Residuated Lattices, Regular Languages, and Burnside Problem

Rostislav Horčík

Institute of Computer Science Academy of Sciences of the Czech Republic

Topology, Algebra, and Categories in Logic July 28 – August 1, 2013 Outline

2 Analogy between languages and logics

Outline

2 Analogy between languages and logics

3 FEP and regularity

Outline

2 Analogy between languages and logics

3 FEP and regularity

Residuated lattices

Definition

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$x \leq y \implies uxv \leq uyv$$
.

Residuated lattices

Definition

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$x \leq y \implies uxv \leq uyv$$
.

Definition

A residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, /, 1 \rangle$ is a monoid such that $\langle A, \wedge, \vee \rangle$ is a lattice and for all $a, b, c \in A$:

$$a \cdot b \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

Residuated lattices

Definition

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$x \leq y \implies uxv \leq uyv$$
.

Definition

A residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, /, 1 \rangle$ is a monoid such that $\langle A, \wedge, \vee \rangle$ is a lattice and for all $a, b, c \in A$:

$$a \cdot b \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$.

Logic = a substructural logic, i.e., an axiomatic extension of FL.

Powerset monoid

Example

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. Then

$$\mathcal{P}(\mathsf{M}) = \langle \mathcal{P}(M), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$$

is a residuated lattice, where

$$\begin{array}{lll} X \cdot Y &=& \left\{ xy \in M \mid x \in X, y \in Y \right\}, \\ X \setminus Z &=& \left\{ y \in M \mid X \cdot \left\{ y \right\} \subseteq Z \right\}, \\ Z/Y &=& \left\{ x \in M \mid \left\{ x \right\} \cdot Y \subseteq Z \right\}. \end{array}$$

Powerset monoid

Example

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid. Then

$$\mathcal{P}(\mathsf{M}) = \langle \mathcal{P}(M), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$$

is a residuated lattice, where

$$\begin{array}{rcl} X \cdot Y &=& \left\{ xy \in M \mid x \in X, y \in Y \right\}, \\ X \setminus Z &=& \left\{ y \in M \mid X \cdot \left\{ y \right\} \subseteq Z \right\}, \\ Z/Y &=& \left\{ x \in M \mid \left\{ x \right\} \cdot Y \subseteq Z \right\}. \end{array}$$

Other examples can be obtained by introducing a suitable closure operator on $\mathcal{P}(M)$.

Nuclei

Definition

Let **M** be a monoid and γ a closure operator on $\mathcal{P}(M)$. The collection of γ -closed sets is denoted $\mathcal{P}(M)_{\gamma}$. Then γ is called a nucleus if for every $u, v \in M$ we have

$$X \in \mathcal{P}(M)_{\gamma} \implies \{u\} \setminus X/\{v\} \in \mathcal{P}(M)_{\gamma}.$$

Nuclei

Definition

Let **M** be a monoid and γ a closure operator on $\mathcal{P}(M)$. The collection of γ -closed sets is denoted $\mathcal{P}(M)_{\gamma}$. Then γ is called a nucleus if for every $u, v \in M$ we have

$$X \in \mathcal{P}(M)_{\gamma} \implies \{u\} \setminus X/\{v\} \in \mathcal{P}(M)_{\gamma}$$

Example

Let **M** be a monoid and γ a nucleus on $\mathcal{P}(M)$. Then $\mathcal{P}(\mathbf{M})_{\gamma} = \langle \mathcal{P}(M)_{\gamma}, \cap, \cup_{\gamma}, \cdot_{\gamma}, \setminus, /, \gamma\{1\} \rangle$ is a residuated lattice, where

$$\begin{array}{rcl} X\cup_{\gamma}Y &=& \gamma(X\cup Y)\,,\\ X\cdot_{\gamma}Y &=& \gamma(X\cdot Y)\,. \end{array}$$

Regular languages

Definition

A language $L \subseteq \Sigma^*$ is called regular iff it is accepted by a finite automaton.

