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Residuated lattices

Residuated maps

Definition
Let P and Q be posets. A map f : P→ Q is said to be residuated iff it
has a (left) residual f †, i.e.

f (x) ≤ y iff x ≤ f †(y) .
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Residuated lattices

Join-semilattice monoids

Definition
A join-semilattice monoid (s`-monoid) is an algebra M = 〈M,∨, ·,1〉,
where
〈M,∨〉 is a semilattice,
〈M, ·,1〉 is a monoid,
a(b ∨ c) = ab ∨ ac and (b ∨ c)a = ba ∨ ca.

Example
Let S be a join-semilattice. Then End(S) and Res(S) are an
s`-monoids. Moreover, Res(S) is a subalgebra of End(S).
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Residuated lattices

Residuated lattices

Definition
A residuated lattice is an algebra A = 〈A,∧,∨, ·, /, \,1〉, where
〈A,∧,∨〉 is a lattice,
〈A, ·,1〉 is a monoid and
· is residuated component-wise, i.e.

x · y ≤ z iff x ≤ z/y iff y ≤ x \ z .

Fact
Every residuated lattice forms an s`-monoid.

Example
Let L be a complete lattice. Then Res(L) is a complete residuated
lattice.
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Cayley-type theorems

Cayley-type theorems

Let G be a group.

G
φ

Sym(G)

a a · −

End(L) need not be a residuated lattice.

What about Res(L)?

L need not be complete but it is embedabble into a completion L.

The image φ[L] ⊆ Res(L) but φ need not preserve ∧ and \, /. It is
only an s`-monoid embedding.
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Cayley-type theorems

Conuclei

Definition
A conucleus σ on a residuated lattice L is an interior operator such that
σ(x)σ(y) ≤ σ(xy) and σ(1) = 1.

Theorem
Let σ be a conucleus on a residuated lattice L = 〈L,∧,∨, ·, \, /,1〉.
Then σ[L] = 〈σ[L],∧σ,∨, ·, \σ, /σ,1〉 is a residuated lattice, where
x ∧σ y = σ(x ∧ y), x \σ y = σ(x \ y) and x/y = σ(x/y).

Theorem (Montagna-Tsinakis)
Every commutative cancellative residuated lattice is the conucleus
image of an Abelian `-group.
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Cayley-type theorems

Cayley’s theorem for residuated lattices

Theorem
If a residuated lattice A embeds as an s`-monoid into a complete
residuated lattice B (via f : A→ B), then it also embeds as a
residuated lattice into a conuclear image σ[B] of B.

Proof.
The map

σ(x) =
∨
{z ∈ f [A] | z ≤ x}

is a conucleus such that f : A→ σ[B] preserves ∧, \ and /.

Theorem (Galatos-H.)

Every residuated lattice L embeds into a conuclear image of Res(L),
where L is a completion of L (for example the DM-completion of L).
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Holland-type theorems

Holland-type theorems

L σ[Res(L)]

Can we replace L by a complete chain C?

Is it possible that every residuated lattice embeds into a conuclear
image of Res(C) for a complete chain C?
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L σ[Res(L)]

Can we replace L by a complete chain C?

Theorem (Holland)
Every `-group can be embedded in the `-group Aut(C) of the
order-automorphisms on a chain C.
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Holland-type theorems

Holland-type theorems

L σ[Res(L)]

Can we replace L by a complete chain C?

Theorem (Anderson-Edwards)
Every distributive `-monoid can be embedded in the `-monoid End(C)
of the order-preserving maps on a chain C.

`-monoid is a lattice-ordered monoid where multiplication distributes
over meets and joins.

Is it possible that every residuated lattice embeds into a conuclear
image of Res(C) for a complete chain C?
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Holland-type theorems

Condition (ec)

Let C be a chain. Then Res(C) is a distributive lattice. But
distributivity need not be preserved by a conucleus.

σ[L] is a subalgebra of L w.r.t. joins, multiplication and 1. So σ[L]
satisfies the same quasi-identities in the language of s`-monoids
as L.
Consider the following quasi-identity:

u ≤ h ∨ zy & u ≤ h ∨ wx =⇒ u ≤ h ∨ zx ∨ wy . (ec)

In the presence of meet, (ec) is equivalent to

(h ∨ zy) ∧ (h ∨ wx) ≤ h ∨ zx ∨ wy .

Lemma
Let C be a complete chain. Then End(C) satisfies (ec). Thus (ec)
holds also in Res(C) and σ[Res(C)].
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Holland-type theorems

Key lemma

Key lemma
Let A be an s`-monoid satisfying (ec). Then t.f.a.e:

1 There exists a nontrivial homomorphism f : A→ End(C) for some
chain C.

2 A has a proper lattice ideal (which can be chosen as maximal
w.r.t. not containing an element).

Proof.

Given ∅ 6= H ⊆ A and a ∈ A, define H/a = {c ∈ A | ca ∈ H}.
If H is lattice ideal maximal w.r.t. not containing an element, then
C = 〈C,⊇〉 is a chain, where C = {H/a | a ∈ A}.
Then f (b) = φb, where φb(H/a) = H/ba.
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Holland-type theorems

Main theorem

Theorem
For a residuated lattice A the following are equivalent:

1 A satisfies (ec).
2 There exists a complete chain C such that A can be embedded

into a conuclear image of Res(C).

Proof.
Let {Hi | i ∈ I} be the collection of all lattice ideals maximal w.r.t. not
containing an element. Then we have chains Ci and s`-monoid
homomorphisms fi : A→ End(Ci).

A
residuated lattice morphism

σ[Res(C)]

s`-monoid morphism
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