Representable Commutative Atoms in the
Subvariety Lattice of Residuated Lattices

Rostislav Horc¢ik

Institute of Computer Science
Academy of Sciences of the Czech Republic

Shanks Workshop on Ordered Groups in Logic
Vanderbilt, Nashville, 2009

Rostislav Hor¢ik (ICS, AS CR) Vanderbilt 2009 1/18



Introduction

@ The notions of a nucleus and a conucleus turned out to be quite
useful in the theory of residuated lattices.

Rostislav Hor¢ik (ICS, AS CR) Vanderbilt 2009 2/18



Introduction

@ The notions of a nucleus and a conucleus turned out to be quite
useful in the theory of residuated lattices.

@ Prominent examples showing this are e.g. the results on
categorical equivalences between several categories of
residuated lattices and /-groups endowed with an operator which
is a composition of a conucleus and a nucleus.

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 2/18



Introduction

@ The notions of a nucleus and a conucleus turned out to be quite
useful in the theory of residuated lattices.

@ Prominent examples showing this are e.g. the results on
categorical equivalences between several categories of
residuated lattices and /-groups endowed with an operator which
is a composition of a conucleus and a nucleus.

@ The above-mentioned examples shows that various residuated
lattices can be constructed from ¢-groups by means of conuclei
and nuclei. Moreover, it seems that the class of residuated lattices
which can be obtained in this way is quite large.

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 2/18



Introduction

@ The notions of a nucleus and a conucleus turned out to be quite
useful in the theory of residuated lattices.

@ Prominent examples showing this are e.g. the results on
categorical equivalences between several categories of
residuated lattices and /-groups endowed with an operator which
is a composition of a conucleus and a nucleus.

@ The above-mentioned examples shows that various residuated
lattices can be constructed from ¢-groups by means of conuclei
and nuclei. Moreover, it seems that the class of residuated lattices
which can be obtained in this way is quite large.

@ In this talk we construct some algebras belonging to this class.
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Motivation
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Motivation

@ In the recent book by Galatos, Jipsen, Kowalski, and Ono it is
conjectured that there are only countably many representable
commutative atoms in A(RL).

@ In order to prove this conjecture, it was sufficient to understand
the 1-generated integral commutative residuated chains and show
that there are only countably many of them.

@ Unfortunately, this turned out to be a false expectation.

@ We construct uncountable many 1-generated integral
commutative residuated chains which can be easily modified so
that they generate representable commutative atoms in A(RL).
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Results on A(RL)

We will start with a totally ordered Abelian ¢-group and using conuclear
contractions and nuclear retractions we will prove the following results:

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 4/18



Results on A(RL)

We will start with a totally ordered Abelian ¢-group and using conuclear
contractions and nuclear retractions we will prove the following results:

@ There are 2% representable commutative atoms in A(RL).

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 4/18



Results on A(RL)

We will start with a totally ordered Abelian ¢-group and using conuclear
contractions and nuclear retractions we will prove the following results:

@ There are 2% representable commutative atoms in A(RL).

@ There are 2% representable commutative atoms in A(FLg;).

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 4/18



Results on A(RL)

We will start with a totally ordered Abelian ¢-group and using conuclear
contractions and nuclear retractions we will prove the following results:

@ There are 2% representable commutative atoms in A(RL).
@ There are 2% representable commutative atoms in A(FLg;).

@ There are 2% representable commutative atoms in A(FLeo).

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 4/18



Results on A(RL)

We will start with a totally ordered Abelian ¢-group and using conuclear
contractions and nuclear retractions we will prove the following results:

@ There are 2% representable commutative atoms in A(RL).
@ There are 2% representable commutative atoms in A(FLg;).

@ There are 2% representable commutative atoms in A(FLeo).

On the other hand, we also prove the following result:

@ There are 2' representable commutative integral atoms in A(RL).
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Nucleus and conucleus

Definition
@ A closure operator v on a commutative residuated lattice
L= (L, AV, -, —,1)is called a nucleus if y(x)y(y) < v(xy).
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Nucleus and conucleus

Definition
@ A closure operator v on a commutative residuated lattice
L= (L AV, -, —,1)is called a nucleus if v(x)y(y) < ~v(xy).
@ An interior operator ¢ on a commutative residuated lattice
L= (L,A,V,-,—,1)iscalled a conucleus if (1) = 1 and
a(x)a(y) < o(xy).

Lety: L — L be an operator on L. The image of v is denoted L,.
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Closure retraction and interior extraction

Lemma
@ An operator~ on L is nucleus iff L, satisfies
min{fae L, | x < a} exists for all x € L.
and
x—yel,forallxeclLandycL,.
L., is called nuclear (closure) retraction.
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Closure retraction and interior extraction

Lemma
@ An operator~ on L is nucleus iff L, satisfies
min{fae L, | x < a} exists for all x € L.
and
x—yel,forallxeclLandycL,.
L., is called nuclear (closure) retraction.