Regular languages

Definition

A language $L \subseteq \Sigma^*$ is called regular iff it is accepted by a finite automaton.

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

$$x \sim_L y$$
 iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

$$x \sim_L y$$
 iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid: $\mathbf{M}(L) = \Sigma^* / \sim_L$.

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

$$x \sim_L y$$
 iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid: $\mathbf{M}(L) = \Sigma^* / \sim_L$.

Theorem

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

$$x \sim_L y$$
 iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid: $\mathbf{M}(L) = \Sigma^* / \sim_L$.

Theorem

The syntactic congruence ∼_L is the largest congruence saturating L, i.e., L = U_{w∈L} w/∼_L.

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

syntactic congruence:

$$x \sim_L y$$
 iff $(\forall u, v \in \Sigma^*)(u \times v \in L \Leftrightarrow u \times v \in L)$,

2 syntactic monoid: $\mathbf{M}(L) = \Sigma^* / \sim_L$.

Theorem

- The syntactic congruence ∼_L is the largest congruence saturating L, i.e., L = U_{w∈L} w/∼_L.
- **2** M(L) is finite iff L is regular (Myhill-Nerode Theorem).

Definition

Given a logic L, we define

Definition Given a logic *L*, we define

• Leibniz congruence:

 $\alpha \sim_L \beta \quad \text{iff} \quad (\forall \varphi \in Fm)(\vdash_L \varphi(\alpha) \Leftrightarrow \vdash_L \varphi(\beta)),$

2 Lindenbaum-Tarski algebra: \mathbf{Fm}/\sim_L .

Definition Given a logic *L*, we define • Leibniz congruence: $\alpha \sim \iota \beta$ iff $(\forall \varphi)$

$$\alpha \sim_L \beta$$
 iff $(\forall \varphi \in Fm)(\vdash_L \varphi(\alpha) \Leftrightarrow \vdash_L \varphi(\beta))$,

2 Lindenbaum-Tarski algebra: \mathbf{Fm}/\sim_L .

Theorem

Leibniz congruence \sim_L is the largest congruence saturating the set of theorems of L.

Eilenberg variety theorem

The assignment $L \mapsto \mathbf{M}(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.

 $\mathcal{L} \mapsto$ the pseudovariety generated by $\{\mathbf{M}(L) \mid L \in \mathcal{L}\}$. $\mathcal{V} \mapsto$ the variety \mathcal{L} of regular languages L s.t. $\mathbf{M}(L) \in \mathcal{V}$.

Eilenberg variety theorem

The assignment $L \mapsto \mathbf{M}(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.

 $\mathcal{L} \mapsto$ the pseudovariety generated by $\{\mathbf{M}(L) \mid L \in \mathcal{L}\}$. $\mathcal{V} \mapsto$ the variety \mathcal{L} of regular languages L s.t. $\mathbf{M}(L) \in \mathcal{V}$.

Theorem (Eilenberg 1976)

The above maps are mutually inverse, order-preserving bijections.

Eilenberg variety theorem

The assignment $L \mapsto \mathbf{M}(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.

 $\mathcal{L} \mapsto$ the pseudovariety generated by $\{\mathbf{M}(L) \mid L \in \mathcal{L}\}$. $\mathcal{V} \mapsto$ the variety \mathcal{L} of regular languages L s.t. $\mathbf{M}(L) \in \mathcal{V}$.

Theorem (Eilenberg 1976)

The above maps are mutually inverse, order-preserving bijections.

Theorem

Let L be a logic. The map $L \mapsto \mathbf{Fm}/\sim_L$ induces a dual-isomorphism between the lattice of axiomatic extensions of L and the subvariety lattice of the variety generated by \mathbf{Fm}/\sim_L .

Analogy table

Language theory	Logic
language	theorems
syntactic congruence	Leibniz congruence
syntactic monoid	Lindenbaum-Tarski algebra
Eilenberg variety theorem	axiomatic extensions ++++ subvarieties

Analogy table

Language theory	Logic
language	theorems
syntactic congruence	Leibniz congruence
syntactic monoid	Lindenbaum-Tarski algebra
Eilenberg variety theorem	axiomatic extensions ++++ subvarieties

- Lindenbaum-Tarski algebra is used to prove the completeness theorem for a logic *L*.
- Nevertheless, there is also another construction used in order to prove it.
- Does it have its analogy on the language side?

