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Definition [Henkin 1951, Evans 1969]

A class of algebras K of the same type has the finite embeddability
property (FEP) if every finite partial subalgebra B of any algebra
A € K is embeddable into a finite algebra D € K.

» There exists a bunch of results on the FEP for varieties of
residuated lattices using the same construction of the finite
algebra due to Block and van Alten.

» The most involved part is to prove finiteness.

» We are going to rephrase the above contruction in terms of
recognizable sets/languages.

» This simplifies the proofs by employing results from language
theory.
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Recognizable sets

Definition
Let A be an algebra and L C A. The set L is recognizable if
» there is a finite algebra D,
» homomorphism h: A — D and
» ker(h) saturates L, i.e., L is a union of congruence classes.
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Recognizable sets

Definition
Let A be an algebra and L C A. The set L is recognizable if
» there is a finite algebra D,
» homomorphism h: A — D and
» ker(h) saturates L, i.e., L is a union of congruence classes.

Recognizable sets over A are denoted Rec(A).

Theorem [Kleene]

Recognizable sets Rec(B*) over finitely generated free monoids are
precisely regular/rational languages.
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Syntactic congruences

The set of unary, linear polynomials on algebra A is denoted Tr(A)
whose elements are called translations.

E.g. p(x) = axb V c is a translation on idempotent semiring A.

Definition

Let A be an algebra and L C A. The syntactic congruence ~ is
defined by

xr~py iff Vpe Tr(A): p(x) e L p(y) €L

Lemma

The synt. congruence ~ is the largest congruence saturating L.
Thus A/~ is finite iff L is recognizable.
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Given a finite subset B C A, if we can find recognizable sets
Li,...,L, C A separating elements of B, we obtain a finite algebra
D= A/Ni.; ~, and a homomorphism h: A — D.
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Residuated lattices

Definition

A residuated lattice is an algebra A = (A, A, V, -, \,/, 1), where
» (A, A, V) is a lattice,
» (A, 1) is a monoid,
» a-b<ciff b<a\ciffa<c/b.

Facts
» (A, V,-,1) forms an idempotent semiring because
a(bV c)d = abdV acd.
» A finite idempotent semiring having a bottom element forms a

residuated lattice.

When does a variety K of residuated lattices axiomatized over
{V,-,1} have the FEP?
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Construction of the finite algebra D

Pfin(B*)
B*
id J , DM-compl.
A 3:x B*/~ «—————— D = Pyp(B*)/~

v

Assume that {L, C Rec(B*) | b € B} separate elements of B.
Prin(Lp)'s belongs to Rec(Prn(B*)) and separate B.

Define ~ = mbeB ~Prin(Lp) -
Define ~' = MNbeB ~Ly-
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Does D belong to K?

If t(x1,...,xn) < s(xq,...,Xp) is in the axiomatization of K, then
we need

for all ¢ € B, finite sets Xi,...,X, C B* and p € Tr(B*).

Example
For instance x?> < x and X = {a, b}. Then X2 = {a?, ab, ba, b*}.

p(X) = {p(a), p(b)} < Lc {p(a). p(b)} C Lc

p(X?) = {p(a2). p(ab), p(ba), p(b?)} C Lc p(ab) € L.



Gentzen rules (a,b,c € B, p € Tr(B*))

m (Cut) Y-y (1)
p(f((ab\)bf)Lech (\L) aLehy B
P(Z?(i)bfélc (b LAl clyy P
pp<(bb)>€eLL (1) Lo, Cly
[;(({a%vbb}))eeLL: Vb) LoULy C Loy (VR)
p(e) € Lc (L) (1R)

e€ely



Characterization

Theorem

Let V be a variety of residuated lattices axiomatized over {V,-,1}
by a set of inequalities £. T.F.A.E.

1. V has the FEP.

2. For every finite partial subalgebra B of A € V there is a
collection
{Lp C Rec(B*) | b € B}
» separating elements of B,

» satisfying Gentzen rules and

» closed under the rules corresponding to inequalities in £.
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Existing results

Sets of the form
Ly = {x € B* | id*(x) <™ b}

for b € B always satisfy all the conditions except of recognizability.

To prove the FEP, it suffices to show that L,'s are recognizable.
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Theorem [Blok, van Alten, Galatos, Jipsen]
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Rec(B*) = permutable and (co-)quasi-periodic languages.
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Theorem [van Alten]

Let V be a variety of residuated lattices axiomatized over {V,-, 1}
satisfying xy = yx and x™ < x" for m # n. Then V has the FEP.
Theorem [Cardona, Galatos]

Let V be a variety of residuated lattices axiomatized over {V,-, 1}
satisfying xyx = x?y and x™ < x" for m # n. Then V has the FEP.
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F(B) denotes the free meet-semilattice-ordered monoid gen. by B.
Theorem

Let V be a variety of distributive residuated lattices axiomatized
over {A,V,-, 1} by a set of inequalities £. T.F.A.E.

1. V has the FEP.

2. For every finite partial subalgebra B of A € V there is a
collection
{Lp C Rec(F(B)) | b € B}
» separating elements of B,

» satisfying Gentzen rules and

» closed under the rules corresponding to inequalities in £.



Existing result

Using Kruskal Tree Theorem and Generalized Myhill Theorem for
tree languages, we immediately obtain:

Theorem [Galatos]

Every subvariety of distributive integral residuated lattices
axiomatized over {A,V,-, 1} has the FEP.
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which might simplify the proof of finiteness.

» Is it possible to characterize varieties axiomatized over
{V, -, 1} having the FEP via the characterization of
recognizable/regular languages?

» Is it necessary to consider other sets than
Lp={x € B*|id"(x) < b}?

Other sets are used in the proofs of FMP and undecidability
proofs.



Thank you!



