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Introduction

Introduction

The notions of a nucleus and a conucleus turned out to be quite
useful in the theory of residuated lattices.

Prominent examples showing this are e.g. the results on
categorical equivalences between several categories of
residuated lattices and `-groups endowed with an operator which
is a composition of a conucleus and a nucleus.

The above-mentioned examples shows that various residuated
lattices can be constructed from `-groups by means of conuclei
and nuclei. Moreover, it seems that the class of residuated lattices
which can be obtained in this way is quite large.

In this talk we construct some algebras belonging to this class.

Rostislav Horčík (ICS, AS CR) Vanderbilt 2009 2 / 18



Introduction

Introduction

The notions of a nucleus and a conucleus turned out to be quite
useful in the theory of residuated lattices.

Prominent examples showing this are e.g. the results on
categorical equivalences between several categories of
residuated lattices and `-groups endowed with an operator which
is a composition of a conucleus and a nucleus.

The above-mentioned examples shows that various residuated
lattices can be constructed from `-groups by means of conuclei
and nuclei. Moreover, it seems that the class of residuated lattices
which can be obtained in this way is quite large.

In this talk we construct some algebras belonging to this class.
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Introduction

Motivation

In the recent book by Galatos, Jipsen, Kowalski, and Ono it is
conjectured that there are only countably many representable
commutative atoms in Λ(RL).

In order to prove this conjecture, it was sufficient to understand
the 1-generated integral commutative residuated chains and show
that there are only countably many of them.

Unfortunately, this turned out to be a false expectation.

We construct uncountable many 1-generated integral
commutative residuated chains which can be easily modified so
that they generate representable commutative atoms in Λ(RL).
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Introduction

Results on Λ(RL)

We will start with a totally ordered Abelian `-group and using conuclear
contractions and nuclear retractions we will prove the following results:

There are 2ℵ0 representable commutative atoms in Λ(RL).

There are 2ℵ0 representable commutative atoms in Λ(FLei).

There are 2ℵ0 representable commutative atoms in Λ(FLeo).

On the other hand, we also prove the following result:

There are 21 representable commutative integral atoms in Λ(RL).
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Introduction

Results on Λ(RL)

We will start with a totally ordered Abelian `-group and using conuclear
contractions and nuclear retractions we will prove the following results:

There are 2ℵ0 representable commutative atoms in Λ(RL).

There are 2ℵ0 representable commutative atoms in Λ(FLei).

There are 2ℵ0 representable commutative atoms in Λ(FLeo).

On the other hand, we also prove the following result:

There are 21 representable commutative integral atoms in Λ(RL).
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Introduction

Nucleus and conucleus

Definition
A closure operator γ on a commutative residuated lattice
L = 〈L,∧,∨, ·,→,1〉 is called a nucleus if γ(x)γ(y) ≤ γ(xy).

An interior operator σ on a commutative residuated lattice
L = 〈L,∧,∨, ·,→,1〉 is called a conucleus if σ(1) = 1 and
σ(x)σ(y) ≤ σ(xy).

Let γ : L→ L be an operator on L. The image of γ is denoted Lγ .
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Introduction

Closure retraction and interior extraction

Lemma
An operator γ on L is nucleus iff Lγ satisfies

min{a ∈ Lγ | x ≤ a} exists for all x ∈ L.
and

x → y ∈ Lγ for all x ∈ L and y ∈ Lγ .
Lγ is called nuclear (closure) retraction.

An operator σ on L is conucleus iff Lσ is a submonoid of L and
max{a ∈ Lσ | a ≤ x} exists for all x ∈ L.

Lσ is called conuclear (interior) contraction.
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Introduction

Resulting residuated algebras

Lemma
If L = 〈L,∧,∨, ·,→,1〉 is a commutative residuated lattice and γ a
nucleus on it, then the algebra Lγ = 〈Lγ ,∧,∨γ , ◦γ ,→, γ(1)〉 is a
commutative residuated lattice, where x ∨γ y = γ(x ∨ y) and
x ◦γ y = γ(x · y), for all x , y ∈ Lγ .

