
Holland’s Theorem for Idempotent Semirings and
Applications to Residuated Lattices

Rostislav Horčík
joint work with Nikolaos Galatos

Institute of Computer Science
Academy of Sciences of the Czech Republic

Ordered Groups and Lattices in Algebraic Logic
Tbilisi 2011
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Motivation

Motivation

Theorem (Cayley 1854)
Every group G is embeddable into Sym(G).

Theorem (Holland 1963)
Every `-group can be embedded in the `-group Aut(C) of the
order-automorphisms on a chain C.

Theorem (Anderson-Edwards 1984)
Every distributive `-monoid can be embedded in the `-monoid End(C)
of the order-preserving maps on a chain C.

Theorem (Paoli-Tsinakis 2010)
Every distributive residuated lattice in which multiplication distributes
over meets can be embedded as `-monoid into Res(C) for a complete
chain C.
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Idempotent semirings

Idempotent semirings

Definition
A structure R = 〈R,+, ·,1〉 is called a (unital) semiring if
〈R,+〉 is a commutative semigroup,
〈R, ·,1〉 is a monoid,
a(b + c) = ab + ac and (b + c)a = ba + ca.

Definition
Rop = 〈R,+,�,1〉 denotes an opposite semiring where
x � y = y · x ,
R+ = 〈R,+〉,
R is called idempotent if a + a = a. In that case R+ forms a
(join)-semilattice.
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Idempotent semirings

Examples

Definition
Let P be a poset. A map f : P → P is said to be residuated iff it has a
(left) residual f † : P → P, i.e.

f (x) ≤ y iff x ≤ f †(y) .

Res(P) denotes the set of all residuated maps on P.

Example
Let L = 〈L,∨〉 be a join-semilattice.

End(L) = 〈End(L),∨, ◦, id〉 is an idempotent semiring,
Res(L) forms a subsemiring Res(L) of End(L) since residuated
maps are closed under composition and pointwise join.
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Idempotent semirings

Relational endomorphisms

Let L be a join-semilattice. Recall that ideals on L forms an algebraic
lattice I(L) = 〈I(L),∩,∨〉. We identify binary relations on L with
functions from L to P(L).

Definition
A binary relation R ⊆ L× L is called compatible if

R(x) ∈ I(L),
R(x ∨ y) = R(x) ∨ R(y).

Example
The set of all compatible relations on L forms an idempotent semiring
REnd(L) = 〈REnd(L),∨, ◦, Id〉, where Id(x) = ↓x .

Lemma
REnd(L) ∼= Res(I(L)).
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Idempotent semimodules

Idempotent semimodules

Definition
Let R = 〈R,+, ·,1〉 be a semiring. A left R-semimodule M is a
commutative semigroup 〈M,+〉 together with a map ? : R ×M → M
such that:

r ? (m + n) = r ?m + r ? n,
(r + s) ?m = r ?m + s ?m,
r ? (s ?m) = (r · s) ?m,
1 ?m = m.

Definition
M+ = 〈M,+〉 is the scalar-free reduct.
M is called idempotent if m + m = m. In that case M+ forms a
(join)-semilattice.
A right R-semimodule is defined analogously.
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Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 10 / 36



Idempotent semimodules

Examples

Example
Every semiring R = 〈R,+, ·,1〉 can be turned into a left R-semimodule
〈R,+〉 using its multiplication as the left action.

Example
Every commutative semigroup (join-semilattice) L = 〈L,+〉 can be
turned into an (idempotent) End(L)-semimodule where the left action
? : End(L)× L→ L is defined by f ?m = f (m).

Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 11 / 36



Idempotent semimodules

Examples

Example
Every semiring R = 〈R,+, ·,1〉 can be turned into a left R-semimodule
〈R,+〉 using its multiplication as the left action.

Example
Every commutative semigroup (join-semilattice) L = 〈L,+〉 can be
turned into an (idempotent) End(L)-semimodule where the left action
? : End(L)× L→ L is defined by f ?m = f (m).

Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 11 / 36



Idempotent semimodules

Separation set

Let M be a left R-semimodule over a semiring R.

Definition
A subset E ⊆ M is called a separating set in M if for all r , s ∈ R we
have the following implication:

r 6= s =⇒ (∃e ∈ E)(r ? e 6= s ? e) .

Observations

The map φ : R→ End(M+) sending r ∈ R to fr (m) = r ?m is a
semiring homomorphism.
If M has a separating set E , then φ is an embedding.
The above holds also for a right R-semimodule if we replace
End(M+) by End(M+)op.
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Idempotent semimodules

Cayley’s theorem for idempotent semirings

Corollary
Every idempotent semiring R embeds into End(R+).

Proof.

Every idempotent semiring R can be viewed as an idempotent
R-semimodule whose left action is just the multiplication in R.
Moreover, {1} is a separating set in the semimodule R.
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Idempotent semimodules

Residuated semimodules

Let R be an idempotent semiring.

Definition
An R-semimodule M is residuated if M is idempotent and there is a
map \ : R ×M → M such that

r ?m ≤ n iff m ≤ r \n .

Then \ is a right action since 1 \m = m and s \(r \m) = rs \m.

Lemma
Let M be a residuated R-semimodule such that M+ forms a lattice.
Then

r \(m ∧ n) = r \m ∧ r \n,
(r ∨ s) \m = r \m ∧ s \m.

Thus (M+)∂ together with \ forms a right idempotent R-semimodule.

Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 14 / 36



Idempotent semimodules

Residuated semimodules

Let R be an idempotent semiring.

Definition
An R-semimodule M is residuated if M is idempotent and there is a
map \ : R ×M → M such that

r ?m ≤ n iff m ≤ r \n .

Then \ is a right action since 1 \m = m and s \(r \m) = rs \m.

Lemma
Let M be a residuated R-semimodule such that M+ forms a lattice.
Then

r \(m ∧ n) = r \m ∧ r \n,
(r ∨ s) \m = r \m ∧ s \m.

Thus (M+)∂ together with \ forms a right idempotent R-semimodule.
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Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 14 / 36



Idempotent semimodules

Residuated semimodules

Let R be an idempotent semiring.

Definition
An R-semimodule M is residuated if M is idempotent and there is a
map \ : R ×M → M such that

r ?m ≤ n iff m ≤ r \n .

Then \ is a right action since 1 \m = m and s \(r \m) = rs \m.

Lemma
Let M be a residuated R-semimodule such that M+ forms a lattice.
Then

r \(m ∧ n) = r \m ∧ r \n,
(r ∨ s) \m = r \m ∧ s \m.

Thus (M+)∂ together with \ forms a right idempotent R-semimodule.
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Idempotent semimodules

Relational Cayley’s theorem

Theorem

Let R be an id. semiring and M a left id. R-semimodule. Then

1 I(M) is a complete residuated R-semimodule whose left action is
given by

r ? I = {m ∈ M | (∃n ∈ I)(m ≤ r ?n)} , r \ J = {m ∈ M | r ?m ∈ J} .

2 M embeds into I(M) as an R-semimodule via the map m 7→ ↓m.
3 If E is a separating set in M then {↓e | e ∈ E} is a separating set

in I(M).

Theorem
Any idempotent semiring R is embeddable into REnd(R+) which is
isomorphic to Res(I(R+)).
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Holland’s theorem for idempotent semirings

Linear ideals

Let M be a left idempotent R-semimodule over an idempotent
semiring R.

Then every ideal I ∈ I(M+) induces a congruence ∼I on M
defined as follows:

m ∼I m′ iff (∀r ∈ R)(r ?m ∈ I ⇔ r ?m′ ∈ I) .

An ideal I ∈ I(M+) is called linear if r ?m ∈ I and s ? n ∈ I implies
r ? n ∈ I or s ?m ∈ I.