• Let L be a logic presented by a single-conclusion sequent calculus.

- Let L be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas *Fm**.

- Let *L* be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas *Fm**.
- Look for the pointwise largest nucleus γ on P(Fm^{*}) making the following set γ-closed for every φ ∈ Fm:

$$S_{\varphi} = \{ \Gamma \in Fm^* \mid \vdash_L \Gamma \Rightarrow \varphi \} \,.$$

- Let *L* be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas *Fm**.
- Look for the pointwise largest nucleus γ on P(Fm^{*}) making the following set γ-closed for every φ ∈ Fm:

$$S_{\varphi} = \{ \Gamma \in Fm^* \mid \vdash_L \Gamma \Rightarrow \varphi \}.$$

• Then $\mathcal{P}(Fm^*)_{\gamma}$ is the algebra used to prove the completeness theorem.

- Let *L* be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas *Fm**.
- Look for the pointwise largest nucleus γ on P(Fm^{*}) making the following set γ-closed for every φ ∈ Fm:

$$S_{\varphi} = \{ \Gamma \in Fm^* \mid \vdash_L \Gamma \Rightarrow \varphi \} \,.$$

- Then $\mathcal{P}(Fm^*)_{\gamma}$ is the algebra used to prove the completeness theorem.
- If δ is a nucleus on $\mathcal{P}(Fm^*)$ making all S_{φ} 's δ -closed then $\delta(X) \subseteq \gamma(X)$ for all $X \subseteq Fm^*$.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^*$ be a language. The pointwise largest nucleus γ_L making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L) = \mathcal{P}(\Sigma^*)_{\gamma_L}$ is called a syntactic residuated lattice.

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^*$ be a language. The pointwise largest nucleus γ_L making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L) = \mathcal{P}(\Sigma^*)_{\gamma_L}$ is called a syntactic residuated lattice.

Theorem
Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^*$ be a language. The pointwise largest nucleus γ_L making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L) = \mathcal{P}(\Sigma^*)_{\gamma_L}$ is called a syntactic residuated lattice.

Theorem

{γ{x} | x ∈ Σ*} forms a submonoid isomorphic to the syntactic monoid M(L).

Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^*$ be a language. The pointwise largest nucleus γ_L making L a closed set is called syntactic nucleus. Then $\mathbf{R}(L) = \mathcal{P}(\Sigma^*)_{\gamma_L}$ is called a syntactic residuated lattice.

Theorem

- {γ{x} | x ∈ Σ*} forms a submonoid isomorphic to the syntactic monoid M(L).
- **2** $\mathbf{R}(L)$ is finite iff L is regular.

Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.

Beyond regular languages – they do not contain sufficiently enough information to distinguish very different languages.

Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.

Beyond regular languages – they do not contain sufficiently enough information to distinguish very different languages.

Example (Sakarovitch)

Consider the following languages over $\Sigma=\{0,1\}:$

$$egin{array}{rcl} {L_1} & = & \left\{ {w{w^R} \mid w \in {\Sigma ^ * } }
ight\}, \ {L_2} & = & \left\{ {w \in {\Sigma ^ * } \mid w \ {
m{is \ prime}} }
ight\}. \end{array}$$

Then $M(L_1) = M(L_2) = \Sigma^*$.

Beyond regular languages

Consider the following rule over:

$$uxv, ux^2v \in L \implies uv \in L.$$
 (r

Then L_1 is closed under (r) and L_2 not.

Beyond regular languages

Consider the following rule over:

$$uxv, ux^2v \in L \implies uv \in L.$$
 (r)

Then L_1 is closed under (r) and L_2 not.