@ An operator o onL is conucleus iff L, is a submonoid of L and
max{ae L, | a < x} exists forall x € L.
L, is called conuclear (interior) contraction.
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Resulting residuated algebras

Lemma

IfL=(L,A,V,-,—,1) is a commutative residuated lattice and vy a
nucleus on it, then the algebra L, = (Ly,A\,V.,0,,—,7(1)) is a
commutative residuated lattice, where x V., y = ~v(x V y) and
Xoyy=n(x-y), forallx,y € L,.
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IfL=(L,A,V,-,—,1) is a commutative residuated lattice and vy a
nucleus on it, then the algebra L, = (Ly,A\,V.,0,,—,7(1)) is a
commutative residuated lattice, where x V., y = ~v(x V y) and
Xoyy=n(x-y), forallx,y € L,.

Lemma

IfL = (L,A,V,-,—,1) is a commutative residuated lattice and o a
conucleus on it, then the algebraL, = (L,, N\, V, -, —¢,1) IS a
residuated lattice, where x N\, y = o(x Ay)and x —, y = o(x — y),
forallx,y € L,.
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Construction of Ag

@ Let G be the lexicographic product of two copies of Z.

@ For each infinite S € —2 — N we will construct a residuated chain
As by means of a conucleus og and a nucleus ~.

@ The conucleus og is defined by its conuclear contraction:

GUS = {<070>7<_170>7<_17_1>}U
{{(-1,2) e A|ze S} U{(x,y) e A| x < -2}.

@ Since S is infinite and dually well ordered, we get the following
lemma.

Lemma
The set G,4 forms a conuclear contraction.
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Construction of Ag (cont.)

@ Next, we define the nucleus (x, y) = (x,y) V (=3, —1).

9
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Construction of Ag (cont.)

@ Next, we define the nucleus (x, y) = (x,y) V (=3, —1).

@ Then Ag is the subalgebra of (G,), generated by
{a=(—1,0),b=(—1,—1)}.
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Construction of Ag (cont.)

@ Next, we define the nucleus (x, y) = (x,y) V (=3, —1).

@ Then Ag is the subalgebra of (G,), generated by
{a=(—1,0),b=(—1,—1)}.

Lemma

The algebra Ag is simple integral commutative residuated chain
generated by a.

Proof.
It is generated by a since

b=& —a" =(-2,0)— (-3,—1) = (-1,-1).
L]
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Lemma

Letne N. Then (—-2,n),(-3,n) € As.

@ (—2,n+1)=b— a(—2,n)and (—3,n) = a(—2,n).
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Lemma
Letne N. Then (—-2,n),(-3,n) € As.
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Lemma
Letze S. Then (—1,z) € As.

@ Wehave SU{-1,0} ={sp=0>8=—-1>8>---}.
@ (—1,8,1)=a—b(—1,sp) =(—1,0) — (2,8, — 1).
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Lemma
Letne N. Then (—-2,n),(-3,n) € As.
@ (—2,n+1)=b— a(—2,n)and (—3,n) = a(—2,n).

Lemma
Letze S. Then (—1,z) € As.

@ Wehave SU{-1,0} ={sp=0>8=—-1>8>---}.
@ (—1,8,1)=a—b(—1,sp) =(—1,0) — (2,8, — 1).

Lemma
LetR,S C —2 — N such that R # S. Then Ag is not isomorphic to Ag.
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@ Finally we extend Ag by a top element T such that Tx = x for
x # (0,0). The resulting algebra is denoted Ag.
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@ Finally we extend Ag by a top element T such that Tx = x for
x # (0,0). The resulting algebra is denoted Ag.

Lemma

The algebra Ag is strictly simple with a nearly term definable bottom
element by the term x* A (x — 1)%.

Theorem (Galatos, Jipsen, Kowalski, Ono)

Let A be a strictly simple FL-algebra or residuated lattice with bottom
element L nearly term definable by an n-ary term t that does not
involve the constant 0. Then, V(A) is a minimal variety. Moreover, if A’
is a strictly simple FL-algebra or residuated lattice with bottom element
nearly term definable by the same term t, then V(A) C V(A’) if and
only if A and A’ are isomorphic.
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Main results

Theorem
There are 2% representable commutative 4-potent atoms in A(RL).
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Main results

Theorem

There are 2% representable commutative 4-potent atoms in A(RL).

Theorem

There are only finitely many 3-potent representable commutative
atoms. Namely, varieties generated by 2, Ty, T, T3, T5.
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Theorem

We have
@ There are 2% representable commutative atoms in A(FLg;).
@ There are 2% representable commutative atoms in A(FLeo).

Proof.

@ We use the FL-algebras living on Ag where 0 is interpreted by any
element different from (-3, —1), (0, 0).

