem

Let **L** be an ICRC. Then **L** satisfies (Q) iff each $[x]_F$ different from $[\mathbf{1}]_F$ has no maximum for all nontrivial filters *F*.

Proof.

- (⇒): Suppose F is a nontrivial filter and [x]_F ≠ [1]_F s.t. m = max [x]_F.
- Let $s \in F \setminus \{1\}$. Then $s \to m = m$. Thus $(s \to m) \to m = m \to m = 1$ but $s \lor m = s < 1$.

Theorem

Let **L** be an ICRC. Then **L** satisfies (Q) iff each $[x]_F$ different from $[\mathbf{1}]_F$ has no maximum for all nontrivial filters *F*.

Proof.

- (⇒): Suppose F is a nontrivial filter and [x]_F ≠ [1]_F s.t. m = max [x]_F.
- Let $s \in F \setminus \{1\}$. Then $s \to m = m$. Thus $(s \to m) \to m = m \to m = 1$ but $s \lor m = s < 1$.
- (\Leftarrow): Assume (*Q*) does not hold.
1st characterization

Theorem

Let **L** be an ICRC. Then **L** satisfies (Q) iff each $[x]_F$ different from $[\mathbf{1}]_F$ has no maximum for all nontrivial filters F.

Proof.

- (⇒): Suppose F is a nontrivial filter and [x]_F ≠ [1]_F s.t. m = max [x]_F.
- Let $s \in F \setminus \{1\}$. Then $s \to m = m$. Thus $(s \to m) \to m = m \to m = 1$ but $s \lor m = s < 1$.
- (\Leftarrow): Assume (*Q*) does not hold.
- Then there are $p, q \in L$ such that $(p \rightarrow q) \rightarrow q = 1$ and $p, q \leq p \lor q < 1$.

1st characterization

Theorem

Let **L** be an ICRC. Then **L** satisfies (Q) iff each $[x]_F$ different from $[\mathbf{1}]_F$ has no maximum for all nontrivial filters F.

Proof.

- (⇒): Suppose F is a nontrivial filter and [x]_F ≠ [1]_F s.t. m = max [x]_F.
- Let $s \in F \setminus \{1\}$. Then $s \to m = m$. Thus $(s \to m) \to m = m \to m = 1$ but $s \lor m = s < 1$.
- (\Leftarrow): Assume (Q) does not hold.
- Then there are $p, q \in L$ such that $(p \rightarrow q) \rightarrow q = 1$ and $p, q \leq p \lor q < 1$.
- As $(p \rightarrow q) \rightarrow q = 1$, we get $p \rightarrow q = q$, i.e. $q = \max[q]_{F(p)}$.

1st characterization

Theorem

Let **L** be an ICRC. Then **L** satisfies (Q) iff each $[x]_F$ different from $[\mathbf{1}]_F$ has no maximum for all nontrivial filters F.

Proof.

- (⇒): Suppose F is a nontrivial filter and [x]_F ≠ [1]_F s.t. m = max [x]_F.
- Let $s \in F \setminus \{1\}$. Then $s \to m = m$. Thus $(s \to m) \to m = m \to m = 1$ but $s \lor m = s < 1$.
- (\Leftarrow): Assume (*Q*) does not hold.
- Then there are $p, q \in L$ such that $(p \rightarrow q) \rightarrow q = 1$ and $p, q \leq p \lor q < 1$.
- As $(p \rightarrow q) \rightarrow q = 1$, we get $p \rightarrow q = q$, i.e. $q = \max[q]_{F(p)}$.
- F(p) is nontrivial and $q \notin F(p)$ otherwise q = 1.

Proposition

Let **L** be an ICRC satisfying the quasi-identity (*Q*) and $p, q \in L$ such that $p \ge q$. Then $qs \le p(p \rightarrow q)$ for all s < 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

```
Let L be an ICRC satisfying the quasi-identity (Q) and p, q \in L such that p \ge q. Then qs \le p(p \rightarrow q) for all s < 1.
```

Proof.

