Residuated Lattices, Regular Languages, and Burnside Problem

Rostislav Horčík
Institute of Computer Science
Academy of Sciences of the Czech Republic

Topology, Algebra, and Categories in Logic
July 28 - August 1, 2013

Outline

(1) Residuated lattices

Outline

(1) Residuated lattices
(2) Analogy between languages and logics

Outline

(1) Residuated lattices
(2) Analogy between languages and logics
(3) FEP and regularity

Outline

(1) Residuated lattices
(2) Analogy between languages and logics
(3) FEP and regularity
(4) Applications

Residuated lattices

Definition

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$
x \leq y \Longrightarrow u x v \leq u y v .
$$

Residuated lattices

Definition

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$
x \leq y \Longrightarrow u x v \leq u y v
$$

Definition

A residuated lattice $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ is a monoid such that $\langle A, \wedge, \vee\rangle$ is a lattice and for all $a, b, c \in A$:

$$
a \cdot b \leq c \quad \text { iff } \quad b \leq a \backslash c \quad \text { iff } \quad a \leq c / b
$$

Residuated lattices

Definition

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$
x \leq y \Longrightarrow u x v \leq u y v
$$

Definition

A residuated lattice $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ is a monoid such that $\langle A, \wedge, \vee\rangle$ is a lattice and for all $a, b, c \in A$:

$$
a \cdot b \leq c \quad \text { iff } \quad b \leq a \backslash c \quad \text { iff } \quad a \leq c / b
$$

Logic $=$ a substructural logic, i.e., an axiomatic extension of FL.

Powerset monoid

Example

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. Then

$$
\mathcal{P}(\mathbf{M})=\langle\mathcal{P}(M), \cap, \cup, \cdot, \backslash, /,\{1\}\rangle
$$

is a residuated lattice, where

$$
\begin{aligned}
X \cdot Y & =\{x y \in M \mid x \in X, y \in Y\} \\
X \backslash Z & =\{y \in M \mid X \cdot\{y\} \subseteq Z\} \\
Z / Y & =\{x \in M \mid\{x\} \cdot Y \subseteq Z\}
\end{aligned}
$$

Powerset monoid

Example

Let $\mathbf{M}=\langle M, \cdot, 1\rangle$ be a monoid. Then

$$
\mathcal{P}(\mathbf{M})=\langle\mathcal{P}(M), \cap, \cup, \cdot, \backslash, /,\{1\}\rangle
$$

is a residuated lattice, where

$$
\begin{aligned}
X \cdot Y & =\{x y \in M \mid x \in X, y \in Y\} \\
X \backslash Z & =\{y \in M \mid X \cdot\{y\} \subseteq Z\} \\
Z / Y & =\{x \in M \mid\{x\} \cdot Y \subseteq Z\}
\end{aligned}
$$

Other examples can be obtained by introducing a suitable closure operator on $\mathcal{P}(M)$.

Nuclei

Definition

Let \mathbf{M} be a monoid and γ a closure operator on $\mathcal{P}(M)$. The collection of γ-closed sets is denoted $\mathcal{P}(M)_{\gamma}$. Then γ is called a nucleus if for every $u, v \in M$ we have

$$
X \in \mathcal{P}(M)_{\gamma} \quad \Longrightarrow \quad\{u\} \backslash X /\{v\} \in \mathcal{P}(M)_{\gamma} .
$$

Nuclei

Definition

Let \mathbf{M} be a monoid and γ a closure operator on $\mathcal{P}(M)$. The collection of γ-closed sets is denoted $\mathcal{P}(M)_{\gamma}$. Then γ is called a nucleus if for every $u, v \in M$ we have

$$
X \in \mathcal{P}(M)_{\gamma} \quad \Longrightarrow \quad\{u\} \backslash X /\{v\} \in \mathcal{P}(M)_{\gamma}
$$

Example

Let \mathbf{M} be a monoid and γ a nucleus on $\mathcal{P}(M)$. Then $\mathcal{P}(\mathbf{M})_{\gamma}=\left\langle\mathcal{P}(M)_{\gamma}, \cap, \cup_{\gamma}, \cdot \gamma, \backslash, /, \gamma\{1\}\right\rangle$ is a residuated lattice, where

$$
\begin{aligned}
X \cup_{\gamma} Y & =\gamma(X \cup Y) \\
X \cdot{ }_{\gamma} Y & =\gamma(X \cdot Y)
\end{aligned}
$$

Regular languages

Definition
A language $L \subseteq \Sigma^{*}$ is called regular iff it is accepted by a finite automaton.

