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Residuated lattices

Definition
Let M = 〈M, ·, 1〉 be a monoid. A quasi-order ≤ on M is called
compatible if for all x , y , u, v ∈ M:

x ≤ y =⇒ uxv ≤ uyv .

Definition
A residuated lattice A = 〈A,∧,∨, ·, \, /, 1〉 is a monoid such that 〈A,∧,∨〉
is a lattice and for all a, b, c ∈ A:

a · b ≤ c iff b ≤ a \ c iff a ≤ c/b .

Logic = a substructural logic, i.e., an axiomatic extension of FL.
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Powerset monoid

Example
Let M = 〈M, ·, 1〉 be a monoid. Then

P(M) = 〈P(M),∩,∪, ·, \, /, {1}〉

is a residuated lattice, where

X · Y = {xy ∈ M | x ∈ X , y ∈ Y } ,
X \Z = {y ∈ M | X · {y} ⊆ Z} ,
Z/Y = {x ∈ M | {x} · Y ⊆ Z} .

Other examples can be obtained by introducing a suitable closure operator
on P(M).
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Nuclei

Definition
Let M be a monoid and γ a closure operator on P(M). The collection of
γ-closed sets is denoted P(M)γ . Then γ is called a nucleus if for every
u, v ∈ M we have

X ∈ P(M)γ =⇒ {u} \X/{v} ∈ P(M)γ .

Example
Let M be a monoid and γ a nucleus on P(M). Then
P(M)γ = 〈P(M)γ ,∩,∪γ , ·γ , \, /, γ{1}〉 is a residuated lattice, where

X ∪γ Y = γ(X ∪ Y ) ,

X ·γ Y = γ(X · Y ) .
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Regular languages
Definition
A language L ⊆ Σ∗ is called regular iff it is accepted by a finite automaton.
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Syntactic monoid

Definition
Given an alphabet Σ and a language L ⊆ Σ∗, we define

1 syntactic congruence:

x ∼L y iff (∀u, v ∈ Σ∗)(uxv ∈ L⇔ uyv ∈ L) ,

2 syntactic monoid: M(L) = Σ∗/∼L.

Theorem

1 The syntactic congruence ∼L is the largest congruence saturating L,
i.e., L =

⋃
w∈L w/∼L.

2 M(L) is finite iff L is regular (Myhill-Nerode Theorem).
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Lindenbaum-Tarski algebra

Definition
Given a logic L, we define

1 Leibniz congruence:

α ∼L β iff (∀ϕ ∈ Fm)(`L ϕ(α)⇔ `L ϕ(β)) ,

2 Lindenbaum-Tarski algebra: Fm/∼L.

Theorem
Leibniz congruence ∼L is the largest congruence saturating the set of
theorems of L.
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Eilenberg variety theorem

The assignment L 7→M(L) induces a correspondence between varieties of
regular languages and pseudovarieties of finite monoids.

L 7→ the pseudovariety generated by {M(L) | L ∈ L}.
V 7→ the variety L of regular languages L s.t. M(L) ∈ V.

Theorem (Eilenberg 1976)
The above maps are mutually inverse, order-preserving bijections.

Theorem
Let L be a logic. The map L 7→ Fm/∼L induces a dual-isomorphism
between the lattice of axiomatic extensions of L and the subvariety lattice
of the variety generated by Fm/∼L.
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Analogy table

Language theory Logic
language theorems

syntactic congruence Leibniz congruence
syntactic monoid Lindenbaum-Tarski algebra

Eilenberg variety theorem axiomatic extensions ! subvarieties

Lindenbaum-Tarski algebra is used to prove the completeness theorem
for a logic L.

Nevertheless, there is also another construction used in order to prove
it.

Does it have its analogy on the language side?
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Another way of proving completeness

Let L be a logic presented by a single-conclusion sequent calculus.

Consider the free monoid generated by formulas Fm∗.

Look for the pointwise largest nucleus γ on P(Fm∗) making the
following set γ-closed for every ϕ ∈ Fm:

Sϕ = {Γ ∈ Fm∗ | `L Γ⇒ ϕ} .

Then P(Fm∗)γ is the algebra used to prove the completeness theorem.

If δ is a nucleus on P(Fm∗) making all Sϕ’s δ-closed then
δ(X ) ⊆ γ(X ) for all X ⊆ Fm∗.

