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Sequent calculus LJ [Gentzen 1935]

Let A1, . . . ,An,B be formulas. Then a sequent is a
formal expression:

A1, . . . ,An ⇒ B .

The interpretation of the above sequent is that one
can infer B from the set of assumptions {A1, . . . ,An}.

The sequent calculus LJ for intuitionistic logic con-
sists of an axiom schema A ⇒ A and two types of
inference rules:

1 rules introducing logical connectives
(operational inference figures),

2 structural rules (structural inferences figures).
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Structural rules

1 Γ,A,∆⇒ C (∧ ⇒)
Γ,A ∧ B,∆⇒ C

Γ⇒ A Γ⇒ B (⇒ ∧)
Γ⇒ A ∧ B

2 Γ,A,A,∆⇒ C
Contraction

Γ,A,∆⇒ C
Γ,A,B,∆⇒ C Exchange
Γ,B,A,∆⇒ C

Γ,∆⇒ C Weakening
Γ,A,∆⇒ C

Γ⇒ Weakening
Γ⇒ A

Γ⇒ A Σ,A,∆⇒ C
Cut

Σ, Γ,∆⇒ C

Theorem (Gentzen 1935)
LJ admits cut elimination, i.e., proofs have a direct/normal form.
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Substructural logics (Kosta Došen)

Several important nonclassical logics have in com-
mon that they reject or restrict some of the structural
rules while keeping the rules introducing logical con-
nectives the same as in intuitionistic/classical logic.

Definition (Kosta Došen 1990)
Substructural logics are logics which can be
obtained from intuitionistic/classical logic by
restricting structural rules.

Example
Linear logic, relevant logics, Lambek calculus ...
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Full Lambek calculus FL
Additive connectives: ∧,∨, (⊥,>),

Multiplicative connectives: ·, \, /, 1, 0.
FL is given by a single-conclusion sequent calculus:

A⇒ A ⇒ 1 0⇒

Γ⇒ A Π,A,Σ⇒ C (cut)
Π, Γ,Σ⇒ C

Γ,A,B,∆⇒ C (·⇒)
Γ,A · B,∆⇒ C

Γ⇒ A Σ⇒ B (⇒·)
Γ,∆⇒ A · B

Γ, α,Σ⇒ ϕ Γ, β,Σ⇒ ϕ (∨⇒)
Γ, α ∨ β,Σ⇒ ϕ

Γ⇒ ϕ (⇒∨)
Γ⇒ ϕ ∨ ψ

...
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Substructural logics (Hiroakira Ono)

Definition (Hiroakira Ono 2003)
Substructural logics are (axiomatic) extensions of
FL. Nowadays even a nonassociative version of FL
is considered as a base logics.

Example
Multiplicative additive fragment of linear logic MALL, relevant logic R,
Full Lambek calculus FL, fuzzy logics, superintuitionistic logics, classical
logic ...
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My motivation

Substructural logics were studied at the beginning mainly from the
proof-theoretical perspective.

Many important results are done by (triple) induction on the complexity of
the proof tree.

The used methods depend closely on the corresponding sequent calculus
and it is difficult to transfer them to another substructural logics.

An interesting project
Look for another methods which are more versatile.
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Algebraic semantics

Definition
An FL-algebra is a pointed residuated lattice, i.e., an algebra

A = 〈A,∧,∨, ·, /, \, 0, 1〉 ,

〈A,∧,∨〉 is a lattice,
〈A, ·, 1〉 is a monoid,
0 is an arbitrary element and
the following condition holds:

x · y ≤ z iff x ≤ z/y iff y ≤ x \ z .