Regular languages

Definition
A language $L \subseteq \Sigma^{*}$ is called regular iff it is accepted by a finite automaton.

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \quad \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L),
$$

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \quad \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L)
$$

(2) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
(1) syntactic congruence:

$$
x \sim_{L} y \quad \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L)
$$

(2) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Theorem

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
© syntactic congruence:

$$
x \sim_{L} y \quad \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L),
$$

(0) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Theorem

(1) The syntactic congruence \sim_{L} is the largest congruence saturating L, i.e., $L=\bigcup_{w \in L} w / \sim L$.

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^{*}$, we define
© syntactic congruence:

$$
x \sim_{L} y \quad \text { iff } \quad\left(\forall u, v \in \Sigma^{*}\right)(u x v \in L \Leftrightarrow u y v \in L),
$$

(2) syntactic monoid: $\mathbf{M}(L)=\Sigma^{*} / \sim_{L}$.

Theorem
(1) The syntactic congruence \sim_{L} is the largest congruence saturating L, i.e., $L=\bigcup_{w \in L} w / \sim L$.
(3) $\mathbf{M}(L)$ is finite iff L is regular (Myhill-Nerode Theorem).

Lindenbaum-Tarski algebra

Definition

Given a logic L, we define

Lindenbaum-Tarski algebra

Definition

Given a logic L, we define
(1) Leibniz congruence:

$$
\alpha \sim_{L} \beta \quad \text { iff } \quad(\forall \varphi \in F m)\left(\vdash_{L} \varphi(\alpha) \Leftrightarrow \vdash_{L} \varphi(\beta)\right),
$$

Lindenbaum-Tarski algebra

Definition

Given a logic L, we define
(1) Leibniz congruence:

$$
\alpha \sim_{L} \beta \quad \text { iff } \quad(\forall \varphi \in F m)\left(\vdash_{L} \varphi(\alpha) \Leftrightarrow \vdash_{L} \varphi(\beta)\right),
$$

(2) Lindenbaum-Tarski algebra: $\mathbf{F m} / \sim_{L}$.

Lindenbaum-Tarski algebra

Definition

Given a logic L, we define
(1) Leibniz congruence:

$$
\alpha \sim_{L} \beta \quad \text { iff } \quad(\forall \varphi \in F m)\left(\vdash_{L} \varphi(\alpha) \Leftrightarrow \vdash_{L} \varphi(\beta)\right),
$$

(2) Lindenbaum-Tarski algebra: $\mathbf{F m} / \sim_{L}$.

[^0]
Eilenberg variety theorem

The assignment $L \mapsto \mathbf{M}(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.
$\mathcal{L} \mapsto$ the pseudovariety generated by $\{\mathbf{M}(L) \mid L \in \mathcal{L}\}$. $\mathcal{V} \mapsto$ the variety \mathcal{L} of regular languages L s.t. $\mathbf{M}(L) \in \mathcal{V}$.

Eilenberg variety theorem

The assignment $L \mapsto \mathbf{M}(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.
$\mathcal{L} \mapsto$ the pseudovariety generated by $\{\mathbf{M}(L) \mid L \in \mathcal{L}\}$. $\mathcal{V} \mapsto$ the variety \mathcal{L} of regular languages L s.t. $\mathbf{M}(L) \in \mathcal{V}$.

Theorem (Eilenberg 1976)
The above maps are mutually inverse, order-preserving bijections.

Eilenberg variety theorem

The assignment $L \mapsto \mathbf{M}(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.
$\mathcal{L} \mapsto$ the pseudovariety generated by $\{\mathbf{M}(L) \mid L \in \mathcal{L}\}$. $\mathcal{V} \mapsto$ the variety \mathcal{L} of regular languages L s.t. $\mathbf{M}(L) \in \mathcal{V}$.

Theorem (Eilenberg 1976)

The above maps are mutually inverse, order-preserving bijections.

```
Theorem
Let L be a logic. The map L\mapstoFm/~
between the lattice of axiomatic extensions of L and the subvariety lattice of the variety generated by \(\mathbf{F m} / \sim_{L}\).
```


Analogy table

Language theory	Logic
language	theorems
syntactic congruence	Leibniz congruence
syntactic monoid	Lindenbaum-Tarski algebra
Eilenberg variety theorem	axiomatic extensions $\rightsquigarrow \leadsto$ subvarieties

Analogy table

Language theory	Logic
language	theorems
syntactic congruence	Leibniz congruence
syntactic monoid	Lindenbaum-Tarski algebra
Eilenberg variety theorem	axiomatic extensions $\leadsto \leadsto$ subvarieties

- Lindenbaum-Tarski algebra is used to prove the completeness theorem for a logic L.
- Nevertheless, there is also another construction used in order to prove it.
- Does it have its analogy on the language side?

Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.

Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas Fm*.

Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas Fm*.
- Look for the pointwise largest nucleus γ on $\mathcal{P}\left(F m^{*}\right)$ making the following set γ-closed for every $\varphi \in F m$:

$$
S_{\varphi}=\left\{\Gamma \in F m^{*} \mid \vdash_{L} \Gamma \Rightarrow \varphi\right\}
$$

Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas Fm*.
- Look for the pointwise largest nucleus γ on $\mathcal{P}\left(F m^{*}\right)$ making the following set γ-closed for every $\varphi \in$ Fm:

$$
S_{\varphi}=\left\{\Gamma \in F m^{*} \mid \vdash_{L} \Gamma \Rightarrow \varphi\right\}
$$

- Then $\mathcal{P}\left(F m^{*}\right)_{\gamma}$ is the algebra used to prove the completeness theorem.

Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas Fm*.
- Look for the pointwise largest nucleus γ on $\mathcal{P}\left(F m^{*}\right)$ making the following set γ-closed for every $\varphi \in$ Fm:

$$
S_{\varphi}=\left\{\Gamma \in F m^{*} \mid \vdash_{L} \Gamma \Rightarrow \varphi\right\}
$$

- Then $\mathcal{P}\left(F m^{*}\right)_{\gamma}$ is the algebra used to prove the completeness theorem.
- If δ is a nucleus on $\mathcal{P}\left(F m^{*}\right)$ making all S_{φ} 's δ-closed then $\delta(X) \subseteq \gamma(X)$ for all $X \subseteq F m^{*}$.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. The pointwise largest nucleus γ_{L} making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L)=\mathcal{P}\left(\Sigma^{*}\right)_{\gamma_{L}}$ is called a syntactic residuated lattice.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. The pointwise largest nucleus γ_{L} making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L)=\mathcal{P}\left(\Sigma^{*}\right)_{\gamma_{L}}$ is called a syntactic residuated lattice.

Theorem

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. The pointwise largest nucleus γ_{L} making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L)=\mathcal{P}\left(\Sigma^{*}\right)_{\gamma_{L}}$ is called a syntactic residuated lattice.

Theorem
(1) $\left\{\gamma\{x\} \mid x \in \Sigma^{*}\right\}$ forms a submonoid isomorphic to the syntactic monoid $\mathbf{M}(L)$.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^{*}$ be a language. The pointwise largest nucleus γ_{L} making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L)=\mathcal{P}\left(\Sigma^{*}\right)_{\gamma_{L}}$ is called a syntactic residuated lattice.

Theorem
(1) $\left\{\gamma\{x\} \mid x \in \Sigma^{*}\right\}$ forms a submonoid isomorphic to the syntactic monoid $\mathbf{M}(L)$.
(2) $\mathbf{R}(L)$ is finite iff L is regular.

Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.
Beyond regular languages - they do not contain sufficiently enough information to distinguish very different languages.

Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.
Beyond regular languages - they do not contain sufficiently enough information to distinguish very different languages.

Example (Sakarovitch)

Consider the following languages over $\Sigma=\{0,1\}$:

$$
\begin{aligned}
& L_{1}=\left\{w w^{R} \mid w \in \Sigma^{*}\right\} \\
& L_{2}=\left\{w \in \Sigma^{*} \mid w \text { is prime }\right\}
\end{aligned}
$$

Then $\mathbf{M}\left(L_{1}\right)=\mathbf{M}\left(L_{2}\right)=\Sigma^{*}$.

Beyond regular languages

Consider the following rule over:

$$
u x v, u x^{2} v \in L \Longrightarrow u v \in L
$$

Then L_{1} is closed under (r) and L_{2} not.

Beyond regular languages

Consider the following rule over:

$$
\begin{equation*}
u x v, u x^{2} v \in L \Longrightarrow u v \in L \tag{r}
\end{equation*}
$$

Then L_{1} is closed under (r) and L_{2} not.

Theorem

A language L is closed under (r) iff $\mathbf{R}(L)$ satisfies

$$
1 \leq x \vee x^{2} \vee x \backslash y
$$

Thus the languages L_{1}, L_{2} can be separated by a variety of residuated lattices.

How to construct the largest nucleus?

- Let M be a monoid and $B=\left\{S_{i} \subseteq M \mid i \in I\right\}$.

How to construct the largest nucleus?