Theorem

A language L is closed under (r) iff $\mathbf{R}(L)$ satisfies

 $1 \le x \lor x^2 \lor x \setminus y.$

Thus the languages L_1, L_2 can be separated by a variety of residuated lattices.

How to construct the largest nucleus?

• Let **M** be a monoid and $B = \{S_i \subseteq M \mid i \in I\}$.

How to construct the largest nucleus?

- Let **M** be a monoid and $B = \{S_i \subseteq M \mid i \in I\}$.
- How to find the largest nucleus on $\mathcal{P}(\mathbf{M})$ making all sets in B closed?

How to construct the largest nucleus?

- Let **M** be a monoid and $B = \{S_i \subseteq M \mid i \in I\}$.
- How to find the largest nucleus on $\mathcal{P}(\mathbf{M})$ making all sets in B closed?
- Use residuated frames (Galatos, Jipsen).

A frame
$$\mathbf{W} = \langle M, B, N \rangle$$
: $M \xrightarrow{N} B$

• $\gamma(X) = X^{\rhd \lhd}$ is a closure operator on $\mathcal{P}(M)$.

- $\gamma(X) = X^{\rhd \lhd}$ is a closure operator on $\mathcal{P}(M)$.
- It is the pointwise largest closure operator making all sets in its basis
 {{b}[⊲] | b ∈ B} γ-closed.

•
$$\gamma(X) = X^{\rhd \lhd}$$
 is a closure operator on $\mathcal{P}(M)$.

- It is the pointwise largest closure operator making all sets in its basis
 {{b}[⊲] | b ∈ B} γ-closed.
- The collection of closed sets forms a complete lattice $\mathbf{W}^+ = \langle \mathcal{P}(M)_{\gamma}, \cap, \cup_{\gamma} \rangle$, where

$$X\cup_{\gamma}Y=\gamma(X\cup Y)$$
 .

 Given a monoid M and an frame W = (M, B, N), the corresponding induced closure operator γ need not be a nucleus.

- Given a monoid M and an frame W = (M, B, N), the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}} = \langle M, M^2 \times B, \widehat{N} \rangle$, where

 $x \widehat{N} \langle u, v, b \rangle$ iff uxv N b.

- Given a monoid M and an frame W = (M, B, N), the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}} = \langle M, M^2 \times B, \widehat{N} \rangle$, where $x \, \widehat{N} \langle u, v, b \rangle$ iff $uxv \, N \, b$.
- The closure operator γ induced by \hat{N} is a nucleus.

- Given a monoid M and an frame W = (M, B, N), the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}} = \langle M, M^2 \times B, \widehat{N} \rangle$, where $x \, \widehat{N} \langle u, v, b \rangle$ iff uxv N b.
- The closure operator γ induced by \widehat{N} is a nucleus.
- Then $\widehat{\mathbf{W}}^+ = \mathcal{P}(\mathbf{M})_{\gamma}$ forms a complete residuated lattice.

- Given a monoid M and an frame W = (M, B, N), the corresponding induced closure operator γ need not be a nucleus.
- Define an extended (residuated) frame $\widehat{\mathbf{W}} = \langle M, M^2 \times B, \widehat{N} \rangle$, where $x \, \widehat{N} \langle u, v, b \rangle$ iff $uxv \, N \, b$.
- The closure operator γ induced by \widehat{N} is a nucleus.
- Then $\widehat{\mathbf{W}}^+ = \mathcal{P}(\mathbf{M})_{\gamma}$ forms a complete residuated lattice.
- Moreover, γ is the pointwise largest nucleus making all $\{1,1,b\}^\lhd$'s $\gamma\text{-closed}.$

Construction of R(L)

• Let L be a logic and consider the frame $\mathbf{W} = \langle Fm^*, Fm, N \rangle$ where

$$\Gamma N \varphi$$
 iff $\Gamma \in S_{\varphi}$ iff $\vdash_L \Gamma \Rightarrow \varphi$.

Then $\widehat{\mathbf{W}}^+$ is the algebra used to prove the completeness.