Fact
The class of FL-algebras forms a variety (i.e., an equational class).
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Algebraizability

FL

Inc

CL

IL BL MALL

TR = Q(Inc)

FL = Q(FL)

BA

HA BL IFLeQ
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`L A1, . . . ,An ⇒ B iff |=Q(L) A1 · · ·An ≤ B .
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Algebraizability

FL

Inc

CL

IL BL MALL

TR = Q(Inc)

FL = Q(FL)

BA

HA BL IFLeQ

S `L A1, . . . ,An ⇒ B iff
{C1 · · ·Cm ≤ D | C1, . . . ,Cm ⇒ D ∈ S} |=Q(L) A1 · · ·An ≤ B .
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Disjunction Property (DP) and complexity

Theorem (Lincoln et al. 1992)
The set of theorems of MALL is PSPACE-complete.

Definition
Let L be a substructural logic. Then L satisfies the disjunction property if

`L ϕ ∨ ψ implies `L ϕ or `L ψ.

Theorem (H., Terui 2011)
Every consistent substructural logic having the DP is PSPACE-hard.

Proof.
By reduction from TQBF using a modification of Švejdar’s encoding for
intuitionistic logic.
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Algebraic characterization of the DP

Definition
An FL-algebra A is called well-connected if for all x , y ∈ A, x ∨ y ≥ 1
implies x ≥ 1 or y ≥ 1.

Theorem (Maksimova 1986, Souma 2007)
Let L be a substructural logic. Then L has the DP iff the following
condition holds:

for every A ∈ Q(L) there is a well-connected FL-algebra
C ∈ Q(L) such that A is a homomorphic image of C .
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DP for `-monoidal extensions

Theorem (H., Terui 2011)
Every extension of FL by any set of rules not containing implication has
the DP.

Example
Every extension of FL by any combination of structural rules enjoys
the DP.
The extension of FL by the rule

⇒ A
⇒ A · B

has the DP. It defines a proper subquasivariety of FL.
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Examples of axioms

Axiom Name
AB ⇒ BA exchange (e)
A⇒ 1 integrality, left weakening (i)
0⇒ A right weakening (o)
A⇒ AA contraction (c)
An ⇒ Am knotted axioms (n,m ≥ 0)

A ∧ (A \ 0)⇒ no-contradiction
AB/B ⇒ A, A \AB ⇒ B cancellativity

A ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C) distributivity
((A ∧ B) ∨ C) ∧ B ⇒ (A ∧ B) ∨ (C ∧ B) modularity

AB ∧ AC ⇒ A(B ∧ C) (·,∧)-distributivity
A ∧ (BC)⇒ (A ∧ B)(A ∧ C) (∧, ·)-distributivity
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Preframes
Example

1 A sequent calculus for L naturally defines 〈Fm∗,Fm,N〉 by

A1, . . . ,An N B iff `L A1, . . . ,An ⇒ B .

2 Every FL-algebra A naturally defines 〈A,A,≤〉.

Definition
Let W be a monoid. Then a preframe is W = 〈W ,W ′,N〉, where
N ⊆W ×W ′.

1 The powerset P(W ) canonically bears the structure of a residuated
lattice.

2 The relation N induces a Galois connection between P(W ) and
P(W ′).
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Residuated frames (Galatos, Jipsen)

Definition (Galatos, Jipsen)
A residuated frame is a preframe W = 〈W ,W ′,N〉 such that there are
 : W ×W ′ →W ′ and � : W ′ ×W →W ′ such that

x · y N z iff y N xz iff x N z�y .

Lemma
Every preframe 〈W ,W ′,N〉 can be extended to a residuated frame by
enlarging W ′ and N.
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Complex algebra of a residuated frame

W W ′
N
/W = 〈W ,W ′,N〉:

P(W ) P(W ′)

B

C

XB = {b ∈ B | (∀a ∈ X )(a N b)} ,
Y C = {a ∈ A | (∀b ∈ Y )(a N b)} .

Galois connection B,C induces a closure operator P(W ).