- Let M be a monoid and $B=\left\{S_{i} \subseteq M \mid i \in I\right\}$.
- How to find the largest nucleus on $\mathcal{P}(\mathbf{M})$ making all sets in B closed?

How to construct the largest nucleus?

- Let \mathbf{M} be a monoid and $B=\left\{S_{i} \subseteq M \mid i \in I\right\}$.
- How to find the largest nucleus on $\mathcal{P}(\mathbf{M})$ making all sets in B closed?
- Use residuated frames (Galatos, Jipsen).

Frames

A frame $\mathbf{W}=\langle M, B, N\rangle: \quad M \longrightarrow B$

Frames

A frame $\mathbf{W}=\langle M, B, N\rangle$:

N	
	®
$\mathcal{P}(M)$	
	\triangleleft
$\{b \in B$	$X)(a N b)\}$
$\{a \in M$	$Y)(a N b)\}$

Frames

A frame $\mathbf{W}=\langle M, B, N\rangle$:

$$
\begin{aligned}
&M, B, N\rangle: M \xrightarrow{M} B \\
& \mathcal{P}(M) \xrightarrow{\triangleleft}(B) \\
& X^{\triangleright}=\{b \in B \mid(\forall a \in X)(a N b)\}, \\
& Y^{\triangleleft}=\{a \in M \mid(\forall b \in Y)(a N b)\} .
\end{aligned}
$$

- $\gamma(X)=X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(M)$.

Frames

A frame $\mathbf{W}=\langle M, B, N\rangle$:

$$
X^{\triangleright}=\{b \in B \mid(\forall a \in X)(a N b)\},
$$

$$
Y^{\triangleleft}=\{a \in M \mid(\forall b \in Y)(a N b)\} .
$$

- $\gamma(X)=X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(M)$.
- It is the pointwise largest closure operator making all sets in its basis $\left\{\{b\}^{\triangleleft} \mid b \in B\right\} \gamma$-closed.

Frames

A frame $\mathbf{W}=\langle M, B, N\rangle$:

$$
X^{\triangleright}=\{b \in B \mid(\forall a \in X)(a N b)\},
$$

$$
Y^{\triangleleft}=\{a \in M \mid(\forall b \in Y)(a N b)\}
$$

- $\gamma(X)=X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(M)$.
- It is the pointwise largest closure operator making all sets in its basis $\left\{\{b\}^{\triangleleft} \mid b \in B\right\} \gamma$-closed.
- The collection of closed sets forms a complete lattice $\mathbf{W}^{+}=\left\langle\mathcal{P}(M)_{\gamma}, \cap, \cup_{\gamma}\right\rangle$, where

$$
X \cup_{\gamma} Y=\gamma(X \cup Y)
$$

Residuated frames

- Given a monoid \mathbf{M} and an frame $\mathbf{W}=\langle M, B, N\rangle$, the corresponding induced closure operator γ need not be a nucleus.

Residuated frames

- Given a monoid \mathbf{M} and an frame $\mathbf{W}=\langle M, B, N\rangle$, the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}}=\left\langle M, M^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u x v N b
$$

Residuated frames

- Given a monoid \mathbf{M} and an frame $\mathbf{W}=\langle M, B, N\rangle$, the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}}=\left\langle M, M^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u x v N b
$$

- The closure operator γ induced by \widehat{N} is a nucleus.

Residuated frames

- Given a monoid \mathbf{M} and an frame $\mathbf{W}=\langle M, B, N\rangle$, the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}}=\left\langle M, M^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u x v N b
$$

- The closure operator γ induced by \widehat{N} is a nucleus.
- Then $\widehat{\mathbf{W}}^{+}=\mathcal{P}(\mathbf{M})_{\gamma}$ forms a complete residuated lattice.

Residuated frames

- Given a monoid \mathbf{M} and an frame $\mathbf{W}=\langle M, B, N\rangle$, the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}}=\left\langle M, M^{2} \times B, \widehat{N}\right\rangle$, where

$$
x \widehat{N}\langle u, v, b\rangle \quad \text { iff } \quad u x v N b
$$

- The closure operator γ induced by \widehat{N} is a nucleus.
- Then $\widehat{\mathbf{W}}^{+}=\mathcal{P}(\mathbf{M})_{\gamma}$ forms a complete residuated lattice.
- Moreover, γ is the pointwise largest nucleus making all $\{1,1, b\}{ }^{\triangleleft}$'s γ-closed.

