Characterization of FEP for (Distributive) Residuated Lattices via Regular (Tree) Languages

Rostislav Horčík

Definition [Henkin 1951, Evans 1969]

A class of algebras \mathbb{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathbb{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathbb{K}$.

Definition [Henkin 1951, Evans 1969]

A class of algebras $\mathbb K$ of the same type has the finite embeddability property (FEP) if every finite partial subalgebra $\mathbf B$ of any algebra $\mathbf A \in \mathbb K$ is embeddable into a finite algebra $\mathbf D \in \mathbb K$.

► There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.

Definition [Henkin 1951, Evans 1969]

A class of algebras $\mathbb K$ of the same type has the finite embeddability property (FEP) if every finite partial subalgebra $\mathbf B$ of any algebra $\mathbf A \in \mathbb K$ is embeddable into a finite algebra $\mathbf D \in \mathbb K$.

- ► There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.
- ► The most involved part is to prove finiteness.

Definition [Henkin 1951, Evans 1969]

A class of algebras $\mathbb K$ of the same type has the finite embeddability property (FEP) if every finite partial subalgebra $\mathbf B$ of any algebra $\mathbf A \in \mathbb K$ is embeddable into a finite algebra $\mathbf D \in \mathbb K$.

- ► There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.
- ► The most involved part is to prove finiteness.
- We are going to rephrase the above contruction in terms of recognizable sets/languages.

Definition [Henkin 1951, Evans 1969]

A class of algebras $\mathbb K$ of the same type has the finite embeddability property (FEP) if every finite partial subalgebra $\mathbf B$ of any algebra $\mathbf A \in \mathbb K$ is embeddable into a finite algebra $\mathbf D \in \mathbb K$.

- ► There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.
- ► The most involved part is to prove finiteness.
- We are going to rephrase the above contruction in terms of recognizable sets/languages.
- ► This simplifies the proofs by employing results from language theory.

Recognizable sets

Definition

Let **A** be an algebra and $L \subseteq A$. The set L is recognizable if

- ► there is a finite algebra **D**,
- ▶ homomorphism $h: A \rightarrow D$ and
- \blacktriangleright ker(h) saturates L, i.e., L is a union of congruence classes.

Recognizable sets over \mathbf{A} are denoted $Rec(\mathbf{A})$.

Recognizable sets

Definition

Let **A** be an algebra and $L \subseteq A$. The set L is recognizable if

- ▶ there is a finite algebra **D**,
- ▶ homomorphism $h: A \rightarrow D$ and
- \blacktriangleright ker(h) saturates L, i.e., L is a union of congruence classes.

Recognizable sets over \mathbf{A} are denoted $Rec(\mathbf{A})$.

Theorem [Kleene]

Recognizable sets $Rec(\mathbf{B}^*)$ over finitely generated free monoids are precisely regular/rational languages.

The set of unary, linear polynomials on algebra $\bf A$ is denoted $Tr(\bf A)$ whose elements are called translations.

The set of unary, linear polynomials on algebra $\bf A$ is denoted $Tr(\bf A)$ whose elements are called translations.

E.g. $p(x) = axb \lor c$ is a translation on idempotent semiring **A**.

The set of unary, linear polynomials on algebra $\bf A$ is denoted $Tr(\bf A)$ whose elements are called translations.

E.g. $p(x) = axb \lor c$ is a translation on idempotent semiring **A**.

Definition

Let **A** be an algebra and $L \subseteq A$. The syntactic congruence \sim_L is defined by

$$x \sim_L y$$
 iff $\forall p \in Tr(\mathbf{A}) : p(x) \in L \Leftrightarrow p(y) \in L$

The set of unary, linear polynomials on algebra $\bf A$ is denoted $Tr(\bf A)$ whose elements are called translations.

E.g. $p(x) = axb \lor c$ is a translation on idempotent semiring **A**.

Definition

Let **A** be an algebra and $L \subseteq A$. The syntactic congruence \sim_L is defined by

$$x \sim_L y$$
 iff $\forall p \in Tr(\mathbf{A}) \colon p(x) \in L \Leftrightarrow p(y) \in L$

Lemma

The synt. congruence \sim_L is the largest congruence saturating L. Thus \mathbf{A}/\sim_L is finite iff L is recognizable.

Given a finite subset $B \subseteq A$, if we can find recognizable sets $L_1, \ldots, L_n \subseteq A$ separating elements of B, we obtain a finite algebra $\mathbf{D} \cong \mathbf{A} / \bigcap_{i=1}^n \sim_{L_i}$ and a homomorphism $h \colon \mathbf{A} \to \mathbf{D}$.

