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Theorem (Holland 1963)

Every (-group can be embedded in the ¢-group Aut(C) of the
order-automorphisms on a chain C.

Theorem (Anderson-Edwards 1984)

Every distributive ¢-monoid can be embedded in the ¢-monoid End(C)
of the order-preserving maps on a chain C.

Theorem (Paoli-Tsinakis 2010)

Every distributive residuated lattice in which multiplication distributes
over meets can be embedded as (-monoid into Res(C) for a complete
chain C.
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ldempotent semirings

Definition

A structure R = (R, +,-,1) is called a (unital) semiring if
@ (R, +) is a commutative semigroup,
@ (R,-,1)is a monoid,
@ a(lb+c)=ab+ acand (b+ c)a= ba+ ca.
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ldempotent semirings

Definition

A structure R = (R, +,-,1) is called a (unital) semiring if
@ (R, +) is a commutative semigroup,
@ (R,-,1)is a monoid,
@ a(lb+c)=ab+ acand (b+ c)a= ba+ ca.

Definition
@ R = (R, +,©®,1) denotes an opposite semiring where
XOy=y-X
e R"=(R,+),
@ Ris called idempotent if a+ a = a. In that case R™ forms a
(join)-semilattice.

Rostislav Hor¢ik (ICS) Holland’s Theorem OGLAL 2011

6/36



Examples

Definition
Let P be a poset. Amap f: P — P is said to be residuated iff it has a
(left) residual ff: P — P, i.e.

)<y it x<fiy).

Res(P) denotes the set of all residuated maps on P.
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Examples

Definition
Let P be a poset. Amap f: P — P is said to be residuated iff it has a
(left) residual ff: P — P, i.e.

)<y it x<fi(y).
Res(P) denotes the set of all residuated maps on P.

Example
Let L = (L, V) be a join-semilattice.
@ End(L) = (End(L), v, o, id) is an idempotent semiring,
@ Res(L) forms a subsemiring Res(L) of End(L) since residuated
maps are closed under composition and pointwise join.
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Idempotent semirings

Relational endomorphisms

Let L be a join-semilattice. Recall that ideals on L forms an algebraic

lattice Z(L) = (Z(L),n, V). We identify binary relations on L with
functions from L to P(L).
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Relational endomorphisms

Let L be a join-semilattice. Recall that ideals on L forms an algebraic
lattice Z(L) = (Z(L),n, V). We identify binary relations on L with
functions from L to P(L).
Definition
A binary relation R C L x L is called compatible if

@ AR(x) e Z(L),

@ R(xVvy)=R(Xx)VAR(Y).

Example
The set of all compatible relations on L forms an idempotent semiring
REnd(L) = (REnd(L), v, o, Id), where Id(x) = |x.

Lemma
REnd(L) = Res(Z(L)).
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ldempotent semimodules

Definition

LetR = (R,+,-,1) be a semiring. A left R-semimodule M is a

commutative semigroup (M, +) together withamap x: Rx M — M
such that:

@ rx(Mm+n)=rxm-+r%*n,
@ (r+8)xm=rxm+sxm,
@ rx(sxm)=(r-s)xm,

@ 1xm=m.
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ldempotent semimodules

Definition
LetR = (R,+,-,1) be a semiring. A left R-semimodule M is a

commutative semigroup (M, +) together withamap x: R x M — M
such that:

@ rx(Mm+n)=rxm-+r%*n,
@ (r+s)xm=rxm+sxm,
@ rx(sxm)=(r-s)xm,
@ 1xm=m.
Definition
@ Mt = (M, +) is the scalar-free reduct.

@ M is called idempotent if m+ m = m. In that case M* forms a
(join)-semilattice.

@ A right R-semimodule is defined analogously.
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Examples

Example

Every semiring R = (R, +, -, 1) can be turned into a left R-semimodule
(R, +) using its multiplication as the left action.
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Examples

Example

Every semiring R = (R, +, -, 1) can be turned into a left R-semimodule
(R, +) using its multiplication as the left action.