Construction of $\mathbf{R}(L)$

- Let L be a logic and consider the frame $\mathbf{W}=\left\langle F m^{*}, F m, N\right\rangle$ where

$$
\Gamma N \varphi \quad \text { iff } \quad \Gamma \in S_{\varphi} \quad \text { iff } \quad \vdash_{L} \Gamma \Rightarrow \varphi
$$

Then $\widehat{\mathbf{W}}^{+}$is the algebra used to prove the completeness.

Construction of $\mathbf{R}(L)$

- Let L be a logic and consider the frame $\mathbf{W}=\left\langle F m^{*}, F m, N\right\rangle$ where

$$
\Gamma N \varphi \quad \text { iff } \quad \Gamma \in S_{\varphi} \quad \text { iff } \quad \vdash_{L} \Gamma \Rightarrow \varphi
$$

Then $\widehat{\mathbf{W}}^{+}$is the algebra used to prove the completeness.

- Let $L \subseteq \Sigma^{*}$ be a language. Define frame $\mathbf{W}=\left\langle\Sigma^{*},\{L\}, N\right\rangle$, where $N \subseteq \Sigma^{*} \times\{L\}$ is defined by

$$
x N L \quad \text { iff } \quad x \in L
$$

Then $\mathbf{R}(L)=\widehat{\mathbf{W}}^{+}$is the syntactic residuated lattice of L.

FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.

FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.

FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let \mathbf{M} be the sub(po)monoid of \mathbf{A} generated by B.

FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let \mathbf{M} be the sub(po)monoid of \mathbf{A} generated by B.
- Consider the frame $\mathbf{W}=\langle M, B, N\rangle$ where

$$
x N b \quad \text { iff } \quad x \leq^{\mathbf{A}} b
$$

FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let \mathbf{M} be the sub(po)monoid of \mathbf{A} generated by B.
- Consider the frame $\mathbf{W}=\langle M, B, N\rangle$ where

$$
x N b \text { iff } \quad x \leq^{\mathbf{A}} b
$$

- Then $\widehat{\mathbf{W}}^{+}$is a residuated lattice and \mathbf{B} embeds to it.

FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let \mathbf{M} be the sub(po)monoid of \mathbf{A} generated by B.
- Consider the frame $\mathbf{W}=\langle M, B, N\rangle$ where

$$
x N b \quad \text { iff } \quad x \leq^{\mathbf{A}} b
$$

- Then $\widehat{\mathbf{W}}^{+}$is a residuated lattice and \mathbf{B} embeds to it.
- Is $\widehat{\mathbf{W}}+$ finite? Does $\widehat{\mathbf{W}}+$ belong to \mathcal{K} ?

Generalized Myhill Theorem

Theorem
Let \mathbf{M} be a monoid and $\mathbf{W}=\langle M, B, N\rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^{+}$is finite iff there is a compatible dual well quasi-order \sqsubseteq on \mathbf{M} such that

$$
x \sqsubseteq y, y N b \Longrightarrow x N b
$$

Generalized Myhill Theorem

Theorem
Let \mathbf{M} be a monoid and $\mathbf{W}=\langle M, B, N\rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^{+}$is finite iff there is a compatible dual well quasi-order \sqsubseteq on \mathbf{M} such that

$$
x \sqsubseteq y, y N b \Longrightarrow x N b
$$

Corollary (Generalized Myhill Theorem - Ehrenfeucht, Rozenberg)
A language $L \subseteq \Sigma^{*}$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^{*}.

Generalized Myhill Theorem

Theorem
Let \mathbf{M} be a monoid and $\mathbf{W}=\langle M, B, N\rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^{+}$is finite iff there is a compatible dual well quasi-order \sqsubseteq on \mathbf{M} such that

$$
x \sqsubseteq y, y N b \Longrightarrow x N b
$$

Corollary (Generalized Myhill Theorem - Ehrenfeucht, Rozenberg)

A language $L \subseteq \Sigma^{*}$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^{*}.
$\mathcal{V}=$ finitely gen. subpomonoids of members from \mathcal{K}
Find a compatible dual well quasi-order \sqsubseteq on Σ^{*} s.t. all pomonoids from \mathcal{V} are homomorphic images of Σ^{*} / \sqsubseteq.

Weakening rule

Theorem (Blok, van Alten)
The variety of integral residuated lattices $(x \leq 1)$ has the FEP.

Weakening rule

Theorem (Blok, van Alten)
The variety of integral residuated lattices $(x \leq 1)$ has the FEP.

Proof.

Consider the least compatible quasi-order \sqsubseteq on Σ^{*} such that Σ^{*} / \sqsubseteq satisfies $x \leq 1$. Show by Higman's lemma that \sqsubseteq is dually well.

