Residuated Lattices, Regular Languages, and
Burnside Problem

Rostislav Horéik

Institute of Computer Science
Academy of Sciences of the Czech Republic

Topology, Algebra, and Categories in Logic
July 28 — August 1, 2013

Rostislav Hor&ik (ICS) TACL 2013 1/33



Outline

@ Residuated lattices

Rostislav Horéik (1CS)



Outline

@ Residuated lattices

9 Analogy between languages and logics

Rostislav Hor&ik (ICS)



Outline

@ Residuated lattices
9 Analogy between languages and logics

© FEP and regularity

Rostislav Hor&ik (ICS)



Outline

@ Residuated lattices

9 Analogy between languages and logics

© FEP and regularity

@ Applications

Rostislav Hor¢ik (ICS)



Residuated lattices

Definition

Let M = (M, -, 1) be a monoid. A quasi-order < on M is called
compatible if for all x,y,u,v € M:

X<y = uxv < uyv.
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Residuated lattices

Definition

Let M = (M, -, 1) be a monoid. A quasi-order < on M is called
compatible if for all x,y,u,v € M:

X<y = uxv < uyv.

Definition

A residuated lattice A = (A, A, V, -, \,/,1) is a monoid such that (A, A, V)
is a lattice and for all a, b, c € A:

a-b<c iff b<a\c iff a<c/b.

Logic = a substructural logic, i.e., an axiomatic extension of FL.
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Powerset monoid

Example
Let M = (M, -, 1) be a monoid. Then
P(M) = <P(M)a mv Ua ) \7 /a {1}>
is a residuated lattice, where
XY = {xyeM|xeX,yeY},

X\Z {yeM|X-{y}C Z},
Z)Y = {xeM|{x}-YCZ}.
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Powerset monoid

Example
Let M = (M, -, 1) be a monoid. Then

P(M) - <P(M)v ﬂ, Ua ) \7 /7 {1}>
is a residuated lattice, where

XY = {xyeM|xeX,yeY},
X\Z = {yeM|X {y}cZ},
Z)Y = {xeM|{x}-YCZ}.

Other examples can be obtained by introducing a suitable closure operator

on P(M).
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Nuclei

Definition

Let M be a monoid and 7 a closure operator on P(M). The collection of

7-closed sets is denoted P(M),. Then ~ is called a nucleus if for every
u,v € M we have

XeP(M), = {up\X/{v} e PM),.
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Nuclei

Definition
Let M be a monoid and 7 a closure operator on P(M). The collection of

7-closed sets is denoted P(M),. Then ~ is called a nucleus if for every
u,v € M we have

XeP(M), = {up\X/{v} e PM),.

Example

Let M be a monoid and ~ a nucleus on P(M). Then
P(M), = (P(M)y,N, Uy, 4, \,/,v{1}) is a residuated lattice, where

XUy Y = 4(XUY),
XY = 4X-Y).

Rostislav Hor¢ik (ICS) TACL 2013 5/33



Regular languages
Definition J

A language L C ¥* is called regular iff it is accepted by a finite automaton.
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Regular languages

Definition
A language L C ¥* is called regular iff it is accepted by a finite automaton.J
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Syntactic monoid

Definition
Given an alphabet ¥ and a language L C ¥*, we define
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Given an alphabet ¥ and a language L C ¥*, we define

@ syntactic congruence:

x~py iff (Vu,veX) uxvel s uyvel),
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Syntactic monoid

Definition
Given an alphabet ¥ and a language L C ¥*, we define

@ syntactic congruence:

x~py iff (Vu,veX) uxvel s uyvel),

@ syntactic monoid: M(L) = X*/~;y.

Theorem
© The syntactic congruence ~ is the largest congruence saturating L,
ie., L= UWGL W/N[_.