Rostislav Horčík (ICS) TACL 2013 11 / 33



Another way of proving completeness

Let L be a logic presented by a single-conclusion sequent calculus.

Consider the free monoid generated by formulas Fm∗.

Look for the pointwise largest nucleus γ on P(Fm∗) making the
following set γ-closed for every ϕ ∈ Fm:

Sϕ = {Γ ∈ Fm∗ | `L Γ⇒ ϕ} .

Then P(Fm∗)γ is the algebra used to prove the completeness theorem.

If δ is a nucleus on P(Fm∗) making all Sϕ’s δ-closed then
δ(X ) ⊆ γ(X ) for all X ⊆ Fm∗.

Rostislav Horčík (ICS) TACL 2013 11 / 33



Another way of proving completeness

Let L be a logic presented by a single-conclusion sequent calculus.

Consider the free monoid generated by formulas Fm∗.

Look for the pointwise largest nucleus γ on P(Fm∗) making the
following set γ-closed for every ϕ ∈ Fm:

Sϕ = {Γ ∈ Fm∗ | `L Γ⇒ ϕ} .

Then P(Fm∗)γ is the algebra used to prove the completeness theorem.

If δ is a nucleus on P(Fm∗) making all Sϕ’s δ-closed then
δ(X ) ⊆ γ(X ) for all X ⊆ Fm∗.

Rostislav Horčík (ICS) TACL 2013 11 / 33



Another way of proving completeness

Let L be a logic presented by a single-conclusion sequent calculus.

Consider the free monoid generated by formulas Fm∗.

Look for the pointwise largest nucleus γ on P(Fm∗) making the
following set γ-closed for every ϕ ∈ Fm:

Sϕ = {Γ ∈ Fm∗ | `L Γ⇒ ϕ} .

Then P(Fm∗)γ is the algebra used to prove the completeness theorem.

If δ is a nucleus on P(Fm∗) making all Sϕ’s δ-closed then
δ(X ) ⊆ γ(X ) for all X ⊆ Fm∗.

Rostislav Horčík (ICS) TACL 2013 11 / 33



Another way of proving completeness

Let L be a logic presented by a single-conclusion sequent calculus.

Consider the free monoid generated by formulas Fm∗.

Look for the pointwise largest nucleus γ on P(Fm∗) making the
following set γ-closed for every ϕ ∈ Fm:

Sϕ = {Γ ∈ Fm∗ | `L Γ⇒ ϕ} .

Then P(Fm∗)γ is the algebra used to prove the completeness theorem.

If δ is a nucleus on P(Fm∗) making all Sϕ’s δ-closed then
δ(X ) ⊆ γ(X ) for all X ⊆ Fm∗.

Rostislav Horčík (ICS) TACL 2013 11 / 33



Syntactic residuated lattice

Definition
Let L ⊆ Σ∗ be a language. The pointwise largest nucleus γL making L a
closed set is called syntactic nucleus. Then R(L) = P(Σ∗)γL is called a
syntactic residuated lattice.

Theorem

1 {γ{x} | x ∈ Σ∗} forms a submonoid isomorphic to the syntactic
monoid M(L).

2 R(L) is finite iff L is regular.
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Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.

Beyond regular languages – they do not contain sufficiently enough
information to distinguish very different languages.

Example (Sakarovitch)
Consider the following languages over Σ = {0, 1}:

L1 = {wwR | w ∈ Σ∗} ,
L2 = {w ∈ Σ∗ | w is prime} .

Then M(L1) = M(L2) = Σ∗.
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Beyond regular languages

Consider the following rule over:

uxv , ux2v ∈ L =⇒ uv ∈ L . (r)

Then L1 is closed under (r) and L2 not.

Theorem
A language L is closed under (r) iff R(L) satisfies

1 ≤ x ∨ x2 ∨ x \ y .

Thus the languages L1, L2 can be separated by a variety of residuated
lattices.
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How to construct the largest nucleus?

Let M be a monoid and B = {Si ⊆ M | i ∈ I}.

How to find the largest nucleus on P(M) making all sets in B closed?

Use residuated frames (Galatos, Jipsen).
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Frames

M B
N
/A frame W = 〈M,B,N〉:

P(M) P(B)

B

C
XB = {b ∈ B | (∀a ∈ X )(a N b)} ,
Y C = {a ∈ M | (∀b ∈ Y )(a N b)} .

γ(X ) = XBC is a closure operator on P(M).

