Positive Fragment of MTL with One Variable and Its Computational Complexity

Rostislav Horčík

Institute of Computer Science
Academy of Sciences of the Czech Republic

Topology, Algebra and Categories in Logic
Amsterdam, July 2009

Motivation

- There are still many open problems concerning the complexity of substructural logics and fuzzy logics.

Motivation

- There are still many open problems concerning the complexity of substructural logics and fuzzy logics.
- For instance, we still do not known the complexity of one of the most prominent fuzzy logic MTL $=F L_{\text {ew }}$ plus prelinearity.

Motivation

- There are still many open problems concerning the complexity of substructural logics and fuzzy logics.
- For instance, we still do not known the complexity of one of the most prominent fuzzy logic MTL = FLew plus prelinearity.
- One way how to approach this problem is to look at various fragments and discuss their complexity.

Motivation

- There are still many open problems concerning the complexity of substructural logics and fuzzy logics.
- For instance, we still do not known the complexity of one of the most prominent fuzzy logic $M T L=F L_{\text {ew }}$ plus prelinearity.
- One way how to approach this problem is to look at various fragments and discuss their complexity.
- In this talk, we concentrate on positive fragment of MTL (MTL+) with only one variable $\left(\mathrm{MTL}_{1}^{+}\right)$.

Algebraic semantics

- Equivalent algebraic semantics for MTL+ is the variety of representable, integral, commutative residuated lattices.

Algebraic semantics

- Equivalent algebraic semantics for MTL+ is the variety of representable, integral, commutative residuated lattices.
- An integral commutative residuated lattice (ICRL) is a lattice ordered algebra $\mathbf{A}=\langle\boldsymbol{A}, \wedge, \vee, \cdot, \rightarrow, \boldsymbol{e}\rangle$ where $\langle\boldsymbol{A}, \cdot, \boldsymbol{e}\rangle$ is a commutative monoid, e is a top element, and $x y \leq z$ iff $x \leq y \rightarrow z$.

Algebraic semantics

- Equivalent algebraic semantics for MTL+ is the variety of representable, integral, commutative residuated lattices.
- An integral commutative residuated lattice (ICRL) is a lattice ordered algebra $\mathbf{A}=\langle\boldsymbol{A}, \wedge, \vee, \cdot, \rightarrow, \boldsymbol{e}\rangle$ where $\langle\boldsymbol{A}, \cdot, \boldsymbol{e}\rangle$ is a commutative monoid, e is a top element, and $x y \leq z$ iff $x \leq y \rightarrow z$.
- A representable ICRL is an ICRL which is isomorphic to a subdirect product of totally ordered members.

Algebraic semantics

- Equivalent algebraic semantics for MTL+ is the variety of representable, integral, commutative residuated lattices.
- An integral commutative residuated lattice (ICRL) is a lattice ordered algebra $\mathbf{A}=\langle\boldsymbol{A}, \wedge, \vee, \cdot, \rightarrow, \boldsymbol{e}\rangle$ where $\langle\boldsymbol{A}, \cdot, \boldsymbol{e}\rangle$ is a commutative monoid, e is a top element, and $x y \leq z$ iff $x \leq y \rightarrow z$.
- A representable ICRL is an ICRL which is isomorphic to a subdirect product of totally ordered members.
- Thus SI-members in our variety are chains. We denote them shortly ICRCs.

Main result

Theorem
Each finitely generated ICRC can be embedded into a 1-generated ICRC.

Main result

Theorem

Each finitely generated ICRC can be embedded into a 1 -generated ICRC.

Corollary

The variety of representable integral commutative residuated lattices is generated (as a quasi-variety) by its 1 -generated finite totally ordered members.

Lexicographic product

Lemma

Let \mathbf{A}, \mathbf{B} be ICRCs such that \mathbf{A} is cancellative. Then the lexicographic product $\mathbf{A} \overrightarrow{\times} \mathbf{B}$ is an ICRC.