Residuated lattices

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \setminus, /, 1 \rangle$, where

- $\blacktriangleright \langle A, \wedge, \vee \rangle$ is a lattice,
- $\blacktriangleright \langle A, \cdot, 1 \rangle$ is a monoid,
- ▶ $a \cdot b \le c$ iff $b \le a \setminus c$ iff $a \le c/b$.

Residuated lattices

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, \langle A, \rangle$, where

- $\blacktriangleright \langle A, \wedge, \vee \rangle$ is a lattice,
- $\blacktriangleright \langle A, \cdot, 1 \rangle$ is a monoid,
- ▶ $a \cdot b \le c$ iff $b \le a \setminus c$ iff $a \le c/b$.

Facts

- ▶ $\langle A, \vee, \cdot, 1 \rangle$ forms an idempotent semiring because $a(b \vee c)d = abd \vee acd$.
- A finite idempotent semiring having a bottom element forms a residuated lattice.

Residuated lattices

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, \langle A, \rangle$, where

- $\blacktriangleright \langle A, \wedge, \vee \rangle$ is a lattice,
- $\blacktriangleright \langle A, \cdot, 1 \rangle$ is a monoid,
- ▶ $a \cdot b \le c$ iff $b \le a \setminus c$ iff $a \le c/b$.

Facts

- ▶ $\langle A, \vee, \cdot, 1 \rangle$ forms an idempotent semiring because $a(b \vee c)d = abd \vee acd$.
- ► A finite idempotent semiring having a bottom element forms a residuated lattice.

When does a variety $\mathbb K$ of residuated lattices axiomatized over $\{\vee,\cdot,1\}$ have the FEP?

$$\mathbf{A} \stackrel{id}{\longleftarrow} \mathbf{B}$$

▶ Assume that $\{L_b \subseteq Rec(\mathbf{B}^*) \mid b \in B\}$ separate elements of B.

- ▶ Assume that $\{L_b \subseteq \text{Rec}(\mathbf{B}^*) \mid b \in B\}$ separate elements of B.
- ▶ $\mathcal{P}_{fin}(L_b)$'s belongs to $\text{Rec}(\mathcal{P}_{fin}(\mathbf{B}^*))$ and separate B.

- ▶ Assume that $\{L_b \subseteq \text{Rec}(\mathbf{B}^*) \mid b \in B\}$ separate elements of B.
- ▶ $\mathcal{P}_{fin}(L_b)$'s belongs to $\text{Rec}(\mathcal{P}_{fin}(\mathbf{B}^*))$ and separate B.
- ▶ Define $\sim = \bigcap_{b \in B} \sim_{\mathcal{P}_{fin}(L_b)}$.

- ▶ Assume that $\{L_b \subseteq \text{Rec}(\mathbf{B}^*) \mid b \in B\}$ separate elements of B.
- ▶ $\mathcal{P}_{fin}(L_b)$'s belongs to $\text{Rec}(\mathcal{P}_{fin}(\mathbf{B}^*))$ and separate B.
- ▶ Define $\sim = \bigcap_{b \in B} \sim_{\mathcal{P}_{fin}(L_b)}$.
- ▶ Define $\sim' = \bigcap_{b \in B} \sim_{L_b}$.

If $t(x_1,\ldots,x_n) \leq s(x_1,\ldots,x_n)$ is in the axiomatization of \mathbb{K} ,

If $t(x_1,...,x_n) \leq s(x_1,...,x_n)$ is in the axiomatization of \mathbb{K} , then we need $p(s(X_1,...,X_n)) \subseteq L_c$

$$\frac{p(s(X_1,\ldots,X_n))\subseteq L_c}{p(t(X_1,\ldots,X_n))\subseteq L_c}$$

for all $c \in B$, finite sets $X_1, \ldots, X_n \subseteq B^*$ and $p \in Tr(\mathbf{B}^*)$.

If $t(x_1, ..., x_n) \leq s(x_1, ..., x_n)$ is in the axiomatization of \mathbb{K} , then we need

$$\frac{p(s(X_1,\ldots,X_n))\subseteq L_c}{p(t(X_1,\ldots,X_n))\subseteq L_c}$$

for all $c \in B$, finite sets $X_1, \ldots, X_n \subseteq B^*$ and $p \in Tr(\mathbf{B}^*)$.

