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Introduction

Motivation

There are still many open problems concerning the complexity of
substructural logics and fuzzy logics.

For instance, we still do not known the complexity of one of the
most prominent fuzzy logic MTL = FLew plus prelinearity.

One way how to approach this problem is to look at various
fragments and discuss their complexity.

In this talk, we concentrate on positive fragment of MTL (MTL+)
with only one variable (MTL+

1 ).
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Introduction

Algebraic semantics

Equivalent algebraic semantics for MTL+ is the variety of
representable, integral, commutative residuated lattices.

An integral commutative residuated lattice (ICRL) is a lattice
ordered algebra A = 〈A,∧,∨, ·,→,e〉 where 〈A, ·,e〉 is a
commutative monoid, e is a top element, and xy ≤ z iff
x ≤ y → z.

A representable ICRL is an ICRL which is isomorphic to a
subdirect product of totally ordered members.

Thus SI-members in our variety are chains. We denote them
shortly ICRCs.
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Rostislav Horčík (ICS, AS CR) TACL 2009 3 / 12



Introduction

Algebraic semantics

Equivalent algebraic semantics for MTL+ is the variety of
representable, integral, commutative residuated lattices.

An integral commutative residuated lattice (ICRL) is a lattice
ordered algebra A = 〈A,∧,∨, ·,→,e〉 where 〈A, ·,e〉 is a
commutative monoid, e is a top element, and xy ≤ z iff
x ≤ y → z.

A representable ICRL is an ICRL which is isomorphic to a
subdirect product of totally ordered members.

Thus SI-members in our variety are chains. We denote them
shortly ICRCs.
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Results

Main result

Theorem
Each finitely generated ICRC can be embedded into a 1-generated
ICRC.

Corollary
The variety of representable integral commutative residuated lattices is
generated (as a quasi-variety) by its 1-generated finite totally ordered
members.
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Results

Lexicographic product

Lemma
Let A,B be ICRCs such that A is cancellative. Then the lexicographic
product A

→
× B is an ICRC.

〈a, x〉 → 〈b, y〉 =

{
〈a→A b,1B〉 if a ·A (a→A b) <A b,
〈a→A b, x →B y〉 otherwise.

In particular, if A = Z−, then for 〈a, x〉 > 〈b, y〉 we have

〈a, x〉 → 〈b, y〉 = 〈b − a, x →B y〉 .
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Results

Nucleus and conucleus

Definition
A closure operator γ on an ICRL L = 〈L,∧,∨, ·,→,e〉 is called a
nucleus if γ(x)γ(y) ≤ γ(xy).

An interior operator σ on an ICRL L = 〈L,∧,∨, ·,→,e〉 is called a
conucleus if σ(e) = e and σ(x)σ(y) ≤ σ(xy).

Let γ : L→ L be an operator on L. The image of γ is denoted Lγ .
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Results

Closure retraction and interior extraction

Lemma
An operator γ on L is nucleus iff Lγ satisfies

min{a ∈ Lγ | x ≤ a} exists for all x ∈ L.
and

x → y ∈ Lγ for all x ∈ L and y ∈ Lγ .
Lγ is called nuclear (closure) retraction.

An operator σ on L is conucleus iff Lσ is a submonoid of L and
max{a ∈ Lσ | a ≤ x} exists for all x ∈ L.

Lσ is called conuclear (interior) contraction.
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Results

Resulting ICRCs

Lemma
If L = 〈L,∧,∨, ·,→,e〉 is an ICRC and γ a nucleus on it, then
Lγ = 〈Lγ ,∧,∨, ◦γ ,→,e〉 is an ICRC, where x ◦γ y = γ(x · y).

Lemma
If L = 〈L,∧,∨, ·,→,e〉 is an ICRC and σ a conucleus on it, then
Lσ = 〈Lσ,∧,∨, ·,→σ,e〉 is an ICRC, where x →σ y = σ(x → y).
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Results

Sketch of the proof

c ea b

Let A be an ICRC generated by {a,b, c}.
We will construct a 1-generated ICRC in which A can be embed-
ded.
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Results

Sketch of the proof

c ea baaa

a a a a

bb

b b b b

c

cccc eeeee

−1−2−3 0

−4−5−6−7−8

e cc b ee

a b c

Consider the lexicographic product Z−
→
× A.