• Suppose 1 > p > q (other cases are trivial).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Let **L** be an ICRC satisfying the quasi-identity (*Q*) and $p, q \in L$ such that $p \ge q$. Then $qs \le p(p \rightarrow q)$ for all s < 1.

Proof.

- Suppose 1 > p > q (other cases are trivial).
- Assume there is $s \in L \setminus \{1\}$ such that $p(p \rightarrow q) < qs$.

Proposition

Let **L** be an ICRC satisfying the quasi-identity (*Q*) and $p, q \in L$ such that $p \ge q$. Then $qs \le p(p \rightarrow q)$ for all s < 1.

Proof.

- Suppose 1 > p > q (other cases are trivial).
- Assume there is $s \in L \setminus \{1\}$ such that $p(p \rightarrow q) < qs$.
- Let $x \in [p \to q]_{F(s)}$ such that $x > p \to q$.

Proposition

Let **L** be an ICRC satisfying the quasi-identity (*Q*) and $p, q \in L$ such that $p \ge q$. Then $qs \le p(p \rightarrow q)$ for all s < 1.

Proof.

- Suppose 1 > p > q (other cases are trivial).
- Assume there is $s \in L \setminus \{1\}$ such that $p(p \rightarrow q) < qs$.
- Let $x \in [p \to q]_{F(s)}$ such that $x > p \to q$.
- There is $n \in \mathbb{N}$ such that $xs^{n+1} \leq p \rightarrow q < xs^n$.

Proposition

Let **L** be an ICRC satisfying the quasi-identity (*Q*) and $p, q \in L$ such that $p \ge q$. Then $qs \le p(p \rightarrow q)$ for all s < 1.

Proof.

- Suppose 1 > p > q (other cases are trivial).
- Assume there is $s \in L \setminus \{1\}$ such that $p(p \rightarrow q) < qs$.
- Let $x \in [p \to q]_{F(s)}$ such that $x > p \to q$.
- There is $n \in \mathbb{N}$ such that $xs^{n+1} \leq p \rightarrow q < xs^n$.

•
$$pxs^{n+1} \leq p(p \rightarrow q) < qs.$$

Proposition

Let **L** be an ICRC satisfying the quasi-identity (*Q*) and $p, q \in L$ such that $p \ge q$. Then $qs \le p(p \rightarrow q)$ for all s < 1.

Proof.

- Suppose 1 > p > q (other cases are trivial).
- Assume there is $s \in L \setminus \{1\}$ such that $p(p \rightarrow q) < qs$.
- Let $x \in [p \to q]_{F(s)}$ such that $x > p \to q$.
- There is $n \in \mathbb{N}$ such that $xs^{n+1} \leq p \rightarrow q < xs^n$.

•
$$pxs^{n+1} \leq p(p \rightarrow q) < qs.$$

• Thus $pxs^n < q$, i.e. $xs^n \le p \rightarrow q$ (a contradiction).

2nd characterization

Theorem

An ICRC L satisfies the quasi-identity (Q) iff L is either a Wajsberg hoop or there is a minimal nontrivial filter F (i.e., L is subdirectly irreducible) and L/F is a Wajsberg hoop such that each $[x]_F \neq [1]_F$ has no maximum.

E N 4 E N

4 A N

2nd characterization

Theorem

An ICRC L satisfies the quasi-identity (Q) iff L is either a Wajsberg hoop or there is a minimal nontrivial filter F (i.e., L is subdirectly irreducible) and L/F is a Wajsberg hoop such that each $[x]_F \neq [1]_F$ has no maximum.

Corollary

Let L be an ICRC. If L is Archimedean, then L satisfies (Q).

< ロ > < 同 > < 回 > < 回 >

• Let **R**² be the lexicographic product of two copies of the t.o. additive group of reals.