Lemma
If L = 〈L,∧,∨, ·,→,1〉 is a commutative residuated lattice and σ a
conucleus on it, then the algebra Lσ = 〈Lσ,∧σ,∨, ·,→σ,1〉 is a
residuated lattice, where x ∧σ y = σ(x ∧ y) and x →σ y = σ(x → y),
for all x , y ∈ Lσ.
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Results

Construction of AS

Let G be the lexicographic product of two copies of Z.

For each infinite S ⊆ −2− N we will construct a residuated chain
AS by means of a conucleus σS and a nucleus γ.
The conucleus σS is defined by its conuclear contraction:

GσS = {〈0,0〉, 〈−1,0〉, 〈−1,−1〉}∪
{〈−1, z〉 ∈ A | z ∈ S} ∪ {〈x , y〉 ∈ A | x ≤ −2} .

Since S is infinite and dually well ordered, we get the following
lemma.

Lemma
The set GσS forms a conuclear contraction.
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Results

Construction of AS (cont.)

Next, we define the nucleus γ(x , y) = 〈x , y〉 ∨ 〈−3,−1〉.

Then AS is the subalgebra of (GσS )γ generated by
{a = 〈−1,0〉,b = 〈−1,−1〉}.

Lemma
The algebra AS is simple integral commutative residuated chain
generated by a.

Proof.
It is generated by a since

b = a2 → a4 = 〈−2,0〉 → 〈−3,−1〉 = 〈−1,−1〉 .
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Results

Lemma

Let n ∈ N. Then 〈−2,n〉, 〈−3,n〉 ∈ AS.

〈−2,n + 1〉 = b → a〈−2,n〉 and 〈−3,n〉 = a〈−2,n〉.

Lemma
Let z ∈ S. Then 〈−1, z〉 ∈ AS.

We have S ∪ {−1,0} = {s0 = 0 > s1 = −1 > s2 > · · · }.
〈−1, sn+1〉 = a→ b〈−1, sn〉 = 〈−1,0〉 → 〈−2, sn − 1〉.

Lemma
Let R,S ⊆ −2− N such that R 6= S. Then AR is not isomorphic to AS.
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Results

Finally we extend AS by a top element > such that >x = x for
x 6= 〈0,0〉. The resulting algebra is denoted A>S .

Lemma
The algebra A>S is strictly simple with a nearly term definable bottom
element by the term x4 ∧ (x → 1)4.

Theorem (Galatos, Jipsen, Kowalski, Ono)
Let A be a strictly simple FL-algebra or residuated lattice with bottom
element ⊥ nearly term definable by an n-ary term t that does not
involve the constant 0. Then, V(A) is a minimal variety. Moreover, if A′

is a strictly simple FL-algebra or residuated lattice with bottom element
nearly term definable by the same term t, then V(A) ⊆ V(A′) if and
only if A and A′ are isomorphic.

Rostislav Horčík (ICS, AS CR) Vanderbilt 2009 11 / 18
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Results

Main results

Theorem
There are 2ℵ0 representable commutative 4-potent atoms in Λ(RL).

Theorem
There are only finitely many 3-potent representable commutative
atoms. Namely, varieties generated by 2,T1,T2,T3,T′3.
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Results

Theorem
We have

1 There are 2ℵ0 representable commutative atoms in Λ(FLei).

2 There are 2ℵ0 representable commutative atoms in Λ(FLeo).

Proof.
1 We use the FL-algebras living on AS where 0 is interpreted by any

element different from 〈−3,−1〉, 〈0,0〉.
2 We use the FL-algebras living on A>S where 0 is interpreted by
〈−3,−1〉.
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Results

Representable Commutative Integral Atoms

Theorem
There are 21 representable commutative integral atoms in Λ(RL),
namely CLG− = V(Z−) and GBA = V(2).
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Results

Proof.
Let A be a representable simple ICRC.