Example

Every commutative semigroup (join-semilattice) L = (L, +) can be
turned into an (idempotent) End(L)-semimodule where the left action
*: End(L) x L — L is defined by fx m = f(m).
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Separation set

Let M be a left R-semimodule over a semiring R.

Definition
A subset E C M is called a separating setin M if for all r,s € R we
have the following implication:

r£#s = (JecE)(rxe#sxe).
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Separation set

Let M be a left R-semimodule over a semiring R.

Definition
A subset E C M is called a separating setin M if for all r,s € R we
have the following implication:

r£#s = (JecE)(rxe#sxe).

Observations

@ The map ¢: R — End(M*) sending r € Rto f,(m)=rxmisa
semiring homomorphism.

@ If M has a separating set E, then ¢ is an embedding.

@ The above holds also for a right R-semimodule if we replace
End(M™) by End(M+)°P.
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Cayley’s theorem for idempotent semirings

Corollary
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Cayley’s theorem for idempotent semirings

Corollary
Every idempotent semiring R embeds into End(R™).

Proof.

@ Every idempotent semiring R can be viewed as an idempotent
R-semimodule whose left action is just the multiplication in R.

@ Moreover, {1} is a separating set in the semimodule R.
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Residuated semimodules
Let R be an idempotent semiring.
Definition

An R-semimodule M is residuated if M is idempotent and there is a
map \: R x M — M such that

r«m<n iff m<r\n.
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Let R be an idempotent semiring.

Definition

An R-semimodule M is residuated if M is idempotent and there is a
map \: R x M — M such that

r«m<n iff m<r\n.
Then \ is a right action since 1\ m= mand s\(r\ m) =rs\ m.
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Residuated semimodules

Let R be an idempotent semiring.

Definition

An R-semimodule M is residuated if M is idempotent and there is a
map \: R x M — M such that

r«m<n iff m<r\n.
Then \ is a right action since 1\ m= mand s\(r\ m) =rs\ m.
Lemma

Let M be a residuated R-semimodule such that M+ forms a lattice.
Then

@ r\(mAn)y=r\mAar\n,
@ (rvs)\m=r\mAas\m.
Thus (M+)? together with \ forms a right idempotent R-semimodule.
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Relational Cayley’s theorem

Theorem

Let R be an id. semiring and M a left id. R-semimodule. Then
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@ ZI(M) is a complete residuated R-semimodule whose left action is
given by

r«l={meM|Gnel)(m<r«n}, r\d={meM|rxmeJ}.
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Relational Cayley’s theorem

Theorem

Let R be an id. semiring and M a left id. R-semimodule. Then

@ ZI(M) is a complete residuated R-semimodule whose left action is
given by

r«l={meM|Gnel)(m<r«n}, r\d={meM|rxmeJ}.

@ M embeds into Z(M) as an R-semimodule via the map m — | m.

© IfE is a separating setin M then {|e | e € E} is a separating set
inZ(M).

Theorem

Any idempotent semiring R is embeddable into REnd(R™) which is
isomorphic to Res(Z(R™)).
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Linear ideals

@ Let M be a left idempotent R-semimodule over an idempotent
semiring R.
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Linear ideals

@ Let M be a left idempotent R-semimodule over an idempotent
semiring R.

@ Then every ideal / € Z(M™) induces a congruence ~; on M
defined as follows:

m~m iff (VreR)(rxmelsrxm el).

@ Anideal / € Z(M™) is called linear if rx m € I and sx n € | implies
r«nelorsxmel.

Lemma
An ideal | € Z(M™) is linear iff M/~ is linearly ordered.
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(EC) condition

@ Consider the following quasi-identity in the language of
semimodules:

u<hvcxa & u<hvd«b = wu<hvcxbvdxa. (EC)
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(EC) condition

@ Consider the following quasi-identity in the language of
semimodules:

u<hvcxa & u<hvd«b = wu<hvcxbvdxa. (EC)

@ The same quasi-identity can be considered also in the language
of semirings:

u<hveca & u<hvdb = wu<hvcecbvda. (EC)

@ If an idempotent semiring R satisfies (EC) as a semiring then it
satisfies (EC) when viewed as an R-semimodule and also vice
versa.
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Quasivariety generated by chains

Let R be an idempotent semiring.