@ M(L) is finite iff L is regular (Myhill-Nerode Theorem).
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Lindenbaum-Tarski algebra

Definition
Given a logic L, we define
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Lindenbaum-Tarski algebra

Definition
Given a logic L, we define

@ Leibniz congruence:

o~y Bff

(Vo € Fm)(1 w(a) & Fre(P)),
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Lindenbaum-Tarski algebra

Definition
Given a logic L, we define

© Leibniz congruence:

a~ B iff (Vo€ Fm)(kL o(a) & B o(B)),

@ Lindenbaum-Tarski algebra: Fm/~.
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Lindenbaum-Tarski algebra

Definition
Given a logic L, we define

© Leibniz congruence:

a~ B iff (Vo€ Fm)(kL o(a) & B o(B)),

@ Lindenbaum-Tarski algebra: Fm/~.

Theorem

Leibniz congruence ~ is the largest congruence saturating the set of
theorems of L.
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Eilenberg variety theorem

The assignment L — M(L) induces a correspondence between varieties of
regular languages and pseudovarieties of finite monoids.

L +— the pseudovariety generated by {M(L) | L € L}.
V > the variety £ of regular languages L s.t. M(L) € V.
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Eilenberg variety theorem

The assignment L — M(L) induces a correspondence between varieties of
regular languages and pseudovarieties of finite monoids.

L +— the pseudovariety generated by {M(L) | L € L}.
V > the variety L of regular languages L s.t. M(L) € V.

Theorem (Eilenberg 1976)

The above maps are mutually inverse, order-preserving bijections.

Theorem

Let L be a logic. The map L — Fm/~ induces a dual-isomorphism
between the lattice of axiomatic extensions of L and the subvariety lattice
of the variety generated by Fm/~.
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Analogy table

Language theory Logic
language theorems
syntactic congruence Leibniz congruence
syntactic monoid Lindenbaum-Tarski algebra
Eilenberg variety theorem | axiomatic extensions «~ subvarieties
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Analogy table

Language theory Logic
language theorems
syntactic congruence Leibniz congruence
syntactic monoid Lindenbaum-Tarski algebra
Eilenberg variety theorem | axiomatic extensions « subvarieties

@ Lindenbaum-Tarski algebra is used to prove the completeness theorem
for a logic L.

@ Nevertheless, there is also another construction used in order to prove
it.

@ Does it have its analogy on the language side?
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Another way of proving completeness

@ Let L be a logic presented by a single-conclusion sequent calculus.
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Another way of proving completeness

@ Let L be a logic presented by a single-conclusion sequent calculus.
@ Consider the free monoid generated by formulas Fm™.

@ Look for the pointwise largest nucleus v on P(Fm*) making the
following set -closed for every ¢ € Fm:

So={Te Fm" |- . T = ¢}.
@ Then P(Fm®*), is the algebra used to prove the completeness theorem.

o If 0 is a nucleus on P(Fm*) making all S,'s d-closed then
0(X) C y(X) for all X C Fm™.

Rostislav Hor¢ik (ICS) TACL 2013 11 /33



Syntactic residuated lattice

Definition

Let L C X* be a language. The pointwise largest nucleus 7, making L a
closed set is called syntactic nucleus. Then R(L) = P(X*),, is called a
syntactic residuated lattice.
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Syntactic residuated lattice

Definition

Let L C * be a language. The pointwise largest nucleus v, making L a
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Syntactic residuated lattice

Definition

Let L C * be a language. The pointwise largest nucleus v, making L a
closed set is called syntactic nucleus. Then R(L) = P(X*),, is called a
syntactic residuated lattice.

Theorem
Q {y{x} | x € £*} forms a submonoid isomorphic to the syntactic
monoid M(L).
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Syntactic residuated lattice

Definition

Let L C * be a language. The pointwise largest nucleus v, making L a
closed set is called syntactic nucleus. Then R(L) = P(X*),, is called a
syntactic residuated lattice.

Theorem
Q {y{x} | x € £*} forms a submonoid isomorphic to the syntactic
monoid M(L).

@ R(L) is finite iff L is regular.
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Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.

Beyond regular languages — they do not contain sufficiently enough
information to distinguish very different languages.
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Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.

Beyond regular languages — they do not contain sufficiently enough
information to distinguish very different languages.

Example (Sakarovitch)
Consider the following languages over ¥ = {0,1}:

L = {wwf|wex*},
Ly, = {weX"|wisprime}.

