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Introduction

Original motivation

ICRL (ICRC) stands for integral commutative residuated lattice
(chain).

Hájek posed the question whether the variety of representable
cancellative ICRLs V is generated by its Archimedean members.
He showed that V is not generated by Archimedean members as
a quasivariety.
Namely, the quasi-identity

(Q) (p → q) → q = 1 ⇒ p ∨ q = 1

holds in any Archimedean member but it does not hold in V.
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Introduction

Original motivation (cont.)

Equivalently,
(Q) (p → q) → q = 1 ⇒ (q → p) → p = 1

Wajsberg’s axiom
(A1) (p → q) → q ≤ (q → p) → p

(Q) is strictly weaker than (A1). Namely, we will show that it is
equivalent to

(A2
1) ((p → q) → q)2 ≤ (q → p) → p
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Preliminaries

Algebras of interest

Definition
An integral commutative residuated lattice (ICRL) is an algebra
A = (A, ·,→,∧,∨, 1) where the following conditions are satisfied:

(A, ·, 1) is a commutative monoid,
(A,∧,∨) is a lattice,
1 is a top element,
xy ≤ z iff x ≤ y → z.

A totally ordered ICRL is called an ICRC.
Variety generated by ICRCs is denoted ICRLC .
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Preliminaries

Wajsberg hoops

Definition
A representable ICRL L is called cancellative if x → xy = y .
The corresponding variety CanICRLC .

Let L ∈ ICRLC . L is called basic hoop if it satisfies
x ∧ y = x(x → y).

A basic hoop satisfying (A1) is called Wajsberg hoop.

Theorem
Let L ∈ ICRLC . Then L is a Wajsberg hoop iff it satisfies (A1).
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R. Horčík (ICS, ASCR) A Weaker Form of Wajsberg’s Axiom Vanderbilt 2008 8 / 31



Preliminaries

Wajsberg hoops

Definition
A representable ICRL L is called cancellative if x → xy = y .
The corresponding variety CanICRLC .

Let L ∈ ICRLC . L is called basic hoop if it satisfies
x ∧ y = x(x → y).

A basic hoop satisfying (A1) is called Wajsberg hoop.

Theorem
Let L ∈ ICRLC . Then L is a Wajsberg hoop iff it satisfies (A1).
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Preliminaries

Convex subalgebras and congruences

Theorem (Hart, Rafter, Tsinakis)
Let L be an ICRL. Then its congruence lattice Con L is isomorphic to
the lattice of all convex subalgebras of L. The isomorphism is
established via the assignments θ 7→ Fθ and F 7→ θF , where

Fθ = {a ∈ L | 〈a, 1〉 ∈ θ} ,

and
θF = {〈a, b〉 ∈ L× L | a → b ∈ F and b → a ∈ F} .
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Preliminaries

Archimedean classes

Definition
Let L be an ICRC. An Archimedean class is a maximal Archimedean
subsemigroup of L.

Theorem
Let (CL,≤) be the chain of all Archimedean classes of an ICRC L.
Then CL is dually-isomorphic to the chain of all principal filters PL. Let
C ∈ CL. The order-isomorphism φ : CL → PL is defined as follows:

φ(C) = F (b) , for any b ∈ C .

For the inverse of φ we have φ−1(F (b)) = F (b) \ F where F is the
predecessor of F (b).
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Preliminaries

Lexicographic product

Definition
Let A = (A, ·A,→A,≤A, 1A) and B = (B, ·B,→B,≤B, 1B) be cancellative
ICRCs. Then the lexicographic product of A and B is the algebra
A
→
× B = (A× B, ·,→,≤, 〈1A, 1B〉) where ≤ is the lexicographic order

and
〈a, b〉 · 〈c, d〉 = 〈a ·A c, b ·B d〉 ,

〈a, b〉 → 〈c, d〉 =

{
〈a →A c, 1B〉 if a · (a →A c) <A c ,

〈a →A c, b →B d〉 otherwise.
.

Proposition

Let A and B be cancellative ICRCs. Then A
→
×B is a cancellative ICRC.
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Results

Maxima of congruence classes

Lemma
Let L ∈ ICRLC . Then

If p → q = q then q = max [q]F (p).
If F is a filter and q = max [q]F then p → q = q for all p ∈ F.

Proof.
Let z ∈ [q]F (p), i.e. z → q ∈ F (p).
Then for some n ∈ N we have pn ≤ z → q.
Hence z ≤ pn → q = pn−1 → (p → q) = q.

Obvious since p → q ≥ q and p → q ∈ [q]F .
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Results

1st characterization

Theorem
Let L be an ICRC. Then L satisfies (Q) iff each [x ]F different from [1]F
has no maximum for all nontrivial filters F .