Lemma

@ Every linearly ordered left idempotent R-semimodule M
satisfies (EC).

© Conversely, if M satisfies (EC) then every ideal | € Z(M') maximal
with respect to not containing an element u is linear.
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Quasivariety generated by chains

Let R be an idempotent semiring.

Lemma

@ Every linearly ordered left idempotent R-semimodule M
satisfies (EC).

@ Conversely, if M satisfies (EC) then every ideal | € Z(M") maximal
with respect to not containing an element u is linear.

Theorem

Let M be a left idempotent R-semimodule. TFA.E:
@ M satisfies (EC).

© M s embeddable into [];.,c N; for some family {N; | i € K} of
linearly ordered left idempotent R-semimodules.
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Ordinal sum of R-semimodules
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Definition
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Ordinal sum of R-semimodules

Let R be an idempotent semiring.

Definition
@ Let (K, <) be a linearly ordered set and

@ {M; |/ e K} afamily of left idempotent R-semimodules whose left
actions are denoted x;.
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Ordinal sum of R-semimodules

Let R be an idempotent semiring.
Definition
@ Let (K, <) be a linearly ordered set and

@ {M;| /e K} afamily of left idempotent R-semimodules whose left
actions are denoted x;.

@ Then the ordinal sum @, M; is a left idempotent R-semimodule,
whose underlying join-semilattice is the ordinal sum of
{M | i € K} and its left action is given by

r«m=rxim ifmeM;.

Rostislav Hor¢ik (ICS) Holland’s Theorem OGLAL 2011 20/36



Holland’s theorem for idempotent semirings

Holland’s theorem for idempotent semirings
Let R be an idempotent semiring.

Theorem

Let M be a left idempotent R-semimodule satisfying (EC). Then

@ There is a linearly ordered left id. R-semimodule N which is an
ordinal sum of its s.i. factors.
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Let R be an idempotent semiring.

Theorem

Let M be a left idempotent R-semimodule satisfying (EC). Then

@ There is a linearly ordered left id. R-semimodule N which is an
ordinal sum of its s.i. factors.

@ I/fM has a one-element separating set {e} then N has a
separating set E which is dually well ordered.
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Holland’s theorem for idempotent semirings

Holland’s theorem for idempotent semirings
Let R be an idempotent semiring.

Theorem

Let M be a left idempotent R-semimodule satisfying (EC). Then

@ There is a linearly ordered left id. R-semimodule N which is an
ordinal sum of its s.i. factors.

@ I/fM has a one-element separating set {e} then N has a
separating set E which is dually well ordered.
Theorem
The following are equivalent:
@ R satisfies (EC).
@ R is embeddable into End(C) for some chain C.
© R is embeddable into REnd(C) = Res(Z(C)) for some chain C.
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Outline

e FEP for integral idempotent semirings
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Finite embeddability property

@ Recall that a class K of algebras in the same language has the
FEP if every finite partial subalgebra is embeddable into a finite
member of K.
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Finite embeddability property

@ Recall that a class K of algebras in the same language has the
FEP if every finite partial subalgebra is embeddable into a finite
member of K.

@ An idempotent semiring R is said to be integral if 1 is a top
element with respect to the join-semilattice order on R.

@ We denote the variety of all integral idempotent semirings by ISR
and Q its sub-quasivariety axiomatized by (EC).
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FEP for integral idempotent semirings

Theorem

Let K be a subvariety of ISR and R € K generated by a finite set C.
Then there is a finite S € K and a surjective homomorphism ¢: R — S
such that ¢(r) < ¢(c) impliesr < c forallr € R and c € C. In addition,
ifRe KNQthenS € KNQ as well.
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FEP for integral idempotent semirings

Theorem

Let K be a subvariety of ISR and R € K generated by a finite set C.
Then there is a finite S € K and a surjective homomorphism ¢: R — S
such that ¢(r) < ¢(c) impliesr < c forallr € R and c € C. In addition,
ifRe KNQthenS € KNQ as well.