Then M(L1) = M(Lp) = £*.
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Beyond regular languages

Consider the following rule over:

uxv,ux’vel = uvel.

Then L; is closed under (r) and L, not.
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Beyond regular languages

Consider the following rule over:
uxv,ux’vel = uvel. (r)
Then L; is closed under (r) and L, not.
Theorem
A language L is closed under (r) iff R(L) satisfies

1<xVx*Vx\y.

Thus the languages L1, L, can be separated by a variety of residuated
lattices.
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How to construct the largest nucleus?

@ Let M be a monoid and B={S5; C M | i€ l}.
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How to construct the largest nucleus?

@ Let M be a monoid and B={S5; C M | i€ l}.
@ How to find the largest nucleus on P(M) making all sets in B closed?

@ Use residuated frames (Galatos, Jipsen).
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Frames

A frame W = (M, B, N):
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Frames

A frame W= (M,B,N): M

P(M)

X® = {beB|(VaeX)(aNb)},
Y9 = {aecM|(¥be Y)(aN b)}.
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Frames

A frame W= (M,B,N): M

P(M)

<
X® = {beB|(VaeX)(aNb)},
Y9 = {aecM|(¥be Y)(aN b)}.

e v(X) = X" is a closure operator on P(M).

@ |t is the pointwise largest closure operator making all sets in its basis
{{b}< | b € B} ~-closed.

@ The collection of closed sets forms a complete lattice
W+ = (P(M),,N,U,), where

XUy Y =~v(XUY).
TACL2013 16/ 33



Residuated frames

e Given a monoid M and an frame W = (M, B, N), the corresponding
induced closure operator v need not be a nucleus.
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Residuated frames

Given a monoid M and an frame W = (M, B, N), the corresponding
induced closure operator v need not be a nucleus.

o Define an extended (residuated) frame W = (M, M2 x B, N), where
x N (u,v,b) iff uxvNb.
@ The closure operator ~ induced by N is a nucleus.

o Then W+ = P(M), forms a complete residuated lattice.

@ Moreover, 7 is the pointwise largest nucleus making all {1,1, b}<'s
~-closed.
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Construction of R(L)

@ Let L be a logic and consider the frame W = (Fm*, Fm, N) where
FrNe iff TeS, iff H T=op.

Then W is the algebra used to prove the completeness.
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Construction of R(L)

@ Let L be a logic and consider the frame W = (Fm*, Fm, N) where
FrNe iff TeS, iff H T=op.

Then W is the algebra used to prove the completeness.

@ Let L C X* be a language. Define frame W = (X*, {L}, N), where
N C ¥* x {L} is defined by

xNL iff xel.

Then R(L) = W is the syntactic residuated lattice of L.
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FEP

Definition (Evans)

A class of algebras K of the same type has the finite embeddability

property (FEP) if every finite partial subalgebra B of any algebra A € K is
embeddable into a finite algebra D € K.
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FEP

Definition (Evans)
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o Let K be a variety of residuated lattices.
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FEP

Definition (Evans)

A class of algebras K of the same type has the finite embeddability
property (FEP) if every finite partial subalgebra B of any algebra A € K is
embeddable into a finite algebra D € K.

@ Let I be a variety of residuated lattices.

o Start with A € K and a finite B C A.

@ Let M be the sub(po)monoid of A generated by B.
e Consider the frame W = (M, B, N) where

xNb iff x<Pb.

o Then W+ is a residuated lattice and B embeds to it.
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FEP

Definition (Evans)

A class of algebras K of the same type has the finite embeddability
property (FEP) if every finite partial subalgebra B of any algebra A € K is
embeddable into a finite algebra D € K.

@ Let I be a variety of residuated lattices.

o Start with A € K and a finite B C A.

@ Let M be the sub(po)monoid of A generated by B.
e Consider the frame W = (M, B, N) where

xNb iff x<Pb.

o Then W+ is a residuated lattice and B embeds to it.
o Is W+ finite? Does W+ belong to K?