Proof.
(⇒): Suppose F is a nontrivial filter and [x ]F 6= [1]F s.t.
m = max [x ]F .
Let s ∈ F \ {1}. Then s → m = m. Thus
(s → m) → m = m → m = 1 but s ∨m = s < 1.
(⇐): Assume (Q) does not hold.
Then there are p, q ∈ L such that (p → q) → q = 1 and
p, q ≤ p ∨ q < 1.
As (p → q) → q = 1, we get p → q = q, i.e. q = max [q]F (p).
F (p) is nontrivial and q 6∈ F (p) otherwise q = 1.
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R. Horčík (ICS, ASCR) A Weaker Form of Wajsberg’s Axiom Vanderbilt 2008 14 / 31



Results

1st characterization

Theorem
Let L be an ICRC. Then L satisfies (Q) iff each [x ]F different from [1]F
has no maximum for all nontrivial filters F .

Proof.
(⇒): Suppose F is a nontrivial filter and [x ]F 6= [1]F s.t.
m = max [x ]F .
Let s ∈ F \ {1}. Then s → m = m. Thus
(s → m) → m = m → m = 1 but s ∨m = s < 1.
(⇐): Assume (Q) does not hold.

Then there are p, q ∈ L such that (p → q) → q = 1 and
p, q ≤ p ∨ q < 1.
As (p → q) → q = 1, we get p → q = q, i.e. q = max [q]F (p).
F (p) is nontrivial and q 6∈ F (p) otherwise q = 1.
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Results

Almost divisible

Proposition
Let L be an ICRC satisfying the quasi-identity (Q) and p, q ∈ L such
that p ≥ q. Then qs ≤ p(p → q) for all s < 1.

Proof.
Suppose 1 > p > q (other cases are trivial).
Assume there is s ∈ L \ {1} such that p(p → q) < qs.
Let x ∈ [p → q]F (s) such that x > p → q.

There is n ∈ N such that xsn+1 ≤ p → q < xsn.
pxsn+1 ≤ p(p → q) < qs.
Thus pxsn < q, i.e. xsn ≤ p → q (a contradiction).
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R. Horčík (ICS, ASCR) A Weaker Form of Wajsberg’s Axiom Vanderbilt 2008 15 / 31



Results

Almost divisible

Proposition
Let L be an ICRC satisfying the quasi-identity (Q) and p, q ∈ L such
that p ≥ q. Then qs ≤ p(p → q) for all s < 1.

Proof.
Suppose 1 > p > q (other cases are trivial).
Assume there is s ∈ L \ {1} such that p(p → q) < qs.

Let x ∈ [p → q]F (s) such that x > p → q.

There is n ∈ N such that xsn+1 ≤ p → q < xsn.
pxsn+1 ≤ p(p → q) < qs.
Thus pxsn < q, i.e. xsn ≤ p → q (a contradiction).
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Results

2nd characterization

Theorem
An ICRC L satisfies the quasi-identity (Q) iff L is either a Wajsberg
hoop or there is a minimal nontrivial filter F (i.e., L is subdirectly
irreducible) and L/F is a Wajsberg hoop such that each [x ]F 6= [1]F
has no maximum.

Corollary

Let L be an ICRC. If L is Archimedean, then L satisfies (Q).
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Results

Example of a non-Archimedean chain

Let R2 be the lexicographic product of two copies of the t.o.
additive group of reals.

Consider the submonoid L generated by the set F ∪G where

F = {〈0, y〉 ∈ R2 | y ∈ Z−} , G = {〈x , y〉 ∈ R2 | x < 0} .

Then L is clearly integral, residuated and even cancellative but not
divisible.
The subset F is its minimum nontrivial filter and L/F is isomorphic
to R− which is a Wajsberg hoop.
Each [〈x , y〉]F has no maximum for x < 0.
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Results

Co-atom

Lemma

Let L be an ICRC satisfying (Q) such that L is not a Wajsberg hoop.
Then L has a co-atom, i.e., the set L \ {1} has a maximum.

Corollary
Let L be a subdirectly irreducible ICRC and θ its monolith. Then Fθ is
either a Wajsberg hoop or has a co-atom.
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Results

Axiomatization

Theorem

Let L be an ICRC. Then (Q) is valid in L iff (A2
1) is valid in L.

Lemma

Let L ∈ Q. Then the following quasi-identity is valid in L:

((p → q) → q) ∨ r = 1 ⇒ p ∨ q ∨ r = 1 .