Sketch of the proof for R e KN Q

@ There is a linearly ordered left id. R-semimodule M with a d.w.o.
separating set E.

@ Take a R-subsemimodule N of M generated by E, i.e., N= R« E.
@ Then N has is residuated and has ACC (Higman’s lemma).

@ The dual N? is a right idempotent R-semimodule having DCC.

@ Take an R-subsemimodule K of N? generated by C x E.

@ Then Kiis finite residuated right R-semimodule.
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
@ Hence there is a semiring homomorphism ¢: R — Res(K ™).
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
@ Hence there is a semiring homomorphism ¢: R — Res(K ™).
@ LetS = ¢[R].
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
@ Hence there is a semiring homomorphism ¢: R — Res(K ™).
@ LetS = ¢[R].

@ Then S € K because varieties are closed under homomorphic
images.
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
@ Hence there is a semiring homomorphism ¢: R — Res(K ™).
@ LetS = ¢[R].
@ Then S € K because varieties are closed under homomorphic
images.
@ Further S € Q because K™ is linearly ordered.
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
@ Hence there is a semiring homomorphism ¢: R — Res(K ™).
@ LetS = ¢[R].
@ Then S € K because varieties are closed under homomorphic
images.
@ Further S € Q because K™ is linearly ordered.
@ Moreover S is finite because K is finite.
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
@ Hence there is a semiring homomorphism ¢: R — Res(K ™).
@ LetS = ¢[R].
@ Then S € K because varieties are closed under homomorphic
images.
@ Further S € Q because K™ is linearly ordered.
@ Moreover S is finite because K is finite.
@ Finally, if ¢(r) <% ¢(c) then r < c.
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FEP for integral idempotent semirings

Sketch of the proof (cont.)
@ Hence there is a semiring homomorphism ¢: R — Res(K ™).
@ LetS = ¢[R].
@ Then S € K because varieties are closed under homomorphic
images.
@ Further S € Q because K™ is linearly ordered.
@ Moreover S is finite because K is finite.
@ Finally, if ¢(r) <% ¢(c) then r < c.

Corollary

Let K be a subvariety of ISR and Q the quasivariety of idempotent
semirings axiomatized by (EC). Then K and KN Q have the finite
embeddability property.
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Outline

e Applications to residuated lattices
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Residuated lattices

Definition

A residuated lattice is an algebra A = (A, A, V, -, /,\, 1), where
@ (A A,V) is a lattice,
@ (A, -, 1) is a monoid and
e x-y<ziffx<z/yiffy <x\z.
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Residuated lattices

Definition

A residuated lattice is an algebra A = (A, A, V, -, /,\, 1), where
@ (A A,V) is a lattice,
@ (A, -, 1) is a monoid and
e x-y<ziffx<z/yiffy <x\z.

Every residuated lattice forms an idempotent semiring.

Example

@ If L is a complete lattice then Res(L) is a complete residuated
lattice.

@ If L is a lattice then REnd(L) = Res(Z(L)) is a complete
residuated lattice.
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Conuclei
Interior operators

Definition

Let P be a poset. Amap o: P — P is called an interior operator if
@ o(x) < x,
@ x < yimplies o(x) < o(y),
@ o(o(x)) = o(x).

Rostislav Hor¢ik (ICS) Holland’s Theorem OGLAL 2011 28/36



Conuclei
Interior operators

Definition

Let P be a poset. Amap o: P — P is called an interior operator if
@ o(x) < x,
@ x < yimplies o(x) < o(y),
@ o(o(x)) = o(x).

Observation
Let L be a complete lattice and S C L. Then S induces an interior
operator on L:

os(x)=\/{se€S|s<x}.
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Conuclei

Definition
A conucleus o on a residuated lattice L is an interior operator such that
o(x)o(y) <o(xy)and (1) = 1.
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Conuclei

Definition
A conucleus o on a residuated lattice L is an interior operator such that
o(x)o(y) <o(xy)and (1) = 1.