The elements are tuples 〈x , y〉 where x ∈ Z− and y ∈ A.
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Results

Sketch of the proof

c ea baaa

a a a a

bb

b b b b

c

cccc eeeee

−1−2−3 0

−4−5−6−7−8

a b c

Take the conuclear contraction of Z−
→
× A by deleting

{〈−1, y〉 | y > a} ∪ {〈−2, y〉 | y > b} ∪ {〈−3, y〉 | y > c}.
Denote the corresponding conucleus σ.
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Results

Sketch of the proof

c ea baaa
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c
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Consider the nucleus γ(x) = x ∨ 〈−8,e〉 and its corresponding nuclear
retraction.
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Results

Sketch of the proof
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Finally, let C be the subalgebra generated by the element g = 〈−1,a〉.
We will prove that A can be embedded into C.
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Results

Sketch of the proof

c ea baaa

a a a a

bb

b b b b

c

cccc eeeee

−1−2−3 0

−4−5−6−7−8

First, we have g8 = γ(〈−1,a〉8) = γ(〈−8,a8〉) = 〈−8,e〉.
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Results

Sketch of the proof

c ea baaa

a a a a

bb
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c

cccc eeeee

−1−2−3 0

−4−5−6−7−8

Then g →σ g8 = σ(〈−1,a〉 → 〈−8,e〉) = σ(〈−7,e〉) = 〈−7,e〉.
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Results

Sketch of the proof

c ea baaa

a a a a

bb

b b b b

c

cccc eeeee

−1−2−3 0

−4−5−6−7−8

Then g2 →σ g8 = σ(〈−2,a2〉 → 〈−8,e〉) = σ(〈−6,e〉) = 〈−6,e〉.
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Sketch of the proof
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Then g3 →σ g8 = σ(〈−3,a3〉 → 〈−8,e〉) = σ(〈−5,e〉) = 〈−5,e〉.
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Sketch of the proof
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Then g4 →σ g8 = σ(〈−4,a4〉 → 〈−8,e〉) = σ(〈−4,e〉) = 〈−4,e〉.
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Sketch of the proof
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Then g5 →σ g8 = σ(〈−5,a5〉 → 〈−8,e〉) = σ(〈−3,e〉) = 〈−3, c〉.
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Sketch of the proof
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Then g6 →σ g8 = σ(〈−6,a6〉 → 〈−8,e〉) = σ(〈−2,e〉) = 〈−2,b〉.
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Results

Sketch of the proof
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We have
〈−5,e〉 →σ 〈−1,a〉〈−4,e〉 = σ(〈−5,e〉 → 〈−5,a〉) = σ(〈0,a〉) =
〈0,a〉.
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Sketch of the proof
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Thus 〈0,a〉, 〈0,b〉, 〈0, c〉 ∈ C, i.e. C contains an isomorphic copy of A.
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Results

Corollary

Corollary
Let T be a finite theory and ϕ be a formula such that T 6` ϕ. Then
there is a substitution σ such that σ(T ) 6` σ(ϕ) and σ(T ), σ(ϕ) contain
only a single propositional variable.

Moreover, if |ψ| = n and Var(ψ) = {v1, . . . , vm} then

σ(vi) = (pn+1−k → p2(n+1))→
(
(pn+1 → p2(n+1))·(p2(n+1)−k → p2(n+1))

)
for some 1 ≤ k ≤ n.

There is a function f ∈ O(n2) such that for any ψ ∈ T ∪ {ϕ} we have
|σ(ψ)| ≤ f (|ψ|).
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Results

Time complexity

Let m ∈ N \ {0} be a fixed natural number. We denote by MTL+
m

the positive fragment of MTL containing only m propositional
variables.

Given a logic L, TAUT(L) denotes the tautologicity problem of L.

Theorem

There exists a polynomial-time reduction from TAUT(MTL+
m) to

TAUT(MTL+
1 ).

The translation is of this form:

ϕ′(p) =
∨

(k1,...,km)∈{1,...,n}m

σ(k1,...,km)(ϕ) .
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Results

Space complexity

ϕ′(p) =
∨

(k1,...,km)∈{1,...,n}m

σ(k1,...,km)(ϕ) .

Remarks
We have to fix the number of variables m otherwise the length of ϕ′ is
bounded only by nn.

However, to check that a formula ϕ is in TAUT(MTL+) it suffices to go
through all the disjuncts in ϕ′ and check if they belong to TAUT(MTL+

1 )
or not. In order to do this, we need “essentially” the same space.

For instance, if we would know that TAUT(MTL+
1 ) is in PSPACE then

we can infer that TAUT(MTL+) is in PSPACE as well.
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