Example

For instance $x^2 \le x$ and $X = \{a, b\}$. Then $X^2 = \{a^2, ab, ba, b^2\}$.

$$\frac{p(X) = \{p(a), p(b)\} \subseteq L_c}{p(X^2) = \{p(a^2), p(ab), p(ba), p(b^2)\} \subseteq L_c}$$

If $t(x_1, ..., x_n) \le s(x_1, ..., x_n)$ is in the axiomatization of \mathbb{K} , then we need

$$\frac{p(s(X_1,\ldots,X_n))\subseteq L_c}{p(t(X_1,\ldots,X_n))\subseteq L_c}$$

for all $c \in B$, finite sets $X_1, \ldots, X_n \subseteq B^*$ and $p \in Tr(\mathbf{B}^*)$.

Example

For instance $x^2 \le x$ and $X = \{a, b\}$. Then $X^2 = \{a^2, ab, ba, b^2\}$.

$$\frac{p(X) = \{p(a), p(b)\} \subseteq L_c}{p(X^2) = \{p(a^2), p(ab), p(ba), p(b^2)\} \subseteq L_c} \qquad \frac{\{p(a), p(b)\} \subseteq L_c}{p(ab) \in L_c}$$

Gentzen rules $(a, b, c \in B, p \in Tr(\mathbf{B}^*))$

$\frac{p(a) \in L_b}{p(L_a) \subset L_b}$ (Cut)

$$\frac{p(b) \in L_c}{p(a(a \backslash b)) \in L_c} (\backslash L)$$

$$\frac{p(a) \in L_c}{p(a \wedge b) \in L_c} (\wedge L)$$

$$p(a \wedge b) \in L_c$$
 $p(ab) \in L_c$

$$\frac{p(ab) \in L_c}{p(a \cdot b) \in L_c} (\cdot \mathsf{L})$$

$$p(a \cdot b) \in L_c$$

$$p(\{a,b\}) \in L_c$$

$$\frac{p(\{a,b\}) \in L_c}{p(a \lor b) \in L_c} (\lor L)$$

 $\frac{p(\varepsilon) \in L_c}{p(1) \in I_c}$ (1L)

$$\in L_c$$
 ($^{(L)}$) $\in L_c$ ($\vee L$)

$$\frac{1}{L_2L_b \subseteq L_{2,b}} (\cdot R)$$

$$\overline{L_a \cap L_b \subseteq L_{a \wedge b}} \, (\wedge \mathsf{R})$$

 $L_a \cup L_b \subseteq L_{a \lor b}$ (\lor R)

 $\overline{\varepsilon \in L_1}$ (1R)

 $b \in L_b$ (Id)

$$\overline{a \setminus L_b \subseteq L_{a \setminus b}} \ (\setminus R)$$

Characterization

Theorem

Let $\mathbb V$ be a variety of residuated lattices axiomatized over $\{\vee,\cdot,1\}$ by a set of inequalities $\mathcal E.$ T.F.A.E.

- 1. \mathbb{V} has the FEP.
- 2. For every finite partial subalgebra ${\bf B}$ of ${\bf A} \in \mathbb{V}$ there is a collection

$$\{L_b \subseteq \operatorname{Rec}(\mathbf{B}^*) \mid b \in B\}$$

- ▶ separating elements of B,
- ▶ satisfying Gentzen rules and
- ightharpoonup closed under the rules corresponding to inequalities in \mathcal{E} .

Existing results

Existing results

Sets of the form

$$L_b = \{x \in B^* \mid id^*(x) \leq^{\mathbf{A}} b\}$$

for $b \in B$ always satisfy all the conditions except of recognizability.

Existing results

Sets of the form

$$L_b = \{x \in B^* \mid id^*(x) \leq^{\mathbf{A}} b\}$$

for $b \in B$ always satisfy all the conditions except of recognizability.

To prove the FEP, it suffices to show that L_b 's are recognizable.

 $\label{eq:Higman's lemma} \ + \ Generalized \ Myhill \ Theorem \ imply$

Theorem [Blok, van Alten, Galatos, Jipsen]

Every variety $\mathbb V$ of integral $(x \le 1)$ residuated lattices axiomatized over $\{\vee,\cdot,1\}$ has the FEP.

Higman's lemma + Generalized Myhill Theorem imply

Theorem [Blok, van Alten, Galatos, Jipsen]

Every variety $\mathbb V$ of integral $(x \le 1)$ residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ has the FEP.