Rostislav Hor¢ik (ICS) TACL 2013 19 / 33



Generalized Myhill Theorem

Theorem

Let M be a monoid and W = (M, B, N) a frame where B is finite. Then

W s finite iff there is a compatible dual well quasi-order C on M such
that

xCy, yNb = xNb.
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Generalized Myhill Theorem

Theorem

Let M be a monoid and W = (M, B, N) a frame where B is finite. Then

W s finite iff there is a compatible dual well quasi-order C on M such
that

xCy, yNb = xNb.

Corollary (Generalized Myhill Theorem — Ehrenfeucht, Rozenberg)

A language L C X* is regular iff L is downward closed w.r.t. a compatible
dual well quasi-order on ¥*.

Rostislav Hor¢ik (ICS) TACL 2013 20/ 33



Generalized Myhill Theorem

Theorem

Let M be a monoid and W = (M, B, N) a frame where B is finite. Then
W js finite iff there is a compatible dual well quasi-order T on M such
that

xCy, yNb = xNb.

Corollary (Generalized Myhill Theorem — Ehrenfeucht, Rozenberg)

A language L C X* is regular iff L is downward closed w.r.t. a compatible
dual well quasi-order on ¥*.

VY = finitely gen. subpomonoids of members from X

Find a compatible dual well quasi-order C on X* s.t. all pomonoids from
V are homomorphic images of ¥*/C.
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Weakening rule

Theorem (Blok, van Alten)
The variety of integral residuated lattices (x < 1) has the FEP.
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Weakening rule

Theorem (Blok, van Alten)
The variety of integral residuated lattices (x < 1) has the FEP.

Proof.

Consider the least compatible quasi-order C on ¥* such that ¥*/C
satisfies x < 1. Show by Higman's lemma that C is dually well. O
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Weakening rule

Theorem (Blok, van Alten)
The variety of integral residuated lattices (x < 1) has the FEP.

Proof.

Consider the least compatible quasi-order C on ¥* such that ¥*/C
satisfies x < 1. Show by Higman's lemma that C is dually well. O

Theorem

Every language L closed under the following rule is regular:

uv el
uxv € L
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Exchange and knotted rules

Let m>1,n>0and m#n.

Theorem (van Alten)

The variety of commutative (xy = yx) residuated lattices satisfying
x™ < x™ has the FEP.
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Exchange and knotted rules

Let m>1,n>0and m#n.

Theorem (van Alten)

The variety of commutative (xy = yx) residuated lattices satisfying
x™ < x™ has the FEP.

Theorem

Every language closed under the following rules is regular:

uxyv € L ux"v e L
uyxv € L’ uxmv e L’
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Inspired by language theory

Theorem (de Luca, Varricchio)

Language L is regular iff L is permutable and quasi-periodic or
co-quasi-periodic.

Let 0 € Sk \ {id} for k > 2 and m,n € N such that m > n > 1.

In particular, they prove that the least compatible quasi-order C on ¥ "
such that X1/ C satisfies xq - - - x = Xo(1) " Xo(k) @and x™ < x™ is dually
well.
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Inspired by language theory

Theorem (de Luca, Varricchio)

Language L is regular iff L is permutable and quasi-periodic or
co-quasi-periodic.

Let 0 € Sk \ {id} for k > 2 and m,n € N such that m > n > 1.

In particular, they prove that the least compatible quasi-order C on ¥ "
such that X1/ C satisfies xq - - - x = Xo(1) " Xo(k) @and x™ < x™ is dually
well.

Theorem

Let 0 € S\ {id} for k > 2 and m,n € N such that m > n > 1. Then the
variety of residuated lattice-ordered semigroups axiomatized by
X1t Xk = Xo(1) " Xo(k) @nd x™ < x" has the FEP.

Rostislav Hor¢ik (ICS) TACL 2013 23 /33



Knotted axioms

Let m;n > 1 and m # n. The variety of res. lattices defined by x™ < x" is
denoted RL]..
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Thus RLy, does not have the FEP.

Theorem
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Knotted axioms

Let m;n > 1 and m # n. The variety of res. lattices defined by x™ < x" is
denoted RL]..