Lexicographic product

Lemma

Let \mathbf{A}, \mathbf{B} be ICRCs such that \mathbf{A} is cancellative. Then the lexicographic product $\mathbf{A} \overrightarrow{\times} \mathbf{B}$ is an ICRC.

$$
\langle a, x\rangle \rightarrow\langle b, y\rangle= \begin{cases}\left\langle a \rightarrow_{A} b, 1_{B}\right\rangle & \text { if } a \cdot{ }_{A}\left(a \rightarrow_{A} b\right)<_{A} b, \\ \left\langle a \rightarrow_{A} b, x \rightarrow_{B} y\right\rangle & \text { otherwise. }\end{cases}
$$

Lexicographic product

Lemma

Let \mathbf{A}, \mathbf{B} be ICRCs such that \mathbf{A} is cancellative. Then the lexicographic product $\mathbf{A} \overrightarrow{\times} \mathbf{B}$ is an ICRC.

$$
\langle a, x\rangle \rightarrow\langle b, y\rangle= \begin{cases}\left\langle a \rightarrow_{A} b, 1_{B}\right\rangle & \text { if } a \cdot{ }_{A}\left(a \rightarrow_{A} b\right)<_{A} b, \\ \left\langle a \rightarrow_{A} b, x \rightarrow_{B} y\right\rangle & \text { otherwise. }\end{cases}
$$

In particular, if $\mathbf{A}=\mathbf{Z}^{-}$, then for $\langle a, x\rangle>\langle b, y\rangle$ we have

$$
\langle a, x\rangle \rightarrow\langle b, y\rangle=\left\langle b-a, x \rightarrow_{B} y\right\rangle .
$$

Nucleus and conucleus

Definition

- A closure operator γ on an ICRL $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is called a nucleus if $\gamma(x) \gamma(y) \leq \gamma(x y)$.

Nucleus and conucleus

Definition

- A closure operator γ on an ICRL $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is called a nucleus if $\gamma(x) \gamma(y) \leq \gamma(x y)$.
- An interior operator σ on an ICRL $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is called a conucleus if $\sigma(e)=e$ and $\sigma(x) \sigma(y) \leq \sigma(x y)$.

Nucleus and conucleus

Definition

- A closure operator γ on an ICRL $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is called a nucleus if $\gamma(x) \gamma(y) \leq \gamma(x y)$.
- An interior operator σ on an ICRL $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is called a conucleus if $\sigma(e)=e$ and $\sigma(x) \sigma(y) \leq \sigma(x y)$.

Let $\gamma: L \rightarrow L$ be an operator on L. The image of γ is denoted L_{γ}.

Closure retraction and interior extraction

Lemma

- An operator γ on \mathbf{L} is nucleus iff L_{γ} satisfies

$$
\min \left\{a \in L_{\gamma} \mid x \leq a\right\} \text { exists for all } x \in L
$$

and

$$
x \rightarrow y \in L_{\gamma} \text { for all } x \in L \text { and } y \in L_{\gamma}
$$

L_{γ} is called nuclear (closure) retraction.

Closure retraction and interior extraction

Lemma

- An operator γ on \mathbf{L} is nucleus iff L_{γ} satisfies

$$
\min \left\{a \in L_{\gamma} \mid x \leq a\right\} \text { exists for all } x \in L .
$$

and

$$
x \rightarrow y \in L_{\gamma} \text { for all } x \in L \text { and } y \in L_{\gamma} .
$$

L_{γ} is called nuclear (closure) retraction.

- An operator σ on \mathbf{L} is conucleus iff L_{σ} is a submonoid of \mathbf{L} and $\max \left\{a \in L_{\sigma} \mid a \leq x\right\}$ exists for all $x \in L$.
L_{σ} is called conuclear (interior) contraction.

Resulting ICRCs

Lemma

If $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is an ICRC and γ a nucleus on it, then $\mathbf{L}_{\gamma}=\left\langle L_{\gamma}, \wedge, \vee, \circ_{\gamma}, \rightarrow, e\right\rangle$ is an ICRC, where $x \circ_{\gamma} y=\gamma(x \cdot y)$.