The collection of closed sets forms a complete residuated lattice W+

called complex algebra of W.
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Residuated frames

FL-algebras

Sequent calculi

Residuated frames

W W+

Residuated frame Residuated lattice

quasi-DM-completion

Remark
[Belardinelli, Jipsen, Ono 2004] gave a purely algebraic proof of cut
admissibility in FLew. For other logics [Galatos, Ono 2010].

Rostislav Horčík (ICS) Substructural logics A Gathering of Logicians 19 / 26



An undecidability result

Theorem (Lincoln et al. 1992)
There is a finite set S of sequents such that the set of sequents provable
from S in MALL is undecidable.

Theorem (H.)
There is a finite set S of sequents such that the set of sequents

{s | S `L s}

is undecidable for every substructural logic L weaker than the axiomatic
extension of FL by axiom schemata A⇒ A2 and A3 ⇒ A2.
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Sketch of the proof

2CM consists of finitely many states {0, . . . ,m} (0 is a final state), two
counters holding k, l ∈ N, program.

Configurations of 2CM are 〈i , k, l〉 such that i ∈ {0, . . . ,m} and k, l ∈ N.

Theorem (Minsky 1961)
There is 2CM M such that given a configuration 〈i , k, l〉, it is undecidable
whether M stops computation in 〈0, 0, 0〉 when computing from 〈i , k, l〉.

Configurations can be encoded into words over a finite alphabet Σ:

w(i , k, l) = Ahk(a)BqiChl (a)A .

The program of M can be encoded into a finite set of sequents S.
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Sketch of the proof (cont.)
1 Easy part: If M stops with empty counters then

S `L w(i , k, l)⇒ w(0, 0, 0) .

2 Converse implication is difficult one. Define a residuated frame
W = 〈Σ∗,Σ∗ × Σ∗,N〉 by

x N 〈u, v〉 iff uxv encodes a configuration 〈i , k, l〉 and M stops in 〈0, 0, 0〉
when computing from 〈i , k, l〉.

Then W+ is a residuated lattice satisfying x ≤ x2 and x3 ≤ x2.

The W+-evaluation p ∈ Σ 7→ {p}BC ∈ W+ satisfies S.

If S `L w(i , k, l)⇒ w(0, 0, 0) then we have in W+:

w(i , k, l) ∈ {w(i , k, l)}BC ⊆ {w(0, 0, 0)}BC ⊆ {〈ε, ε〉}C .
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Density rule

UL is the logic corresponding to the variety of FL-algebras generated by
commutative linearly ordered FL-algebras (FLe-chains).

Theorem (Metcalfe, Montagna 2007; Ciabattoni, Metcalfe 2008)
UL is strongly complete w.r.t. the class of densely ordered FLe-chains.

G | Γ⇒ p | Σ, p ⇒ ∆
Density

G | Γ,Σ⇒ ∆

A⇒ p | p ⇒ B
A⇒ B
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Corresponding residuated frame
Let A = 〈A,∧,∨, ·,→, 0, 1〉 be an FLe-chain and a, b ∈ A such that a ≺ b.

Define W = 〈Ap∗,A ∪ {p},N〉 by

cpn N d iff cbn ≤ d
c N p iff c ≤ a

cpm N p iff cpm−1 ≤ 1

where c, d ∈ A, n ≥ 1 and m > 1.

Lemma
1 W+ can be made into an FLe-chain.
2 A embeds into W+ via x 7→ {x}BC.
3 {a}BC ( {p}BC ( {b}BC.
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Algebraic description of W+

Start with the given FLe-chain A with a ≺ b (we assume that it is
complete). A has a semiring reduct.

Consider the semiring A〈X 〉 of formal power series over A:∨
n∈N

fnXn , fn ∈ A .

A〈X 〉 forms in fact an FL-algebra.

Consider the subset consisting of the following formal series for c, d ∈ A:∨
n∈N(bn → c)Xn

(d → a) ∨
∨

n∈N(bnd → 1)Xn+1

This subset forms an FLe-chain isomorphic to W+.
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Thank you!
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