Theorem

The word problem for RL}, is undecidable for 1 < m < n and2 < n < m.
Thus RLy, does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

ux?v e L {uaBv € L}a,ﬁe{xyyz}
uxv € L’ uxyzv € L '

The only remaining cases are x™ < x for m > 2.
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Partial order
Let m > 2. The variety RLL can be axiomatized by

uxiv<z& ... & uxpmv <z = uxy--Xmv < Z. (gm)
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Partial order
Let m > 2. The variety RLL can be axiomatized by

uxiv<z& ... & uxpmv <z = uxy--Xmv < Z. (gm)

Consider subsets of X* closed under the following rule:

uxxv €L ... uxpv €L (1)
. r
uxy---Xmv € L m

This rule induces a nucleus v, on P(X*). Define the following binary
relation on X*:

x<my iff ym{x} Cym{y}.

Lemma

The relation <, is the least compatible quasi-order on ¥* such that
Y* /<., satisfies (qm).
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Burnside problem

Let G, be the variety of groups satisfying x™ = 1.
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Burnside problem
Let G, be the variety of groups satisfying x™ = 1.

Problem (Burnside)
Given m € N, is G, locally finite?

Theorem (Burnside, Sanov, Hall)

The answer is affirmative for m=1,2,3,4,6.

Theorem (Adian)

The answer is negative for odd m > 665.

Theorem (lvanov)

The answer is negative for m > 248
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Three implications

Theorem
Let m > 1. Suppose that <., is dual well partial order. Then
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Three implications

Theorem
Let m > 1. Suppose that <., is dual well partial order. Then

© Burnside problem for m — 1 has an affirmative answer.
@ The variety RL}, has the FEP.

© Every language closed under the following rule is regular:

uxqvel ... uxuvelL

uxy---Xmv € L

Corollary

The partial order <, is not dual well for even m > 666 and m > 248
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Theorem
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Mingle rule

Theorem
The variety RLA has the FEP.

Theorem

Every language L C ¥* closed under the following rule is regular:

uxv € Luyv e L
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uxyv € L |

Example

The language a*(b(a+ b+ c)*b+ b)c* is closed under (r2).
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Mingle rule

Theorem
The variety RLA has the FEP.

Theorem

Every language L C ¥* closed under the following rule is regular:

uxv € Luyv e L
uxyv € L

(r2)

Example

The language a*(b(a+ b+ c)*b+ b)c* is closed under (r2).

Lemma
Let w € ¥* and Alph(w) =T. Then wuw <, w for every u € I'*.
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Higman’s lemma

Definition

Let (Q, <) be a quasi-ordered set. Define a binary relation <* on Q* by
ai...ap <* by...bn, iff there is a strictly increasing map

f:[1,n] = [1,m] s.t. a; < by for all i € [1,n].
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Higman’s lemma

Definition

Let (Q, <) be a quasi-ordered set. Define a binary relation <* on Q* by
ai...ap <* by...bn, iff there is a strictly increasing map
f:[1,n] = [1,m] s.t. a; < by for all i € [1,n].

Neewee”

Lemma (Higman's lemma) J

If (Q, <) is a well quasi-ordered set then so is (Q*, <*).
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Modified Higman’s lemma

Definition
Let (@, <) be a quasi-ordered set. Define a binary relation < on Q* by
ai...an <T by...bp iff there is a strictly increasing map
f:[1,n+1] — [1, m + 1] such that
o f(l)=1andf(n+1)=m+1,
® a; < by(jy and a; < bg(jy1)—1 for all i € [1,n].
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Modified Higman’s lemma (cont.)

Lemma

If (Q,<) is a well quasi-ordered set then (@™, <) forms a well
quasi-ordered set as well.
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Conclusion

@ Is it interesting for people working in substructural logics?
@ Could it be interesting for people working in language theory?

@ |s the compatible quasi-order <,, on X* dually well for
m=3,4,5,...,665,667,669,...,2% — 17
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Thank you!

Rostislav Hor&ik (ICS)
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