- Let **R**² be the lexicographic product of two copies of the t.o. additive group of reals.
- Consider the submonoid L generated by the set $F \cup G$ where

$$F = \left\{ \langle 0, y \rangle \in \mathbf{R}^2 \mid y \in \mathbf{Z}^- \right\}, \quad G = \left\{ \langle x, y \rangle \in \mathbf{R}^2 \mid x < 0 \right\}.$$

- Let **R**² be the lexicographic product of two copies of the t.o. additive group of reals.
- Consider the submonoid L generated by the set $F \cup G$ where

$$F = \left\{ \langle 0, y \rangle \in \mathbf{R}^2 \mid y \in \mathbf{Z}^- \right\}, \quad G = \left\{ \langle x, y \rangle \in \mathbf{R}^2 \mid x < 0 \right\}.$$

 Then L is clearly integral, residuated and even cancellative but not divisible.

- Let **R**² be the lexicographic product of two copies of the t.o. additive group of reals.
- Consider the submonoid L generated by the set $F \cup G$ where

$$F = \{ \langle 0, y \rangle \in \mathbf{R}^2 \mid y \in \mathbf{Z}^- \} \,, \quad G = \{ \langle x, y \rangle \in \mathbf{R}^2 \mid x < 0 \} \,.$$

- Then L is clearly integral, residuated and even cancellative but not divisible.
- The subset F is its minimum nontrivial filter and L/F is isomorphic to R⁻ which is a Wajsberg hoop.

< ロ > < 同 > < 回 > < 回 >

- Let **R**² be the lexicographic product of two copies of the t.o. additive group of reals.
- Consider the submonoid L generated by the set $F \cup G$ where

$$F = \{ \langle 0, y \rangle \in \mathbf{R}^2 \mid y \in \mathbf{Z}^- \} \,, \quad G = \{ \langle x, y \rangle \in \mathbf{R}^2 \mid x < 0 \} \,.$$

- Then L is clearly integral, residuated and even cancellative but not divisible.
- The subset F is its minimum nontrivial filter and L/F is isomorphic to R⁻ which is a Wajsberg hoop.
- Each $[\langle x, y \rangle]_F$ has no maximum for x < 0.

Co-atom

Lemma

Let L be an ICRC satisfying (Q) such that L is not a Wajsberg hoop. Then L has a co-atom, i.e., the set $L \setminus \{1\}$ has a maximum.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Co-atom

Lemma

Let **L** be an ICRC satisfying (Q) such that **L** is not a Wajsberg hoop. Then **L** has a co-atom, i.e., the set $L \setminus \{1\}$ has a maximum.

Corollary

Let **L** be a subdirectly irreducible ICRC and θ its monolith. Then F_{θ} is either a Wajsberg hoop or has a co-atom.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Axiomatization

Theorem

Let **L** be an ICRC. Then (Q) is valid in **L** iff (A_1^2) is valid in **L**.

3 > 4 3

Axiomatization

Theorem

Let L be an ICRC. Then (Q) is valid in L iff (A_1^2) is valid in L.

Lemma

Let $\textbf{L} \in \mathcal{Q}.$ Then the following quasi-identity is valid in L:

$$((p \rightarrow q) \rightarrow q) \lor r = \mathbf{1} \Rightarrow p \lor q \lor r = \mathbf{1}.$$

• • • • • • • • • • • • •

Axiomatization

Theorem

Let L be an ICRC. Then (Q) is valid in L iff (A_1^2) is valid in L.

Lemma

Let $L \in \mathcal{Q}$. Then the following quasi-identity is valid in L:

$$((p \rightarrow q) \rightarrow q) \lor r = \mathbf{1} \Rightarrow p \lor q \lor r = \mathbf{1}.$$

Using Cintula's result $\ensuremath{\mathcal{Q}}$ is generated by chains. Thus

Corollary

 $\mathcal{Q}=\mathcal{A}_{2}^{1}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalized identity

Inspired by identity for basic hoops expressing the number of components in the ordinal sum

$$(A_n) \quad \bigwedge_{i=1}^n ((p_{i-1} \to p_i) \to p_i) \leq \bigvee_{i=0}^n p_i,$$

we consider analogous identity in our context

$$(A_n^2) \quad \bigwedge_{i=1}^n ((p_{i-1} \rightarrow p_i) \rightarrow p_i)^2 \leq \bigvee_{i=0}^n p_i.$$

Characterization

Fact

Given an ICRC L and any identity, there is always a maximal convex subalgebra satisfying the identity.