Construction of R(L)

• Let L be a logic and consider the frame $\mathbf{W} = \langle Fm^*, Fm, N \rangle$ where

$$\Gamma N \varphi$$
 iff $\Gamma \in S_{\varphi}$ iff $\vdash_L \Gamma \Rightarrow \varphi$.

Then $\widehat{\mathbf{W}}^+$ is the algebra used to prove the completeness.

Let L ⊆ Σ* be a language. Define frame W = ⟨Σ*, {L}, N⟩, where N ⊆ Σ* × {L} is defined by

$$x N L$$
 iff $x \in L$.

Then $\mathbf{R}(L) = \widehat{\mathbf{W}}^+$ is the syntactic residuated lattice of L.

Definition (Evans)

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra **B** of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

• Let \mathcal{K} be a variety of residuated lattices.

Definition (Evans)

- Let ${\mathcal K}$ be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.

Definition (Evans)

- Let ${\mathcal K}$ be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let **M** be the sub(po)monoid of **A** generated by *B*.

Definition (Evans)

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let **M** be the sub(po)monoid of **A** generated by *B*.
- Consider the frame $\mathbf{W} = \langle M, B, N \rangle$ where

$$x N b$$
 iff $x \leq^{\mathbf{A}} b$.

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra **B** of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let **M** be the sub(po)monoid of **A** generated by *B*.
- Consider the frame $\mathbf{W} = \langle M, B, N \rangle$ where

$$x N b$$
 iff $x \leq^{\mathbf{A}} b$.

• Then $\widehat{\mathbf{W}}^+$ is a residuated lattice and \mathbf{B} embeds to it.

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra **B** of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $\mathbf{A} \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let **M** be the sub(po)monoid of **A** generated by *B*.
- Consider the frame $\mathbf{W} = \langle M, B, N \rangle$ where

$$x N b$$
 iff $x \leq^{\mathbf{A}} b$.

• Then $\widehat{\mathbf{W}}^+$ is a residuated lattice and **B** embeds to it. • Is $\widehat{\mathbf{W}}^+$ finite? Does $\widehat{\mathbf{W}}^+$ belong to \mathcal{K} ?

Generalized Myhill Theorem

Theorem

Let **M** be a monoid and $\mathbf{W} = \langle M, B, N \rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^+$ is finite iff there is a compatible dual well quasi-order \sqsubseteq on **M** such that

$$x \sqsubseteq y, \ y \ N \ b \implies x \ N \ b$$
.

Generalized Myhill Theorem

Theorem

Let **M** be a monoid and $\mathbf{W} = \langle M, B, N \rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^+$ is finite iff there is a compatible dual well quasi-order \sqsubseteq on **M** such that

$$x \sqsubseteq y, \ y \ N \ b \implies x \ N \ b$$
.

Corollary (Generalized Myhill Theorem – Ehrenfeucht, Rozenberg)

A language $L \subseteq \Sigma^*$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^* .

Generalized Myhill Theorem

Theorem

Let **M** be a monoid and $\mathbf{W} = \langle M, B, N \rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}}^+$ is finite iff there is a compatible dual well quasi-order \sqsubseteq on **M** such that

$$x \sqsubseteq y, \ y \ N \ b \implies x \ N \ b$$
.

Corollary (Generalized Myhill Theorem – Ehrenfeucht, Rozenberg)

A language $L \subseteq \Sigma^*$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^* .

 $\mathcal{V}=$ finitely gen. subpomonoids of members from \mathcal{K}

Find a compatible dual well quasi-order \sqsubseteq on Σ^* s.t. all pomonoids from $\mathcal V$ are homomorphic images of Σ^*/\sqsubseteq .

Weakening rule

Theorem (Blok, van Alten)

The variety of integral residuated lattices ($x \le 1$) has the FEP.

Weakening rule

Theorem (Blok, van Alten)

The variety of integral residuated lattices ($x \le 1$) has the FEP.

Proof.

Consider the least compatible quasi-order \sqsubseteq on Σ^* such that Σ^*/\sqsubseteq satisfies $x \leq 1$. Show by Higman's lemma that \sqsubseteq is dually well.