It is the pointwise largest closure operator making all sets in its basis
{{b}C | b ∈ B} γ-closed.

The collection of closed sets forms a complete lattice
W+ = 〈P(M)γ ,∩,∪γ〉, where

X ∪γ Y = γ(X ∪ Y ) .
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Residuated frames

Given a monoid M and an frame W = 〈M,B,N〉, the corresponding
induced closure operator γ need not be a nucleus.

Define an extended (residuated) frame Ŵ = 〈M,M2 × B, N̂〉, where

x N̂ 〈u, v , b〉 iff uxv N b .

The closure operator γ induced by N̂ is a nucleus.

Then Ŵ+ = P(M)γ forms a complete residuated lattice.

Moreover, γ is the pointwise largest nucleus making all {1, 1, b}C’s
γ-closed.
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Construction of R(L)

Let L be a logic and consider the frame W = 〈Fm∗,Fm,N〉 where

Γ N ϕ iff Γ ∈ Sϕ iff `L Γ⇒ ϕ .

Then Ŵ+ is the algebra used to prove the completeness.

Let L ⊆ Σ∗ be a language. Define frame W = 〈Σ∗, {L},N〉, where
N ⊆ Σ∗ × {L} is defined by

x N L iff x ∈ L .

Then R(L) = Ŵ+ is the syntactic residuated lattice of L.
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FEP

Definition (Evans)
A class of algebras K of the same type has the finite embeddability
property (FEP) if every finite partial subalgebra B of any algebra A ∈ K is
embeddable into a finite algebra D ∈ K.

Let K be a variety of residuated lattices.
Start with A ∈ K and a finite B ⊆ A.
Let M be the sub(po)monoid of A generated by B.
Consider the frame W = 〈M,B,N〉 where

x N b iff x ≤A b .

Then Ŵ+ is a residuated lattice and B embeds to it.
Is Ŵ+ finite? Does Ŵ+ belong to K?

Rostislav Horčík (ICS) TACL 2013 19 / 33



FEP

Definition (Evans)
A class of algebras K of the same type has the finite embeddability
property (FEP) if every finite partial subalgebra B of any algebra A ∈ K is
embeddable into a finite algebra D ∈ K.

Let K be a variety of residuated lattices.

Start with A ∈ K and a finite B ⊆ A.
Let M be the sub(po)monoid of A generated by B.
Consider the frame W = 〈M,B,N〉 where

x N b iff x ≤A b .
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Then Ŵ+ is a residuated lattice and B embeds to it.
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Then Ŵ+ is a residuated lattice and B embeds to it.
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Generalized Myhill Theorem

Theorem
Let M be a monoid and W = 〈M,B,N〉 a frame where B is finite. Then
Ŵ+ is finite iff there is a compatible dual well quasi-order v on M such
that

x v y , y N b =⇒ x N b .

Corollary (Generalized Myhill Theorem – Ehrenfeucht, Rozenberg)
A language L ⊆ Σ∗ is regular iff L is downward closed w.r.t. a compatible
dual well quasi-order on Σ∗.

V = finitely gen. subpomonoids of members from K

Find a compatible dual well quasi-order v on Σ∗ s.t. all pomonoids from
V are homomorphic images of Σ∗/v.
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Weakening rule

Theorem (Blok, van Alten)
The variety of integral residuated lattices (x ≤ 1) has the FEP.

Proof.
Consider the least compatible quasi-order v on Σ∗ such that Σ∗/v
satisfies x ≤ 1. Show by Higman’s lemma that v is dually well.

Theorem
Every language L closed under the following rule is regular:

uv ∈ L
uxv ∈ L .
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Exchange and knotted rules

Let m ≥ 1, n ≥ 0 and m 6= n.

Theorem (van Alten)
The variety of commutative (xy = yx) residuated lattices satisfying
xm ≤ xn has the FEP.

Theorem
Every language closed under the following rules is regular:

uxyv ∈ L
uyxv ∈ L ,

uxnv ∈ L
uxmv ∈ L .
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Inspired by language theory

Theorem (de Luca, Varricchio)
Language L is regular iff L is permutable and quasi-periodic or
co-quasi-periodic.

Let σ ∈ Sk \ {id} for k ≥ 2 and m, n ∈ N such that m > n ≥ 1.

In particular, they prove that the least compatible quasi-order v on Σ+

such that Σ+/ v satisfies x1 · · · xk = xσ(1) · · · xσ(k) and xm ≤ xn is dually
well.