Characterization

Fact

Given an ICRC L and any identity, there is always a maximal convex subalgebra satisfying the identity.

Theorem

Let **L** be an ICRC and $n \ge 2$. Then **L** belongs to \mathcal{A}_n^2 iff \mathbf{L}/F_M belongs to \mathcal{A}_1^2 where F_M is the maximal convex subalgebra belonging to \mathcal{A}_{n-1}^2 .

Characterization

Fact

Given an ICRC L and any identity, there is always a maximal convex subalgebra satisfying the identity.

Theorem

Let **L** be an ICRC and $n \ge 2$. Then **L** belongs to \mathcal{A}_n^2 iff \mathbf{L}/F_M belongs to \mathcal{A}_1^2 where F_M is the maximal convex subalgebra belonging to \mathcal{A}_{n-1}^2 .

Corollary

Let **L** be an ICRC. If **L** consists of at most n + 1 Archimedean classes then (A_n^2) is valid in **L**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lattice of subvarieties

Theorem

The chain of varieties A_n^2 is strictly increasing and its limit is $ICRL^C$.

< 17 ▶

Lattice of subvarieties

Theorem

The chain of varieties \mathcal{A}_n^2 is strictly increasing and its limit is \mathcal{ICRL}^C .

Theorem

The chain of varieties $CanA_n^2$ is strictly increasing and its limit is $CanICRL^C$.

Lattice of subvarieties

Theorem

The chain of varieties \mathcal{A}_n^2 is strictly increasing and its limit is \mathcal{ICRL}^C .

Theorem

The chain of varieties $CanA_n^2$ is strictly increasing and its limit is $CanICRL^C$.

Proof.

Let \mathbf{L}_n be the lexicographic product of *n* copies of \mathbf{Z}^- . Then (A_{n-1}^2) is not valid in \mathbf{L}_n but (A_n^2) holds.

Outline

æ

イロト イヨト イヨト イヨト

Number of Archimedean classes

Theorem

Let \mathcal{K} be a class of ICRCs satisfying the following conditions:

- **()** \mathcal{K} is closed under homomorphic images.
- **2** Let $L \in \mathcal{K}$. Then (A_1^2) is valid in L iff L is Archimedean.

Then an algebra $L \in \mathcal{K}$ satisfies (A_n^2) iff L contains at most n + 1Archimedean classes.

Number of Archimedean classes

Theorem

Let \mathcal{K} be a class of ICRCs satisfying the following conditions:

- \mathcal{K} is closed under homomorphic images.
- **2** Let $L \in \mathcal{K}$. Then (A_1^2) is valid in L iff L is Archimedean.

Then an algebra $L \in \mathcal{K}$ satisfies (A_n^2) iff L contains at most n + 1Archimedean classes.

Corollary

The previous theorem is applicable to the class of complete ICRCs and of k-contractive ICRCs ($x^k = x^{k-1}$).

MTL-algebras

Definition

An MTL-algebra is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, \mathbf{0}, \mathbf{1})$ where the following conditions are satisfied:

- ($A, \cdot, \rightarrow, \wedge, \lor, 1$) is an ICRL,
- 0 is a bottom element,

3
$$(x \rightarrow y) \lor (y \rightarrow x) = 1$$
 for all $x, y \in L$.

3

MTL-algebras

Definition

An MTL-algebra is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, \mathbf{0}, \mathbf{1})$ where the following conditions are satisfied:

- ($A, \cdot, \rightarrow, \wedge, \lor, 1$) is an ICRL,
- 0 is a bottom element,

3
$$(x \rightarrow y) \lor (y \rightarrow x) = 1$$
 for all $x, y \in L$.