Lemma
An ideal I ∈ I(M+) is linear iff M/∼I is linearly ordered.
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Holland’s theorem for idempotent semirings

(EC) condition

Consider the following quasi-identity in the language of
semimodules:

u ≤ h∨c ?a & u ≤ h∨d ?b =⇒ u ≤ h∨c ?b∨d ?a . (EC)

The same quasi-identity can be considered also in the language
of semirings:

u ≤ h ∨ ca & u ≤ h ∨ db =⇒ u ≤ h ∨ cb ∨ da . (EC)

If an idempotent semiring R satisfies (EC) as a semiring then it
satisfies (EC) when viewed as an R-semimodule and also vice
versa.
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Holland’s theorem for idempotent semirings

Quasivariety generated by chains

Let R be an idempotent semiring.

Lemma
1 Every linearly ordered left idempotent R-semimodule M

satisfies (EC).
2 Conversely, if M satisfies (EC) then every ideal I ∈ I(M+) maximal

with respect to not containing an element u is linear.

Theorem

Let M be a left idempotent R-semimodule. T.F.A.E:
1 M satisfies (EC).
2 M is embeddable into

∏
i∈K Ni for some family {Ni | i ∈ K} of

linearly ordered left idempotent R-semimodules.
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Holland’s theorem for idempotent semirings

Ordinal sum of R-semimodules

Let R be an idempotent semiring.

Definition

Let 〈K ,≤〉 be a linearly ordered set and
{Mi | i ∈ K} a family of left idempotent R-semimodules whose left
actions are denoted ?i .
Then the ordinal sum

⊕
i∈K Mi is a left idempotent R-semimodule,

whose underlying join-semilattice is the ordinal sum of
{M+

i | i ∈ K} and its left action is given by

r ?m = r ?i m if m ∈ Mi .
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Holland’s theorem for idempotent semirings

Holland’s theorem for idempotent semirings

Let R be an idempotent semiring.

Theorem

Let M be a left idempotent R-semimodule satisfying (EC). Then
There is a linearly ordered left id. R-semimodule N which is an
ordinal sum of its s.i. factors.

If M has a one-element separating set {e} then N has a
separating set E which is dually well ordered.

Theorem
The following are equivalent:

1 R satisfies (EC).
2 R is embeddable into End(C) for some chain C.
3 R is embeddable into REnd(C) ∼= Res(I(C)) for some chain C.
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FEP for integral idempotent semirings

Finite embeddability property

Recall that a class K of algebras in the same language has the
FEP if every finite partial subalgebra is embeddable into a finite
member of K.

An idempotent semiring R is said to be integral if 1 is a top
element with respect to the join-semilattice order on R.

We denote the variety of all integral idempotent semirings by ISR
and Q its sub-quasivariety axiomatized by (EC).
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FEP for integral idempotent semirings

Theorem

Let K be a subvariety of ISR and R ∈ K generated by a finite set C.
Then there is a finite S ∈ K and a surjective homomorphism φ : R→ S
such that φ(r) ≤ φ(c) implies r ≤ c for all r ∈ R and c ∈ C. In addition,
if R ∈ K ∩Q then S ∈ K ∩Q as well.

Sketch of the proof for R ∈ K ∩Q

There is a linearly ordered left id. R-semimodule M with a d.w.o.
separating set E .
Take a R-subsemimodule N of M generated by E , i.e., N = R ? E .
Then N has is residuated and has ACC (Higman’s lemma).
The dual N∂ is a right idempotent R-semimodule having DCC.
Take an R-subsemimodule K of N∂ generated by C ? E .
Then K is finite residuated right R-semimodule.
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Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 24 / 36



FEP for integral idempotent semirings

Theorem

Let K be a subvariety of ISR and R ∈ K generated by a finite set C.
Then there is a finite S ∈ K and a surjective homomorphism φ : R→ S
such that φ(r) ≤ φ(c) implies r ≤ c for all r ∈ R and c ∈ C. In addition,
if R ∈ K ∩Q then S ∈ K ∩Q as well.