Theorem
Let σ ∈ Sk \ {id} for k ≥ 2 and m, n ∈ N such that m > n ≥ 1. Then the
variety of residuated lattice-ordered semigroups axiomatized by
x1 · · · xk = xσ(1) · · · xσ(k) and xm ≤ xn has the FEP.
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Knotted axioms
Let m, n ≥ 1 and m 6= n. The variety of res. lattices defined by xm ≤ xn is
denoted RLn

m.

Theorem
The word problem for RLn

m is undecidable for 1 ≤ m < n and 2 ≤ n < m.
Thus RLn

m does not have the FEP.

Theorem
There is an undecidable language L closed under the following rule:

ux2v ∈ L
uxv ∈ L ,

{uαβv ∈ L}α,β∈{x ,y ,z}
uxyzv ∈ L .

The only remaining cases are xm ≤ x for m ≥ 2.
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Partial order
Let m ≥ 2. The variety RL1

m can be axiomatized by

ux1v ≤ z & . . . & uxmv ≤ z =⇒ ux1 · · · xmv ≤ z . (qm)

Consider subsets of Σ∗ closed under the following rule:

ux1v ∈ L . . . uxmv ∈ L
ux1 · · · xmv ∈ L . (rm)

This rule induces a nucleus γm on P(Σ∗). Define the following binary
relation on Σ∗:

x ≤m y iff γm{x} ⊆ γm{y} .

Lemma
The relation ≤m is the least compatible quasi-order on Σ∗ such that
Σ∗/≤m satisfies (qm).
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Burnside problem

Let Gm be the variety of groups satisfying xm = 1.

Problem (Burnside)
Given m ∈ N, is Gm locally finite?

Theorem (Burnside, Sanov, Hall)
The answer is affirmative for m = 1, 2, 3, 4, 6.

Theorem (Adian)
The answer is negative for odd m ≥ 665.

Theorem (Ivanov)
The answer is negative for m ≥ 248.
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Three implications

Theorem
Let m > 1. Suppose that ≤m is dual well partial order. Then

1 Burnside problem for m − 1 has an affirmative answer.
2 The variety RLn

m has the FEP.
3 Every language closed under the following rule is regular:

ux1v ∈ L . . . uxmv ∈ L
ux1 · · · xmv ∈ L .

Corollary
The partial order ≤m is not dual well for even m ≥ 666 and m ≥ 248.
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Mingle rule
Theorem
The variety RL1

2 has the FEP.

Theorem
Every language L ⊆ Σ∗ closed under the following rule is regular:

uxv ∈ L uyv ∈ L
uxyv ∈ L . (r2)

Example
The language a+(b(a + b + c)∗b + b)c+ is closed under (r2).

Lemma
Let w ∈ Σ∗ and Alph(w) = Γ. Then wuw ≤2 w for every u ∈ Γ∗.
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Higman’s lemma
Definition
Let 〈Q,≤〉 be a quasi-ordered set. Define a binary relation ≤∗ on Q∗ by

a1 . . . an ≤∗ b1 . . . bm iff there is a strictly increasing map
f : [1, n]→ [1,m] s.t. ai ≤ bf (i) for all i ∈ [1, n].

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

b2 b3 b5 b7 b11

Lemma (Higman’s lemma)
If 〈Q,≤〉 is a well quasi-ordered set then so is 〈Q∗,≤∗〉.
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Modified Higman’s lemma

Definition
Let 〈Q,≤〉 be a quasi-ordered set. Define a binary relation ≤+ on Q+ by

a1 . . . an ≤+ b1 . . . bm iff there is a strictly increasing map
f : [1, n + 1]→ [1,m + 1] such that

f (1) = 1 and f (n + 1) = m + 1,
ai ≤ bf (i) and ai ≤ bf (i+1)−1 for all i ∈ [1, n].

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

b1 b4 b5 b9 b10b3 b8 b11b4 b9
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Modified Higman’s lemma (cont.)

Lemma
If 〈Q,≤〉 is a well quasi-ordered set then 〈Q+,≤+〉 forms a well
quasi-ordered set as well.
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Conclusion

Is it interesting for people working in substructural logics?

Could it be interesting for people working in language theory?

Is the compatible quasi-order ≤m on Σ∗ dually well for
m = 3, 4, 5, . . . , 665, 667, 669, . . . , 248 − 1?
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Thank you!
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