Resulting ICRCs

Lemma
If $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is an ICRC and γ a nucleus on it, then $\mathbf{L}_{\gamma}=\left\langle L_{\gamma}, \wedge, \vee, \circ_{\gamma}, \rightarrow, e\right\rangle$ is an ICRC, where $x \circ_{\gamma} y=\gamma(x \cdot y)$.

Lemma

If $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \rightarrow, e\rangle$ is an ICRC and σ a conucleus on it, then $\mathbf{L}_{\sigma}=\left\langle\mathrm{L}_{\sigma}, \wedge, \vee, \cdot, \rightarrow_{\sigma}, e\right\rangle$ is an ICRC, where $x \rightarrow_{\sigma} y=\sigma(x \rightarrow y)$.

Sketch of the proof

Let \mathbf{A} be an ICRC generated by $\{a, b, c\}$. We will construct a 1-generated ICRC in which A can be embedded.

Sketch of the proof

Consider the lexicographic product $\mathbf{Z}^{-} \overrightarrow{\times} \mathbf{A}$. The elements are tuples $\langle x, y\rangle$ where $x \in \mathbf{Z}^{-}$and $y \in \mathbf{A}$.

Sketch of the proof

Take the conuclear contraction of $\mathbf{Z}^{-} \overrightarrow{\times} \mathbf{A}$ by deleting $\{\langle-1, y\rangle \mid y>a\} \cup\{\langle-2, y\rangle \mid y>b\} \cup\{\langle-3, y\rangle \mid y>c\}$. Denote the corresponding conucleus σ.

Sketch of the proof

Consider the nucleus $\gamma(x)=x \vee\langle-8, e\rangle$ and its corresponding nuclear retraction.

Sketch of the proof

Finally, let \mathbf{C} be the subalgebra generated by the element $g=\langle-1, a\rangle$. We will prove that \mathbf{A} can be embedded into \mathbf{C}.

Sketch of the proof

First, we have $g^{8}=\gamma\left(\langle-1, a\rangle^{8}\right)=\gamma\left(\left\langle-8, a^{8}\right\rangle\right)=\langle-8, e\rangle$.

Sketch of the proof

Then $g \rightarrow_{\sigma} g^{8}=\sigma(\langle-1, a\rangle \rightarrow\langle-8, e\rangle)=\sigma(\langle-7, e\rangle)=\langle-7, e\rangle$.

Sketch of the proof

Then $g^{2} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-2, a^{2}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-6, e\rangle)=\langle-6, e\rangle$.

Sketch of the proof

Then $g^{3} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-3, a^{3}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-5, e\rangle)=\langle-5, e\rangle$.

Sketch of the proof

Then $g^{4} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-4, a^{4}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-4, e\rangle)=\langle-4, e\rangle$.

Sketch of the proof

Then $g^{5} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-5, a^{5}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-3, e\rangle)=\langle-3, c\rangle$.

Sketch of the proof

Then $g^{6} \rightarrow_{\sigma} g^{8}=\sigma\left(\left\langle-6, a^{6}\right\rangle \rightarrow\langle-8, e\rangle\right)=\sigma(\langle-2, e\rangle)=\langle-2, b\rangle$.

Sketch of the proof

We have
$\langle-5, e\rangle \rightarrow_{\sigma}\langle-1, a\rangle\langle-4, e\rangle=\sigma(\langle-5, e\rangle \rightarrow\langle-5, a\rangle)=\sigma(\langle 0, a\rangle)=$ $\langle 0, a\rangle$.

Sketch of the proof

We have
$\langle-6, e\rangle \rightarrow_{\sigma}\langle-2, b\rangle\langle-4, e\rangle=\sigma(\langle-6, e\rangle \rightarrow\langle-6, b\rangle)=\sigma(\langle 0, b\rangle)=$ $\langle 0, b\rangle$.

Sketch of the proof

We have
$\langle-7, e\rangle \rightarrow_{\sigma}\langle-3, c\rangle\langle-4, e\rangle=\sigma(\langle-7, e\rangle \rightarrow\langle-7, c\rangle)=\sigma(\langle 0, c\rangle)=$ $\langle 0, c\rangle$.