Using Cintula’s result Q is generated by chains. Thus

Corollary

Q = A1
2.
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Results

Generalized identity

Inspired by identity for basic hoops expressing the number of
components in the ordinal sum

(An)
∧n

i=1((pi−1 → pi) → pi) ≤
∨n

i=0 pi ,

we consider analogous identity in our context

(A2
n)

∧n
i=1((pi−1 → pi) → pi)

2 ≤
∨n

i=0 pi .
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Results

Characterization

Fact
Given an ICRC L and any identity, there is always a maximal convex
subalgebra satisfying the identity.

Theorem
Let L be an ICRC and n ≥ 2. Then L belongs to A2

n iff L/FM belongs to
A2

1 where FM is the maximal convex subalgebra belonging to A2
n−1.

Corollary
Let L be an ICRC. If L consists of at most n + 1 Archimedean classes
then (A2

n) is valid in L.
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Results

Lattice of subvarieties

Theorem
The chain of varieties A2

n is strictly increasing and its limit is ICRLC .

Theorem
The chain of varieties CanA2

n is strictly increasing and its limit is
CanICRLC .

Proof.
Let Ln be the lexicographic product of n copies of Z−. Then (A2

n−1) is
not valid in Ln but (A2

n) holds.
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Applications

Number of Archimedean classes

Theorem

Let K be a class of ICRCs satisfying the following conditions:
1 K is closed under homomorphic images.
2 Let L ∈ K. Then (A2

1) is valid in L iff L is Archimedean.
Then an algebra L ∈ K satisfies (A2

n) iff L contains at most n + 1
Archimedean classes.

Corollary
The previous theorem is applicable to the class of complete ICRCs
and of k-contractive ICRCs (xk = xk−1).
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Applications

MTL-algebras

Definition
An MTL-algebra is an algebra A = (A, ·,→,∧,∨, 0, 1) where the
following conditions are satisfied:

1 (A, ·,→,∧,∨, 1) is an ICRL,
2 0 is a bottom element,
3 (x → y) ∨ (y → x) = 1 for all x , y ∈ L.

A totally ordered MTL-algebra is called an MTL-chain.
The zero-free subreducts of MTL-algebras are exactly
representable ICRLs.
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R. Horčík (ICS, ASCR) A Weaker Form of Wajsberg’s Axiom Vanderbilt 2008 25 / 31



Applications

CkMTL-algebras, SMTL-algebras, ΠMTL-algebras

An MTL-algebra is called:
CkMTL-algebra if xk = xk−1,

SMTL-algebra if x ∧ ¬x = 0,
ΠMTL-algebra if ¬y ∨ ((y → yx) → x) = 1.

Theorem
Let L be a nontrivial SMTL-chain (ΠMTL-chain). Then L ∼= 2⊕ C for a
(cancellative) ICRC.
Conversely, let L be a (cancellative) ICRC. Then 2⊕ L is a nontrivial
SMTL-chain (ΠMTL-chain).
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Applications

Lattice of subvarieties of MT L

Theorem
The chain of varieties MT L+ (A2

n) is strictly increasing and its limit is
MT L.

Theorem
Let k ≥ 2. The chain of varieties CkMT L+ (A2

n) is strictly increasing
and its limit is CkMT L.
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Applications

Translation from ICRLC to SMT L

Let Γ be a set of defining identites for ICRLC .

Then SMT L is axiomatized by Γ ∪ {0 ≤ x , x ∧ ¬x = 0}.
Let V be a subvariety of ICRLC . Then Vch denotes the class of
totally ordered members of V.
Define 2⊕ V as the variety generated by 2⊕ C for C ∈ Vch.

Lemma
Let V be a subvariety of ICRLC and Γ∪Σ a set of its defining identities.
Then 2⊕ V is axiomatized by ∆ = Γ ∪ {0 ≤ x , x ∧ ¬x = 0} ∪Σ0, where

Σ0 = {¬v1 ∨ · · · ∨ ¬vn ∨ ϕ(v1, . . . , vn) = 1 | ϕ(v1, . . . , vn) = 1 ∈ Σ} .
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Applications

Isomorphism

Lemma
Each subvariety of SMTL-algebras is axiomatized by identities of
SMT L and identities of the form ϕ(v1, . . . , vn)∨

∨
i≤n ¬vi = 1, where ϕ

is a 0-free term.

Theorem

The lattices of subvarieties of ICRLC and SMT L are isomorphic via
the mapping V 7→ 2⊕ V.

Corollary
SMT L = 2⊕ ICRLC and PMT L = 2⊕ CanICRLC .
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Applications

Subvarieties of SMT L and PMT L

Theorem
The chains of subvarieties 2⊕A2

n and 2⊕ CanA2
n are strictly

increasing and their limits are respectively SMT L and PMT L.

Proposition

The variety 2⊕A2
n is a subvariety of SMT L defined by identity (A2

n+1)
and 2⊕ CanA2

n is a subvariety of PMT L defined by the same identity.
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Applications

Final picture
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