Sketch of the proof for R ∈ K ∩Q
There is a linearly ordered left id. R-semimodule M with a d.w.o.
separating set E .
Take a R-subsemimodule N of M generated by E , i.e., N = R ? E .
Then N has is residuated and has ACC (Higman’s lemma).

The dual N∂ is a right idempotent R-semimodule having DCC.
Take an R-subsemimodule K of N∂ generated by C ? E .
Then K is finite residuated right R-semimodule.
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FEP for integral idempotent semirings

FEP for integral idempotent semirings

Sketch of the proof (cont.)

Hence there is a semiring homomorphism φ : R→ Res(K+)op.
Let S = φ[R].
Then S ∈ K because varieties are closed under homomorphic
images.
Further S ∈ Q because K+ is linearly ordered.
Moreover S is finite because K is finite.
Finally, if φ(r) ≤∂ φ(c) then r ≤ c.

Corollary

Let K be a subvariety of ISR and Q the quasivariety of idempotent
semirings axiomatized by (EC). Then K and K ∩Q have the finite
embeddability property.
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Applications to residuated lattices

Residuated lattices

Definition
A residuated lattice is an algebra A = 〈A,∧,∨, ·, /, \,1〉, where
〈A,∧,∨〉 is a lattice,
〈A, ·,1〉 is a monoid and
x · y ≤ z iff x ≤ z/y iff y ≤ x \ z.

Every residuated lattice forms an idempotent semiring.

Example
If L is a complete lattice then Res(L) is a complete residuated
lattice.
If L is a lattice then REnd(L) ∼= Res(I(L)) is a complete
residuated lattice.
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Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 27 / 36



Applications to residuated lattices

Residuated lattices

Definition
A residuated lattice is an algebra A = 〈A,∧,∨, ·, /, \,1〉, where
〈A,∧,∨〉 is a lattice,
〈A, ·,1〉 is a monoid and
x · y ≤ z iff x ≤ z/y iff y ≤ x \ z.

Every residuated lattice forms an idempotent semiring.

Example
If L is a complete lattice then Res(L) is a complete residuated
lattice.

If L is a lattice then REnd(L) ∼= Res(I(L)) is a complete
residuated lattice.

Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 27 / 36



Applications to residuated lattices

Residuated lattices

Definition
A residuated lattice is an algebra A = 〈A,∧,∨, ·, /, \,1〉, where
〈A,∧,∨〉 is a lattice,
〈A, ·,1〉 is a monoid and
x · y ≤ z iff x ≤ z/y iff y ≤ x \ z.

Every residuated lattice forms an idempotent semiring.

Example
If L is a complete lattice then Res(L) is a complete residuated
lattice.
If L is a lattice then REnd(L) ∼= Res(I(L)) is a complete
residuated lattice.
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Applications to residuated lattices Conuclei

Interior operators

Definition
Let P be a poset. A map σ : P → P is called an interior operator if

σ(x) ≤ x ,
x ≤ y implies σ(x) ≤ σ(y),
σ(σ(x)) = σ(x).

Observation
Let L be a complete lattice and S ⊆ L. Then S induces an interior
operator on L:

σS(x) =
∨
{s ∈ S | s ≤ x} .

Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 28 / 36



Applications to residuated lattices Conuclei

Interior operators

Definition
Let P be a poset. A map σ : P → P is called an interior operator if

σ(x) ≤ x ,
x ≤ y implies σ(x) ≤ σ(y),
σ(σ(x)) = σ(x).

Observation
Let L be a complete lattice and S ⊆ L. Then S induces an interior
operator on L:

σS(x) =
∨
{s ∈ S | s ≤ x} .
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Applications to residuated lattices Conuclei

Conuclei

Definition
A conucleus σ on a residuated lattice L is an interior operator such that
σ(x)σ(y) ≤ σ(xy) and σ(1) = 1.

Theorem
Let σ be a conucleus on a residuated lattice L = 〈L,∧,∨, ·, \, /,1〉.
Then Lσ = 〈σ[L],∧σ,∨, ·, \σ, /σ,1〉 is a residuated lattice called
conuclear contraction, where x ∧σ y = σ(x ∧ y), x \σ y = σ(x \ y) and
x/y = σ(x/y).