Weakening rule

Theorem (Blok, van Alten)

The variety of integral residuated lattices ($x \le 1$) has the FEP.

Proof.

Consider the least compatible quasi-order \sqsubseteq on Σ^* such that Σ^*/\sqsubseteq satisfies $x \leq 1$. Show by Higman's lemma that \sqsubseteq is dually well.

Theorem

Every language L closed under the following rule is regular:

$$\frac{uv \in L}{uxv \in L}$$

Exchange and knotted rules

Let $m \ge 1$, $n \ge 0$ and $m \ne n$.

Theorem (van Alten)

The variety of commutative (xy = yx) residuated lattices satisfying $x^m \le x^n$ has the FEP.

Exchange and knotted rules

Let $m \ge 1$, $n \ge 0$ and $m \ne n$.

Theorem (van Alten)

The variety of commutative (xy = yx) residuated lattices satisfying $x^m \le x^n$ has the FEP.

Theorem

Every language closed under the following rules is regular:

$$\frac{uxyv \in L}{uyxv \in L}, \qquad \frac{ux^n v \in L}{ux^m v \in L}$$
Inspired by language theory

Theorem (de Luca, Varricchio)

Language L is regular iff L is permutable and quasi-periodic or co-quasi-periodic.

Let $\sigma \in S_k \setminus \{id\}$ for $k \ge 2$ and $m, n \in \mathbb{N}$ such that $m > n \ge 1$.

In particular, they prove that the least compatible quasi-order \sqsubseteq on Σ^+ such that Σ^+ / \sqsubseteq satisfies $x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^m \le x^n$ is dually well.

Inspired by language theory

Theorem (de Luca, Varricchio)

Language L is regular iff L is permutable and quasi-periodic or co-quasi-periodic.

Let $\sigma \in S_k \setminus \{id\}$ for $k \ge 2$ and $m, n \in \mathbb{N}$ such that $m > n \ge 1$.

In particular, they prove that the least compatible quasi-order \sqsubseteq on Σ^+ such that Σ^+ / \sqsubseteq satisfies $x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^m \le x^n$ is dually well.

Theorem

Let $\sigma \in S_k \setminus \{id\}$ for $k \ge 2$ and $m, n \in \mathbb{N}$ such that $m > n \ge 1$. Then the variety of residuated lattice-ordered semigroups axiomatized by $x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^m \le x^n$ has the FEP.

Let $m, n \ge 1$ and $m \ne n$. The variety of res. lattices defined by $x^m \le x^n$ is denoted \mathcal{RL}_m^n .

Let $m, n \ge 1$ and $m \ne n$. The variety of res. lattices defined by $x^m \le x^n$ is denoted \mathcal{RL}_m^n .

Theorem

The word problem for \mathcal{RL}_m^n is undecidable for $1 \le m < n$ and $2 \le n < m$. Thus \mathcal{RL}_m^n does not have the FEP.

Let $m, n \ge 1$ and $m \ne n$. The variety of res. lattices defined by $x^m \le x^n$ is denoted \mathcal{RL}_m^n .

Theorem

The word problem for \mathcal{RL}_m^n is undecidable for $1 \le m < n$ and $2 \le n < m$. Thus \mathcal{RL}_m^n does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

$$\frac{ux^2v \in L}{uxv \in L}, \qquad \frac{\{u\alpha\beta v \in L\}_{\alpha,\beta\in\{x,y,z\}}}{uxyzv \in L}.$$

Let $m, n \ge 1$ and $m \ne n$. The variety of res. lattices defined by $x^m \le x^n$ is denoted \mathcal{RL}_m^n .

Theorem

The word problem for \mathcal{RL}_m^n is undecidable for $1 \leq m < n$ and $2 \leq n < m$. Thus \mathcal{RL}_m^n does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

$$\frac{ux^2v \in L}{uxv \in L}, \qquad \frac{\{u\alpha\beta v \in L\}_{\alpha,\beta\in\{x,y,z\}}}{uxyzv \in L}.$$

The only remaining cases are $x^m \leq x$ for $m \geq 2$.