If A has a minimum 0, then {0,1} is a subalgebra isomorphic to 2.
If A has no minimum, then 〈ak 〉k∈N+ is a strictly decreasing
sequence for any element a 6= 1.
Consider a free ultrafilter U on N and the corresponding
ultrapower B = AN/U.
Let θ be the congruence on B corresponding to the convex
subalgebra generated by the congruence classes containing the
constant mappings and a = 〈ak 〉k∈N+/U.
Then the subalgebra of B/θ generated by a is isomorphic to Z−,
i.e., it belongs to CLG−.Let n > m. Then

a(n−m)k ≤ amk → ank < a(n−m)k−1 ≤ a→ a(n−m)k .
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constant mappings and a = 〈ak 〉k∈N+/U.
Then the subalgebra of B/θ generated by a is isomorphic to Z−,
i.e., it belongs to CLG−.Let n > m. Then

a(n−m)k ≤ amk → ank < a(n−m)k−1 ≤ a→ a(n−m)k .
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Rostislav Horčík (ICS, AS CR) Vanderbilt 2009 15 / 18



Results

Proof.
Let A be a representable simple ICRC.
If A has a minimum 0, then {0,1} is a subalgebra isomorphic to 2.
If A has no minimum, then 〈ak 〉k∈N+ is a strictly decreasing
sequence for any element a 6= 1.
Consider a free ultrafilter U on N and the corresponding
ultrapower B = AN/U.
Let θ be the congruence on B corresponding to the convex
subalgebra generated by the congruence classes containing the
constant mappings and a = 〈ak 〉k∈N+/U.
Then the subalgebra of B/θ generated by a is isomorphic to Z−,
i.e., it belongs to CLG−.

Let n > m. Then

a(n−m)k ≤ amk → ank < a(n−m)k−1 ≤ a→ a(n−m)k .
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Results

1-generated ICRCs

The discussed results show that the class of 1-generated
representable integral commutative residuated chains (ICRCs) is
quite large.

It turns out that it is sufficiently large to generate the whole variety
of representable integral commutative residuated lattices.
Using the conuclear contraction and nuclear retraction, we can
prove that each finite ICRC can be embedded into a finite
1-generated ICRC.

Theorem
The variety of representable integral commutative residuated lattices is
generated by 1-generated finite totally ordered members.
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Results

Sketch of the proof

The variety of representable ICRLs has FEP, i.e., it is generated
by its finite chains.

Let A be a finite ICRC such that
A = {a1 < a2 < . . . < an < an+1 = · · · = 1}.

Let B = Z−
→
× A.

We define B0 = {〈0, x〉 | x ∈ A} and
Bk = {〈−k , x〉 | x ∈ A, x ≤ ak} for k ≥ 1.
Then Bσ =

⋃
k∈N Bk is a conuclear contraction of B.

Let γ be the nucleus defined γ(x , y) = 〈x , y〉 ∨ 〈−2(n + 1),1〉.
Finally, let C be the subalgebra of (Bσ)γ generated by
g = 〈−1,a1〉.
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Results

Sketch of the proof (cont.)

Lemma
The 1-generated ICRC C contains all 〈0, x〉 for any x ∈ A. Thus A can
be embedded into C via the mapping x 7→ 〈0, x〉.

We have g2(n+1) = 〈−2(n + 1),1〉.
Further, we have 〈−k ,ak 〉 = g2(n+1)−k → g2(n+1) for k < 2(n + 1).
Finally, we have for k ≤ n:

〈0,ak 〉 = 〈−n − 1− k ,1〉 → 〈−n − 1,1〉 · 〈−k ,ak 〉 .

Rostislav Horčík (ICS, AS CR) Vanderbilt 2009 18 / 18



Results

Sketch of the proof (cont.)

Lemma
The 1-generated ICRC C contains all 〈0, x〉 for any x ∈ A. Thus A can
be embedded into C via the mapping x 7→ 〈0, x〉.

We have g2(n+1) = 〈−2(n + 1),1〉.

Further, we have 〈−k ,ak 〉 = g2(n+1)−k → g2(n+1) for k < 2(n + 1).
Finally, we have for k ≤ n:

〈0,ak 〉 = 〈−n − 1− k ,1〉 → 〈−n − 1,1〉 · 〈−k ,ak 〉 .
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