Weakening rule

Theorem (Blok, van Alten)
The variety of integral residuated lattices $(x \leq 1)$ has the FEP.

Proof.

Consider the least compatible quasi-order \sqsubseteq on Σ^{*} such that Σ^{*} / \sqsubseteq satisfies $x \leq 1$. Show by Higman's lemma that \sqsubseteq is dually well.

Theorem

Every language L closed under the following rule is regular:

$$
\frac{u v \in L}{u x v \in L}
$$

Exchange and knotted rules

Let $m \geq 1, n \geq 0$ and $m \neq n$.

Theorem (van Alten)
The variety of commutative $(x y=y x)$ residuated lattices satisfying $x^{m} \leq x^{n}$ has the FEP.

Exchange and knotted rules

Let $m \geq 1, n \geq 0$ and $m \neq n$.

Theorem (van Alten)
The variety of commutative $(x y=y x)$ residuated lattices satisfying $x^{m} \leq x^{n}$ has the FEP.

Theorem

Every language closed under the following rules is regular:

$$
\frac{u x y v \in L}{u y x v \in L}, \quad \frac{u x^{n} v \in L}{u x^{m} v \in L}
$$

Inspired by language theory

Theorem (de Luca, Varricchio)
Language L is regular iff L is permutable and quasi-periodic or co-quasi-periodic.

Let $\sigma \in S_{k} \backslash\{i d\}$ for $k \geq 2$ and $m, n \in \mathbb{N}$ such that $m>n \geq 1$.
In particular, they prove that the least compatible quasi-order \sqsubseteq on Σ^{+} such that Σ^{+} / \sqsubseteq satisfies $x_{1} \cdots x_{k}=x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^{m} \leq x^{n}$ is dually well.

Inspired by language theory

Theorem (de Luca, Varricchio)

Language L is regular iff L is permutable and quasi-periodic or co-quasi-periodic.

Let $\sigma \in S_{k} \backslash\{i d\}$ for $k \geq 2$ and $m, n \in \mathbb{N}$ such that $m>n \geq 1$.
In particular, they prove that the least compatible quasi-order \sqsubseteq on Σ^{+} such that Σ^{+} / \sqsubseteq satisfies $x_{1} \cdots x_{k}=x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^{m} \leq x^{n}$ is dually well.

Theorem

Let $\sigma \in S_{k} \backslash\{i d\}$ for $k \geq 2$ and $m, n \in \mathbb{N}$ such that $m>n \geq 1$. Then the variety of residuated lattice-ordered semigroups axiomatized by $x_{1} \cdots x_{k}=x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^{m} \leq x^{n}$ has the FEP.

Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^{m} \leq x^{n}$ is denoted $\mathcal{R} \mathcal{L}_{m}^{n}$.

Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^{m} \leq x^{n}$ is denoted $\mathcal{R} \mathcal{L}_{m}^{n}$.

Theorem

The word problem for $\mathcal{R} \mathcal{L}_{m}^{n}$ is undecidable for $1 \leq m<n$ and $2 \leq n<m$. Thus $\mathcal{R} \mathcal{L}_{m}^{n}$ does not have the FEP.

Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^{m} \leq x^{n}$ is denoted $\mathcal{R} \mathcal{L}_{m}^{n}$.

Theorem

The word problem for $\mathcal{R} \mathcal{L}_{m}^{n}$ is undecidable for $1 \leq m<n$ and $2 \leq n<m$. Thus $\mathcal{R} \mathcal{L}_{m}^{n}$ does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

$$
\frac{u x^{2} v \in L}{u x v \in L}, \quad \frac{\{u \alpha \beta v \in L\}_{\alpha, \beta \in\{x, y, z\}}}{u x y z v \in L}
$$

Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^{m} \leq x^{n}$ is denoted $\mathcal{R} \mathcal{L}_{m}^{n}$.

Theorem

The word problem for $\mathcal{R} \mathcal{L}_{m}^{n}$ is undecidable for $1 \leq m<n$ and $2 \leq n<m$. Thus $\mathcal{R} \mathcal{L}_{m}^{n}$ does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

$$
\frac{u x^{2} v \in L}{u x v \in L}, \quad \frac{\{u \alpha \beta v \in L\}_{\alpha, \beta \in\{x, y, z\}}}{u x y z v \in L}
$$

The only remaining cases are $x^{m} \leq x$ for $m \geq 2$.