Theorem

Let o be a conucleus on a residuated lattice L = (L, A\, V, -, \,/,1).
ThenL, = (o[L], Ao, V, -, \,, /o, 1) IS a residuated lattice called
conuclear contraction, where x Ao y = o(X N y), x\, ¥ = o(x\y) and

x|y =o(x/y).
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Conuclei

Definition
A conucleus o on a residuated lattice L is an interior operator such that
o(x)o(y) <o(xy)and (1) = 1.

Theorem

Let o be a conucleus on a residuated lattice L = (L, A\, V, -, \,/,1).
ThenL, = (o[L], Ao, V, -, \,, /o, 1) IS a residuated lattice called
conuclear contraction, where x Ao y = o(X N y), x\, ¥ = o(x\y) and

x|y =o(x/y).

Lemma

Let A be a complete residuated lattice and S a submonoid of A. Then
the interior operator o5 on A is a conucleus.
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e
Key lemma

Lemma

Assumptions:

@ Let A, B be residuated lattices such that B is complete and C a
partial subalgebra of A.
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Assumptions:

@ Let A, B be residuated lattices such that B is complete and C a
partial subalgebra of A.

@ Further, let D be the idempotent subsemiring of A generated by C.

@ Suppose that there is a semiring homomorphism ¢: D — B such
thatforalld e Dandce C

¢(d) < ¢(c) = d<c.
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e
Key lemma

Lemma

Assumptions:

@ Let A, B be residuated lattices such that B is complete and C a
partial subalgebra of A.

@ Further, let D be the idempotent subsemiring of A generated by C.

@ Suppose that there is a semiring homomorphism ¢: D — B such
thatforalld e Dandce C

¢(d) < ¢(c) = d<c.

Conclusions:
@ Then ayp) is a conucleus and
@ »p:C— B, o0 1S @an embedding of residuated lattices.
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Applications to residuated lattices Cayley’s and Holland’s theorem

Cayley’s theorem for residuated lattices
Theorem

Let A, B be residuated lattices such that B is complete. If A embeds

into B via ¢ as an idempotent semiring, then A embeds into B

o AS @
residuated lattice.
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Theorem

Let A, B be residuated lattices such that B is complete. If A embeds
into B via ¢ as an idempotent semiring, then A embeds into B, , as a
residuated lattice.

Corollary (Cayley’s theorem for residuated lattices)

Let A be a residuated lattice and A™ its join-semilattice reduct. Then A
embeds into a conuclear contraction of REnd(A*) =~ Res(Z(A™)).
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Cayley’s theorem for residuated lattices

Theorem

Let A, B be residuated lattices such that B is complete. If A embeds
into B via ¢ as an idempotent semiring, then A embeds into B, , as a
residuated lattice.

Corollary (Cayley’s theorem for residuated lattices)

Let A be a residuated lattice and A™ its join-semilattice reduct. Then A
embeds into a conuclear contraction of REnd(A*) =~ Res(Z(A™)).

In addition, if A is complete then A embeds into a conuclear
contraction of Res(A™).

Theorem (Blount-Tsinakis)

Every residuated lattice embeds into a nuclear retraction of a powerset
monoid.
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Cayley's and Holland's theorem
Holland’s theorem for residuated lattices

Theorem (Holland’s theorem for residuated lattices)

Let A be a residuated lattice. The following are equivalent:
@ A satisfies (EC) (equivalently, (h\v ca) A (hV db) < hv cbV da).
@ A embeds into a conuclear contraction of REnd(C) for a chain C.