Sketch of the proof

Thus $\langle 0, a\rangle,\langle 0, b\rangle,\langle 0, c\rangle \in \mathbf{C}$, i.e. \mathbf{C} contains an isomorphic copy of \mathbf{A}.

Corollary

Corollary

Let T be a finite theory and φ be a formula such that $T \nvdash \varphi$. Then there is a substitution σ such that $\sigma(T) \nvdash \sigma(\varphi)$ and $\sigma(T), \sigma(\varphi)$ contain only a single propositional variable.

Corollary

Corollary

Let T be a finite theory and φ be a formula such that $T \nvdash \varphi$. Then there is a substitution σ such that $\sigma(T) \nvdash \sigma(\varphi)$ and $\sigma(T), \sigma(\varphi)$ contain only a single propositional variable.

Moreover, if $|\psi|=n$ and $\operatorname{Var}(\psi)=\left\{v_{1}, \ldots, v_{m}\right\}$ then
$\sigma\left(v_{i}\right)=\left(p^{n+1-k} \rightarrow p^{2(n+1)}\right) \rightarrow\left(\left(p^{n+1} \rightarrow p^{2(n+1)}\right) \cdot\left(p^{2(n+1)-k} \rightarrow p^{2(n+1)}\right)\right)$
for some $1 \leq k \leq n$.
There is a function $f \in \mathcal{O}\left(n^{2}\right)$ such that for any $\psi \in T \cup\{\varphi\}$ we have $|\sigma(\psi)| \leq f(|\psi|)$.

Time complexity

- Let $m \in \mathbb{N} \backslash\{0\}$ be a fixed natural number. We denote by MTL_{m}^{+} the positive fragment of MTL containing only m propositional variables.

Time complexity

- Let $m \in \mathbb{N} \backslash\{0\}$ be a fixed natural number. We denote by MTL_{m}^{+} the positive fragment of MTL containing only m propositional variables.
- Given a logic $\mathrm{L}, \mathrm{TAUT}(\mathrm{L})$ denotes the tautologicity problem of L .

Time complexity

- Let $m \in \mathbb{N} \backslash\{0\}$ be a fixed natural number. We denote by MTL_{m}^{+} the positive fragment of MTL containing only m propositional variables.
- Given a logic L , $\operatorname{TAUT(L)}$ denotes the tautologicity problem of L .

Theorem

There exists a polynomial-time reduction from TAUT($\left.\mathrm{MTL}_{m}^{+}\right)$to TAUT $\left(\mathrm{MTL}_{1}^{+}\right)$.

The translation is of this form:

$$
\varphi^{\prime}(p)=\bigvee_{\left(k_{1}, \ldots, k_{m}\right) \in\{1, \ldots, n\}^{m}} \sigma_{\left(k_{1}, \ldots, k_{m}\right)}(\varphi)
$$

Space complexity

$$
\varphi^{\prime}(p)=\bigvee_{\left(k_{1}, \ldots, k_{m}\right) \in\{1, \ldots, n\}^{m}} \sigma_{\left(k_{1}, \ldots, k_{m}\right)}(\varphi) .
$$

Remarks

We have to fix the number of variables m otherwise the length of φ^{\prime} is bounded only by n^{n}.

Space complexity

$$
\varphi^{\prime}(p)=\bigvee_{\left(k_{1}, \ldots, k_{m}\right) \in\{1, \ldots, n\}^{m}} \sigma_{\left(k_{1}, \ldots, k_{m}\right)}(\varphi)
$$

Remarks

We have to fix the number of variables m otherwise the length of φ^{\prime} is bounded only by n^{n}.

However, to check that a formula φ is in TAUT(MTL ${ }^{+}$) it suffices to go through all the disjuncts in φ^{\prime} and check if they belong to $\operatorname{TAUT}\left(\mathrm{MTL}_{1}^{+}\right)$ or not. In order to do this, we need "essentially" the same space.

For instance, if we would know that TAUT $\left(\mathrm{MTL}_{1}^{+}\right)$is in PSPACE then we can infer that TAUT(MTL+) is in PSPACE as well.