Partial order

Let $m \geq 2$. The variety $\mathcal{R} \mathcal{L}_{m}^{1}$ can be axiomatized by

$$
u x_{1} v \leq z \& \ldots \& u x_{m} v \leq z \Longrightarrow u x_{1} \cdots x_{m} v \leq z
$$

Partial order

Let $m \geq 2$. The variety $\mathcal{R} \mathcal{L}_{m}^{1}$ can be axiomatized by

$$
\begin{equation*}
u x_{1} v \leq z \& \ldots \& u x_{m} v \leq z \Longrightarrow u x_{1} \cdots x_{m} v \leq z \tag{m}
\end{equation*}
$$

Consider subsets of Σ^{*} closed under the following rule:

$$
\frac{u x_{1} v \in L \ldots u x_{m} v \in L}{u x_{1} \cdots x_{m} v \in L}
$$

Partial order

Let $m \geq 2$. The variety $\mathcal{R} \mathcal{L}_{m}^{1}$ can be axiomatized by

$$
\begin{equation*}
u x_{1} v \leq z \& \ldots \& u x_{m} v \leq z \Longrightarrow u x_{1} \cdots x_{m} v \leq z \tag{m}
\end{equation*}
$$

Consider subsets of Σ^{*} closed under the following rule:

$$
\frac{u x_{1} v \in L \ldots u x_{m} v \in L}{u x_{1} \cdots x_{m} v \in L}
$$

This rule induces a nucleus γ_{m} on $\mathcal{P}\left(\Sigma^{*}\right)$. Define the following binary relation on Σ^{*} :

$$
x \leq_{m} y \quad \text { iff } \quad \gamma_{m}\{x\} \subseteq \gamma_{m}\{y\}
$$

Partial order

Let $m \geq 2$. The variety $\mathcal{R} \mathcal{L}_{m}^{1}$ can be axiomatized by

$$
u x_{1} v \leq z \& \ldots \& u x_{m} v \leq z \Longrightarrow u x_{1} \cdots x_{m} v \leq z
$$

Consider subsets of Σ^{*} closed under the following rule:

$$
\begin{equation*}
\frac{u x_{1} v \in L \ldots u x_{m} v \in L}{u x_{1} \cdots x_{m} v \in L} \tag{m}
\end{equation*}
$$

This rule induces a nucleus γ_{m} on $\mathcal{P}\left(\Sigma^{*}\right)$. Define the following binary relation on Σ^{*} :

$$
x \leq_{m} y \quad \text { iff } \quad \gamma_{m}\{x\} \subseteq \gamma_{m}\{y\}
$$

Lemma

The relation \leq_{m} is the least compatible quasi-order on Σ^{*} such that Σ^{*} / \leq_{m} satisfies $\left(q_{m}\right)$.

Burnside problem

Let \mathcal{G}_{m} be the variety of groups satisfying $x^{m}=1$.

Burnside problem

Let \mathcal{G}_{m} be the variety of groups satisfying $x^{m}=1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_{m} locally finite?

Burnside problem

Let \mathcal{G}_{m} be the variety of groups satisfying $x^{m}=1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_{m} locally finite?

Theorem (Burnside, Sanov, Hall)
The answer is affirmative for $m=1,2,3,4,6$.

Burnside problem

Let \mathcal{G}_{m} be the variety of groups satisfying $x^{m}=1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_{m} locally finite?

Theorem (Burnside, Sanov, Hall)
The answer is affirmative for $m=1,2,3,4,6$.

Theorem (Adian)
The answer is negative for odd $m \geq 665$.

Burnside problem

Let \mathcal{G}_{m} be the variety of groups satisfying $x^{m}=1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_{m} locally finite?

Theorem (Burnside, Sanov, Hall)
The answer is affirmative for $m=1,2,3,4,6$.

Theorem (Adian)
The answer is negative for odd $m \geq 665$.

Theorem (Ivanov)
The answer is negative for $m \geq 2^{48}$.

Three implications

Theorem
Let $m>1$. Suppose that \leq_{m} is dual well partial order. Then

Three implications

Theorem
Let $m>1$. Suppose that \leq_{m} is dual well partial order. Then
(1) Burnside problem for $m-1$ has an affirmative answer.

Three implications

Theorem
Let $m>1$. Suppose that \leq_{m} is dual well partial order. Then
(1) Burnside problem for $m-1$ has an affirmative answer.
(2) The variety $\mathcal{R} \mathcal{L}_{m}^{n}$ has the FEP.