Let $m \geq 2$. The variety \mathcal{RL}_m^1 can be axiomatized by

$$ux_1v \leq z \& \ldots \& ux_mv \leq z \implies ux_1\cdots x_mv \leq z.$$
 (q_m)

Let $m \geq 2$. The variety \mathcal{RL}_m^1 can be axiomatized by

$$ux_1v \leq z \& \ldots \& ux_mv \leq z \implies ux_1\cdots x_mv \leq z.$$
 (q_m)

Consider subsets of Σ^* closed under the following rule:

$$\frac{ux_1v \in L \dots ux_mv \in L}{ux_1 \cdots x_mv \in L}.$$
 (r_m)

Let $m \geq 2$. The variety \mathcal{RL}_m^1 can be axiomatized by

$$ux_1v \leq z \& \ldots \& ux_mv \leq z \implies ux_1\cdots x_mv \leq z.$$
 (q_m)

Consider subsets of Σ^* closed under the following rule:

$$\frac{ux_1v \in L \dots ux_mv \in L}{ux_1 \cdots x_mv \in L}.$$
 (*r*_m)

This rule induces a nucleus γ_m on $\mathcal{P}(\Sigma^*)$. Define the following binary relation on Σ^* :

$$x \leq_m y$$
 iff $\gamma_m\{x\} \subseteq \gamma_m\{y\}$.

Let $m \geq 2$. The variety \mathcal{RL}_m^1 can be axiomatized by

$$ux_1v \leq z \& \ldots \& ux_mv \leq z \implies ux_1\cdots x_mv \leq z.$$
 (q_m)

Consider subsets of Σ^* closed under the following rule:

$$\frac{ux_1v \in L \dots ux_mv \in L}{ux_1 \cdots x_mv \in L}.$$
 (*r*_m)

This rule induces a nucleus γ_m on $\mathcal{P}(\Sigma^*)$. Define the following binary relation on Σ^* :

$$x \leq_m y$$
 iff $\gamma_m\{x\} \subseteq \gamma_m\{y\}$.

Lemma

The relation \leq_m is the least compatible quasi-order on Σ^* such that Σ^*/\leq_m satisfies (q_m) .

Rostislav Horčík (ICS)

Let \mathcal{G}_m be the variety of groups satisfying $x^m = 1$.

Let \mathcal{G}_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside) Given $m \in \mathbb{N}$, is \mathcal{G}_m locally finite?

Let \mathcal{G}_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_m locally finite?

Theorem (Burnside, Sanov, Hall)

The answer is affirmative for m = 1, 2, 3, 4, 6.

Let \mathcal{G}_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_m locally finite?

Theorem (Burnside, Sanov, Hall)

The answer is affirmative for m = 1, 2, 3, 4, 6.

Theorem (Adian)

The answer is negative for odd $m \ge 665$.

Let \mathcal{G}_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_m locally finite?

Theorem (Burnside, Sanov, Hall)

The answer is affirmative for m = 1, 2, 3, 4, 6.

Theorem (Adian)

The answer is negative for odd $m \ge 665$.

Theorem (Ivanov)

The answer is negative for $m \ge 2^{48}$.

Theorem

Let m > 1. Suppose that \leq_m is dual well partial order. Then

Theorem

Let m > 1. Suppose that \leq_m is dual well partial order. Then

1 Burnside problem for m - 1 has an affirmative answer.

Theorem

- Let m > 1. Suppose that \leq_m is dual well partial order. Then
 - **1** Burnside problem for m 1 has an affirmative answer.
 - **2** The variety \mathcal{RL}_m^n has the FEP.