© A embeds into a conuclear contraction of Res(C’) for a complete
chain C'.
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Cayley's and Holland's theorem
Classes where Holland’s theorem (does not) applies

@ Prelinear residuated lattices, i.e., those where
1=(x\yA1)Vv(y\xA1)holds. This class includes all
semilinear varieties and ¢-groups.
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Cayley's and Holland's theorem
Classes where Holland’s theorem (does not) applies

@ Prelinear residuated lattices, i.e., those where
1=(x\yA1)Vv(y\xA1)holds. This class includes all
semilinear varieties and ¢-groups.

@ Commutative cancellative residuated lattices.

@ Distributive residuated lattices satisfying x(y A z) = xy A xz and
(Y ANZ)x = yx A zX.

@ There are also non-distributive integral residuated lattices
satisfying (EC).

@ LetZ, = ({0,1}, +,0) be the two-element group (ordered
discretely). Consider its extension by a top and bottom element

T, L. Then its lattice reduct is distributive and (EC) does not hold
in this extension.
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FEP
FEP for integral residuated lattices

Let IRL be the variety of integral residuated lattices (i.e., x < 1).

Theorem
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FEP
FEP for integral residuated lattices

Let IRL be the variety of integral residuated lattices (i.e., x < 1).

Theorem
@ LetV4 be a subvariety of IRL axiomatized by the set £ of identities
using only Vv, -, 1.

@ Further, letV, be the subvariety of V1 relatively axiomatized by
(hvca)A(hvdb)<hvcbvVda/ ie., by (EC)).

@ Then Vi and V, have the finite embeddability property.

Sketch of the proof for V,
@ Let K be a subvariety of ISR axiomatized by £ and
@ Q the quasivariety of idempotent semirings axiomatized by (EC).
@ Suppose A € V.. Then its semiring reduct belongs to KN Q.
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Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.

Rostislav Hor¢ik (ICS) Holland’s Theorem OGLAL 2011 35/36



Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.
@ Consider the subsemiring R of A generated by C.

Rostislav Hor¢ik (ICS) Holland’s Theorem OGLAL 2011 35/36



Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.
@ Consider the subsemiring R of A generated by C.
@ ThenRe KnAQ.
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Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.

@ Consider the subsemiring R of A generated by C.

@ ThenRe KnAQ.

@ By FEP for KN Q there is a finite semiring S € KN Q and
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Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.

@ Consider the subsemiring R of A generated by C.

@ ThenRe KnAQ.

@ By FEP for KN Q there is a finite semiring S € KN Q and

@ there is a surjective semiring homomorphism ¢: R — S such that
o(r) < ¢(c) impliesr < cforallr e Rand c € C.
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Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.

@ Consider the subsemiring R of A generated by C.

@ ThenRe KnAQ.

@ By FEP for KN Q there is a finite semiring S € KN Q and

@ there is a surjective semiring homomorphism ¢: R — S such that
o(r) < ¢(c) impliesr < cforallr e Rand c € C.

@ Since A is integral, it is possible to show that S is in fact a finite
residuated lattice.

Rostislav Hor¢ik (ICS) Holland’s Theorem OGLAL 2011 35/36



Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.

@ Consider the subsemiring R of A generated by C.

@ ThenRe KnAQ.

@ By FEP for KN Q there is a finite semiring S € KN Q and

@ there is a surjective semiring homomorphism ¢: R — S such that
o(r) < ¢(c) impliesr < cforallr e Rand c € C.

@ Since A is integral, it is possible to show that S is in fact a finite
residuated lattice.

@ Thus C embeds as a residuated lattice into S, for some conucleus
g
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Sketch of the proof (cont.)

@ Let C be a finite partial subalgebra of A.

@ Consider the subsemiring R of A generated by C.

@ ThenRe KnAQ.

@ By FEP for KN Q there is a finite semiring S € KN Q and

@ there is a surjective semiring homomorphism ¢: R — S such that
o(r) < ¢(c) impliesr < cforallr e Rand c € C.

@ Since A is integral, it is possible to show that S is in fact a finite
residuated lattice.

@ Thus C embeds as a residuated lattice into S, for some conucleus
g

@ Since S, is a subsemiring of S, S, is finite and belongs to KN Q.
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Applications to residuated lattices FEP

Thank you!
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