- A totally ordered MTL-algebra is called an MTL-chain.
- The zero-free subreducts of MTL-algebras are exactly representable ICRLs.

 C_k MTL-algebras, SMTL-algebras, Π MTL-algebras

An MTL-algebra is called:

• C_k MTL-algebra if $x^k = x^{k-1}$,

BA 4 BA

C_k MTL-algebras, SMTL-algebras, Π MTL-algebras

An MTL-algebra is called:

- C_k MTL-algebra if $x^k = x^{k-1}$,
- SMTL-algebra if $x \wedge \neg x = \mathbf{0}$,

BA 4 BA
C_k MTL-algebras, SMTL-algebras, Π MTL-algebras

An MTL-algebra is called:

- C_k MTL-algebra if $x^k = x^{k-1}$,
- SMTL-algebra if $x \wedge \neg x = \mathbf{0}$,
- \sqcap MTL-algebra if $\neg y \lor ((y \to yx) \to x) = 1$.

3

イロト イヨト イヨト イヨト

C_k MTL-algebras, SMTL-algebras, Π MTL-algebras

An MTL-algebra is called:

- C_k MTL-algebra if $x^k = x^{k-1}$,
- SMTL-algebra if $x \wedge \neg x = \mathbf{0}$,
- \square MTL-algebra if $\neg y \lor ((y \to yx) \to x) = 1$.

Theorem

Let **L** be a nontrivial SMTL-chain (Π MTL-chain). Then **L** \cong **2** \oplus **C** for a (cancellative) ICRC.

イロト イポト イラト イラト

C_k MTL-algebras, SMTL-algebras, Π MTL-algebras

An MTL-algebra is called:

- C_k MTL-algebra if $x^k = x^{k-1}$,
- SMTL-algebra if $x \wedge \neg x = \mathbf{0}$,
- \square MTL-algebra if $\neg y \lor ((y \to yx) \to x) = 1$.

Theorem

Let L be a nontrivial SMTL-chain (\Box MTL-chain). Then L \cong 2 \oplus C for a (cancellative) ICRC. Conversely, let L be a (cancellative) ICRC. Then 2 \oplus L is a nontrivial SMTL-chain (\Box MTL-chain).

Lattice of subvarieties of \mathcal{MTL}

Theorem

The chain of varieties $MTL + (A_n^2)$ is strictly increasing and its limit is MTL.

Lattice of subvarieties of \mathcal{MTL}

Theorem

The chain of varieties $MTL + (A_n^2)$ is strictly increasing and its limit is MTL.

Theorem

Let $k \geq 2$. The chain of varieties $C_k \mathcal{MTL} + (A_n^2)$ is strictly increasing and its limit is $C_k \mathcal{MTL}$.

• Let Γ be a set of defining identites for $\mathcal{ICRL}^{\mathcal{C}}$.

< ロ > < 同 > < 三 > < 三 >

- Let Γ be a set of defining identites for $\mathcal{ICRL}^{\mathcal{C}}$.
- Then SMTL is axiomatized by $\Gamma \cup \{\mathbf{0} \leq x, x \land \neg x = \mathbf{0}\}.$

The Sec. 74

- Let Γ be a set of defining identites for $\mathcal{ICRL}^{\mathcal{C}}$.
- Then SMTL is axiomatized by $\Gamma \cup \{\mathbf{0} \leq x, x \land \neg x = \mathbf{0}\}.$
- Let V be a subvariety of ICRL^C. Then V_{ch} denotes the class of totally ordered members of V.

- Let Γ be a set of defining identites for $\mathcal{ICRL}^{\mathcal{C}}$.
- Then SMTL is axiomatized by $\Gamma \cup \{\mathbf{0} \leq x, x \land \neg x = \mathbf{0}\}.$
- Let V be a subvariety of ICRL^C. Then V_{ch} denotes the class of totally ordered members of V.
- Define $\mathbf{2} \oplus \mathcal{V}$ as the variety generated by $\mathbf{2} \oplus \mathbf{C}$ for $\mathbf{C} \in \mathcal{V}_{ch}$.