Theorem

Let m > 1. Suppose that \leq_m is dual well partial order. Then

- **1** Burnside problem for m 1 has an affirmative answer.
- **2** The variety \mathcal{RL}_m^n has the FEP.
- Severy language closed under the following rule is regular:

 $\frac{ux_1v \in L \dots ux_mv \in L}{ux_1 \cdots x_mv \in L}$

Theorem

Let m > 1. Suppose that \leq_m is dual well partial order. Then

- **1** Burnside problem for m 1 has an affirmative answer.
- **2** The variety \mathcal{RL}_m^n has the FEP.
- Severy language closed under the following rule is regular:

 $\frac{ux_1v \in L \dots ux_mv \in L}{ux_1 \cdots x_mv \in L}$

Corollary

The partial order \leq_m is not dual well for even $m \geq 666$ and $m \geq 2^{48}$.

Theorem

The variety \mathcal{RL}_2^1 has the FEP.

Theorem

The variety \mathcal{RL}_2^1 has the FEP.

Theorem

Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

 $\frac{uxv \in L \ uyv \in L}{uxyv \in L} \,.$

 (r_2)

Theorem

The variety \mathcal{RL}_2^1 has the FEP.

Theorem

Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

$$\frac{uxv \in L \ uyv \in L}{uxyv \in L} . \tag{r_2}$$

Example

The language $a^+(b(a+b+c)^*b+b)c^+$ is closed under (r_2) .

Theorem

The variety \mathcal{RL}_2^1 has the FEP.

Theorem

Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

$$\frac{uxv \in L \ uyv \in L}{uxyv \in L} . \tag{r_2}$$

Example

The language $a^+(b(a+b+c)^*b+b)c^+$ is closed under (r_2) .

Lemma

Let $w \in \Sigma^*$ and Alph $(w) = \Gamma$. Then $w u w \leq_2 w$ for every $u \in \Gamma^*$.

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

$$a_1$$
 a_2 a_3 a_4 a_5

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

 $a_1 \dots a_n \leq^* b_1 \dots b_m$ iff there is a strictly increasing map $f : [1, n] \rightarrow [1, m]$ s.t. $a_i \leq b_{f(i)}$ for all $i \in [1, n]$.

Lemma (Higman's lemma)

If $\langle Q, \leq
angle$ is a well quasi-ordered set then so is $\langle Q^*, \leq^*
angle$.

Rostislav Horčík (ICS)

Definition

Let $\langle Q, \leq
angle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \text{ and } f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \text{ and } a_i \leq b_{f(i+1)-1} \text{ for all } i \in [1, n]. \end{array}$$

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \ \text{and} \ f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \ \text{and} \ a_i \leq b_{f(i+1)-1} \ \text{for all } i \in [1, n]. \end{array}$$

$$b_1$$
 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10} b_{11}

$$a_1$$
 a_2 a_3 a_4 a_5

Definition

Let $\langle Q,\leq\rangle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \text{ and } f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \text{ and } a_i \leq b_{f(i+1)-1} \text{ for all } i \in [1, n]. \end{array}$$

Definition

Let $\langle Q, \leq
angle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

$$\begin{array}{l} a_1 \dots a_n \leq^+ b_1 \dots b_m \text{ iff there is a strictly increasing map} \\ f: [1, n+1] \rightarrow [1, m+1] \text{ such that} \\ \bullet \ f(1) = 1 \text{ and } f(n+1) = m+1, \\ \bullet \ a_i \leq b_{f(i)} \text{ and } a_i \leq b_{f(i+1)-1} \text{ for all } i \in [1, n]. \end{array}$$

Modified Higman's lemma (cont.)

Lemma

If $\langle Q, \leq \rangle$ is a well quasi-ordered set then $\langle Q^+, \leq^+ \rangle$ forms a well quasi-ordered set as well.

Conclusion

• Is it interesting for people working in substructural logics?

Conclusion

- Is it interesting for people working in substructural logics?
- Could it be interesting for people working in language theory?
Conclusion

- Is it interesting for people working in substructural logics?
- Could it be interesting for people working in language theory?
- Is the compatible quasi-order \leq_m on Σ^* dually well for $m = 3, 4, 5, \ldots, 665, 667, 669, \ldots, 2^{48} 1?$

Thank you!