© We use the FL-algebras living on Ag where 0 is interpreted by
<737 —1 >
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Representable Commutative Integral Atoms

Theorem

There are 2' representable commutative integral atoms in A(RL),
namely CLG™ = V(Z~) and GBA = V(2).
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Proof.
@ Let A be a representable simple ICRC.
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Proof.
@ Let A be a representable simple ICRC.
@ If A has a minimum 0, then {0, 1} is a subalgebra isomorphic to 2.

@ If A has no minimum, then (&"),cx+ is a strictly decreasing
sequence for any element a # 1.

@ Consider a free ultrafilter U on N and the corresponding
ultrapower B = AN/ U.

@ Let 6 be the congruence on B corresponding to the convex
subalgebra generated by the congruence classes containing the
constant mappings and a = (a*) ke /U.

@ Then the subalgebra of B/# generated by a is isomorphic to Z—,
i.e., it belongs to CLG™.Let n > m. Then

a(n—m)k < amk N ank < a(n—m)k—1 <a— a(n—m)k'

O
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1-generated ICRCs

@ The discussed results show that the class of 1-generated
representable integral commutative residuated chains (ICRCs) is
quite large.
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1-generated ICRCs

@ The discussed results show that the class of 1-generated
representable integral commutative residuated chains (ICRCs) is
quite large.

@ It turns out that it is sufficiently large to generate the whole variety
of representable integral commutative residuated lattices.

@ Using the conuclear contraction and nuclear retraction, we can
prove that each finite ICRC can be embedded into a finite
1-generated ICRC.

Theorem

The variety of representable integral commutative residuated lattices is
generated by 1-generated finite totally ordered members.
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Sketch of the proof

@ The variety of representable ICRLs has FEP, i.e., it is generated
by its finite chains.
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Sketch of the proof

@ The variety of representable ICRLs has FEP, i.e., it is generated

by its finite chains.
@ Let A be a finite ICRC such that

A={ai<a<...<ap<ap1=---=1}L

o letB=2Z xA.

@ We define By = {(0,x) | x € A} and
By ={(—k,x) | x € A, x <a}fork>1.

Rostislav Horc¢ik (ICS, AS CR)

Vanderbilt 2009

17/18



Sketch of the proof

@ The variety of representable ICRLs has FEP, i.e., it is generated
by its finite chains.

@ Let A be a finite ICRC such that
A={ai<a<...<ap<ap1=---=1}L
o LetB=2Z xA.

@ We define By = {(0,x) | x € A} and
By ={(—k,x) | x € A, x <a}fork>1.
@ Then B, = [Jycn Bk is a conuclear contraction of B.

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 17/18



Sketch of the proof

@ The variety of representable ICRLs has FEP, i.e., it is generated
by its finite chains.

@ Let A be a finite ICRC such that
A={ai<a<...<ap<ap1=---=1}L
o LetB=2Z xA.

@ We define By = {(0,x) | x € A} and
By ={(—k,x) | x € A, x <a}fork>1.

@ Then B, = [Jycn Bk is a conuclear contraction of B.
@ Let v be the nucleus defined v(x, y) = (x,y) vV (=2(n+1),1).

Rostislav Horc¢ik (ICS, AS CR) Vanderbilt 2009 17/18



Sketch of the proof

@ The variety of representable ICRLs has FEP, i.e., it is generated
by its finite chains.

@ Let A be a finite ICRC such that
A={ai<a<...<ap<ap1=---=1}L
o LetB=2Z xA.

@ We define By = {(0,x) | x € A} and
={(—k,x) | xe€ A x <a}fork>1.

@ Then B, = [Jycn Bk is a conuclear contraction of B.
@ Let v be the nucleus defined v(x, y) = (x,y) vV (=2(n+1),1).
@ Finally, let C be the subalgebra of (B, )., generated by

g - <_1 9 a1 >
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Sketch of the proof (cont.)

Lemma

The 1-generated ICRC C contains all (0, x) for any x € A. Thus A can
be embedded into C via the mapping x — (0, X).
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Sketch of the proof (cont.)

Lemma

The 1-generated ICRC C contains all (0, x) for any x € A. Thus A can
be embedded into C via the mapping x — (0, X).

@ We have g?(") = (—2(n+1),1).
@ Further, we have (—k, ax) = g?("t)-k _ g2(+1) for k < 2(n+1).
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Sketch of the proof (cont.)

Lemma

The 1-generated ICRC C contains all (0, x) for any x € A. Thus A can
be embedded into C via the mapping x — (0, X).

@ We have g?(") = (—2(n+1),1).
@ Further, we have (—k, ax) = g?("t)-k _ g2(+1) for k < 2(n+1).
@ Finally, we have for k < n:

(0,a) =(—n—1—-k,1) - (—n—1,1) - (—k, ax) .
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