Three implications

Theorem
Let $m>1$. Suppose that \leq_{m} is dual well partial order. Then
(1) Burnside problem for $m-1$ has an affirmative answer.
(2) The variety $\mathcal{R} \mathcal{L}_{m}^{n}$ has the FEP.
(3) Every language closed under the following rule is regular:

$$
\frac{u x_{1} v \in L \ldots u x_{m} v \in L}{u x_{1} \cdots x_{m} v \in L}
$$

Three implications

Theorem
Let $m>1$. Suppose that \leq_{m} is dual well partial order. Then
(1) Burnside problem for $m-1$ has an affirmative answer.
(2) The variety $\mathcal{R} \mathcal{L}_{m}^{n}$ has the FEP.
(3) Every language closed under the following rule is regular:

$$
\frac{u x_{1} v \in L \ldots u x_{m} v \in L}{u x_{1} \cdots x_{m} v \in L}
$$

Corollary

The partial order \leq_{m} is not dual well for even $m \geq 666$ and $m \geq 2^{48}$.

Mingle rule

Theorem
The variety $\mathcal{R} \mathcal{L}_{2}^{1}$ has the FEP.

Mingle rule

Theorem
The variety $\mathcal{R} \mathcal{L}_{2}^{1}$ has the FEP.

Theorem
Every language $L \subseteq \Sigma^{*}$ closed under the following rule is regular:

$$
\begin{equation*}
\frac{u x v \in L u y v \in L}{u x y v \in L} . \tag{2}
\end{equation*}
$$

Mingle rule

Theorem
The variety $\mathcal{R} \mathcal{L}_{2}^{1}$ has the FEP.

Theorem

Every language $L \subseteq \Sigma^{*}$ closed under the following rule is regular:

$$
\frac{u x v \in L u y v \in L}{u x y v \in L} .
$$

Example

The language $a^{+}\left(b(a+b+c)^{*} b+b\right) c^{+}$is closed under $\left(r_{2}\right)$.

Mingle rule

Theorem
The variety $\mathcal{R} \mathcal{L}_{2}^{1}$ has the FEP.

Theorem

Every language $L \subseteq \Sigma^{*}$ closed under the following rule is regular:

$$
\begin{equation*}
\frac{u x v \in L u y v \in L}{u x y v \in L} . \tag{2}
\end{equation*}
$$

Example

The language $a^{+}\left(b(a+b+c)^{*} b+b\right) c^{+}$is closed under $\left(r_{2}\right)$.

Lemma

Let $w \in \Sigma^{*}$ and $\operatorname{Alph}(w)=\Gamma$. Then $w u w \leq_{2} w$ for every $u \in \Gamma^{*}$.

Higman's lemma

Definition
Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by
$a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation $\leq *$ on Q^{*} by
$a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.
$b_{1} b_{2} b_{3} b_{4} b_{6}$ b b_{7} b

$$
a_{1} a a_{2} a
$$

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by $a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by
$a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{*} on Q^{*} by
$a_{1} \ldots a_{n} \leq^{*} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n] \rightarrow[1, m]$ s.t. $a_{i} \leq b_{f(i)}$ for all $i \in[1, n]$.

Lemma (Higman's lemma)
If $\langle Q, \leq\rangle$ is a well quasi-ordered set then so is $\left\langle Q^{*}, \leq^{*}\right\rangle$.

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.
$a_{1} a_{2} a_{4}$

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.

Modified Higman's lemma

Definition

Let $\langle Q, \leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^{+}on Q^{+}by $a_{1} \ldots a_{n} \leq^{+} b_{1} \ldots b_{m}$ iff there is a strictly increasing map
$f:[1, n+1] \rightarrow[1, m+1]$ such that

- $f(1)=1$ and $f(n+1)=m+1$,
- $a_{i} \leq b_{f(i)}$ and $a_{i} \leq b_{f(i+1)-1}$ for all $i \in[1, n]$.

Modified Higman's lemma (cont.)

Lemma
If $\langle Q, \leq\rangle$ is a well quasi-ordered set then $\left\langle Q^{+}, \leq^{+}\right\rangle$forms a well quasi-ordered set as well.

Conclusion

- Is it interesting for people working in substructural logics?

Conclusion

- Is it interesting for people working in substructural logics?
- Could it be interesting for people working in language theory?

Conclusion

- Is it interesting for people working in substructural logics?
- Could it be interesting for people working in language theory?
- Is the compatible quasi-order \leq_{m} on Σ^{*} dually well for $m=3,4,5, \ldots, 665,667,669, \ldots, 2^{48}-1$?

Thank you!

[^0]: Theorem
 Leibniz congruence \sim_{L} is the largest congruence saturating the set of theorems of L.