- Let Γ be a set of defining identites for $\mathcal{ICRL}^{\mathcal{C}}$.
- Then SMTL is axiomatized by $\Gamma \cup \{\mathbf{0} \leq x, x \land \neg x = \mathbf{0}\}.$
- Let V be a subvariety of ICRL^C. Then V_{ch} denotes the class of totally ordered members of V.
- Define $\mathbf{2} \oplus \mathcal{V}$ as the variety generated by $\mathbf{2} \oplus \mathbf{C}$ for $\mathbf{C} \in \mathcal{V}_{ch}$.

Lemma

Let \mathcal{V} be a subvariety of $\mathcal{ICRL}^{\mathcal{C}}$ and $\Gamma \cup \Sigma$ a set of its defining identities. Then $\mathbf{2} \oplus \mathcal{V}$ is axiomatized by $\Delta = \Gamma \cup \{\mathbf{0} \leq x, x \land \neg x = \mathbf{0}\} \cup \Sigma_0$, where

$$\Sigma_0 = \{ \neg v_1 \lor \cdots \lor \neg v_n \lor \varphi(v_1, \ldots, v_n) = \mathbf{1} \mid \varphi(v_1, \ldots, v_n) = \mathbf{1} \in \Sigma \}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

Isomorphism

Lemma

Each subvariety of SMTL-algebras is axiomatized by identities of SMTL and identities of the form $\varphi(v_1, \ldots, v_n) \lor \bigvee_{i \le n} \neg v_i = 1$, where φ is a **0**-free term.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Isomorphism

Lemma

Each subvariety of SMTL-algebras is axiomatized by identities of SMTL and identities of the form $\varphi(v_1, \ldots, v_n) \lor \bigvee_{i \le n} \neg v_i = 1$, where φ is a **0**-free term.

Theorem

The lattices of subvarieties of $ICRL^{C}$ and SMTL are isomorphic via the mapping $\mathcal{V} \mapsto \mathbf{2} \oplus \mathcal{V}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Isomorphism

Lemma

Each subvariety of SMTL-algebras is axiomatized by identities of SMTL and identities of the form $\varphi(v_1, \ldots, v_n) \lor \bigvee_{i \le n} \neg v_i = 1$, where φ is a **0**-free term.

Theorem

The lattices of subvarieties of $ICRL^{C}$ and SMTL are isomorphic via the mapping $\mathcal{V} \mapsto \mathbf{2} \oplus \mathcal{V}$.

Corollary

 $\mathcal{SMTL} = \mathbf{2} \oplus \mathcal{ICRL}^{\mathcal{C}}$ and $\mathcal{PMTL} = \mathbf{2} \oplus \mathcal{CanICRL}^{\mathcal{C}}$.

Subvarieties of \mathcal{SMTL} and \mathcal{PMTL}

Theorem

The chains of subvarieties $\mathbf{2} \oplus \mathcal{A}_n^2$ and $\mathbf{2} \oplus \mathcal{C}an\mathcal{A}_n^2$ are strictly increasing and their limits are respectively $SMT\mathcal{L}$ and $PMT\mathcal{L}$.

Subvarieties of \mathcal{SMTL} and \mathcal{PMTL}

Theorem

The chains of subvarieties $\mathbf{2} \oplus A_n^2$ and $\mathbf{2} \oplus CanA_n^2$ are strictly increasing and their limits are respectively SMTL and PMTL.

Proposition

The variety $\mathbf{2} \oplus \mathcal{A}_n^2$ is a subvariety of \mathcal{SMTL} defined by identity (\mathcal{A}_{n+1}^2) and $\mathbf{2} \oplus \mathcal{CanA}_n^2$ is a subvariety of \mathcal{PMTL} defined by the same identity.

Final picture