 $Rec(\mathbf{B}^*)$ = permutable and (co-)quasi-periodic languages.

Higman's lemma + Generalized Myhill Theorem imply

Theorem [Blok, van Alten, Galatos, Jipsen]

Every variety $\mathbb V$ of integral $(x \le 1)$ residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ has the FEP.

 $Rec(\mathbf{B}^*)$ = permutable and (co-)quasi-periodic languages.

$$\frac{ux_1 \dots x_k v \in L}{ux_{\sigma(1)} \dots x_{\sigma(k)} v \in L} \quad \frac{ux^n v \in L}{ux^m v \in L}$$

Higman's lemma + Generalized Myhill Theorem imply

Theorem [Blok, van Alten, Galatos, Jipsen]

Every variety $\mathbb V$ of integral $(x \le 1)$ residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ has the FEP.

 $Rec(\mathbf{B}^*)$ = permutable and (co-)quasi-periodic languages.

$$\frac{ux_1 \dots x_k v \in L}{ux_{\sigma(1)} \dots x_{\sigma(k)} v \in L} \quad \frac{ux^n v \in L}{ux^m v \in L}$$

Theorem [van Alten]

Let $\mathbb V$ be a variety of residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ satisfying xy=yx and $x^m \leq x^n$ for $m \neq n$. Then $\mathbb V$ has the FEP.

 $Higman's \ lemma \ + \ Generalized \ Myhill \ Theorem \ imply$

Theorem [Blok, van Alten, Galatos, Jipsen]

Every variety $\mathbb V$ of integral $(x\leq 1)$ residuated lattices axiomatized over $\{\vee,\cdot,1\}$ has the FEP.

 $Rec(\mathbf{B}^*) = permutable and (co-)quasi-periodic languages.$

$$\frac{ux_1\dots x_kv\in L}{ux_{\sigma(1)}\dots x_{\sigma(k)}v\in L}\quad \frac{ux^nv\in L}{ux^mv\in L}$$

Theorem [van Alten]

Let $\mathbb V$ be a variety of residuated lattices axiomatized over $\{\vee,\cdot,1\}$ satisfying xy=yx and $x^m\leq x^n$ for $m\neq n$. Then $\mathbb V$ has the FEP.

Theorem [Cardona, Galatos]

Let $\mathbb V$ be a variety of residuated lattices axiomatized over $\{\vee,\cdot,1\}$ satisfying $xyx=x^2y$ and $x^m\leq x^n$ for $m\neq n$. Then $\mathbb V$ has the FEP.

Characterization for distributive varieties

F(B) denotes the free meet-semilattice-ordered monoid gen. by B.

Characterization for distributive varieties

F(B) denotes the free meet-semilattice-ordered monoid gen. by B.

Theorem

Let \mathbb{V} be a variety of distributive residuated lattices axiomatized over $\{\land, \lor, \cdot, 1\}$ by a set of inequalities \mathcal{E} . T.F.A.E.

- 1. V has the FEP.
- 2. For every finite partial subalgebra ${\bf B}$ of ${\bf A} \in \mathbb{V}$ there is a collection

$$\{L_b \subseteq \mathsf{Rec}(\mathbf{F}(B)) \mid b \in B\}$$

- ▶ separating elements of B,
- satisfying Gentzen rules and
- lacktriangle closed under the rules corresponding to inequalities in $\mathcal{E}.$

Existing result

Using Kruskal Tree Theorem and Generalized Myhill Theorem for tree languages, we immediately obtain:

Theorem [Galatos]

Every subvariety of distributive integral residuated lattices axiomatized over $\{\land,\lor,\cdot,1\}$ has the FEP.

Conclusions

► One can employ recognizability criteria from language theory which might simplify the proof of finiteness.

Conclusions

- ► One can employ recognizability criteria from language theory which might simplify the proof of finiteness.
- ▶ Is it possible to characterize varieties axiomatized over {∨,·,1} having the FEP via the characterization of recognizable/regular languages?

Conclusions

- ► One can employ recognizability criteria from language theory which might simplify the proof of finiteness.
- ▶ Is it possible to characterize varieties axiomatized over {∨,·,1} having the FEP via the characterization of recognizable/regular languages?
- ▶ Is it necessary to consider other sets than

$$L_b = \{x \in B^* \mid id^*(x) \leq b\}$$
?

Other sets are used in the proofs of FMP and undecidability proofs.

Thank you!