Lemma
Let A be a complete residuated lattice and S a submonoid of A. Then
the interior operator σS on A is a conucleus.
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Applications to residuated lattices Cayley’s and Holland’s theorem

Key lemma

Lemma

Assumptions:
Let A,B be residuated lattices such that B is complete and C a
partial subalgebra of A.

Further, let D be the idempotent subsemiring of A generated by C.
Suppose that there is a semiring homomorphism φ : D→ B such
that for all d ∈ D and c ∈ C

φ(d) ≤ φ(c) =⇒ d ≤ c .

Conclusions:
Then σφ[D] is a conucleus and
φ : C→ Bσφ[D]

is an embedding of residuated lattices.
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Applications to residuated lattices Cayley’s and Holland’s theorem

Cayley’s theorem for residuated lattices

Theorem

Let A,B be residuated lattices such that B is complete. If A embeds
into B via φ as an idempotent semiring, then A embeds into Bσφ[A] as a
residuated lattice.

Corollary (Cayley’s theorem for residuated lattices)
Let A be a residuated lattice and A+ its join-semilattice reduct. Then A
embeds into a conuclear contraction of REnd(A+) ∼= Res(I(A+)).
In addition, if A is complete then A embeds into a conuclear
contraction of Res(A+).

Theorem (Blount-Tsinakis)
Every residuated lattice embeds into a nuclear retraction of a powerset
monoid.
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Applications to residuated lattices Cayley’s and Holland’s theorem

Holland’s theorem for residuated lattices

Theorem (Holland’s theorem for residuated lattices)

Let A be a residuated lattice. The following are equivalent:
1 A satisfies (EC) (equivalently, (h ∨ ca) ∧ (h ∨ db) ≤ h ∨ cb ∨ da).
2 A embeds into a conuclear contraction of REnd(C) for a chain C.
3 A embeds into a conuclear contraction of Res(C′) for a complete

chain C′.
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Applications to residuated lattices Cayley’s and Holland’s theorem

Classes where Holland’s theorem (does not) applies

Prelinear residuated lattices, i.e., those where
1 = (x \ y ∧ 1) ∨ (y \ x ∧ 1) holds. This class includes all
semilinear varieties and `-groups.

Commutative cancellative residuated lattices.
Distributive residuated lattices satisfying x(y ∧ z) = xy ∧ xz and
(y ∧ z)x = yx ∧ zx .
There are also non-distributive integral residuated lattices
satisfying (EC).
Let Z2 = 〈{0,1},+,0〉 be the two-element group (ordered
discretely). Consider its extension by a top and bottom element
>,⊥. Then its lattice reduct is distributive and (EC) does not hold
in this extension.
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Applications to residuated lattices FEP

FEP for integral residuated lattices

Let IRL be the variety of integral residuated lattices (i.e., x ≤ 1).

Theorem

Let V1 be a subvariety of IRL axiomatized by the set E of identities
using only ∨, ·,1.
Further, let V2 be the subvariety of V1 relatively axiomatized by
(h ∨ ca) ∧ (h ∨ db) ≤ h ∨ cb ∨ da (i.e., by (EC)).
Then V1 and V2 have the finite embeddability property.

Sketch of the proof for V2

Let K be a subvariety of ISR axiomatized by E and
Q the quasivariety of idempotent semirings axiomatized by (EC).
Suppose A ∈ V2. Then its semiring reduct belongs to K ∩Q.
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Applications to residuated lattices FEP

Sketch of the proof (cont.)

Let C be a finite partial subalgebra of A.

Consider the subsemiring R of A generated by C.
Then R ∈ K ∩Q.
By FEP for K ∩Q there is a finite semiring S ∈ K ∩Q and
there is a surjective semiring homomorphism φ : R→ S such that
φ(r) ≤ φ(c) implies r ≤ c for all r ∈ R and c ∈ C.
Since A is integral, it is possible to show that S is in fact a finite
residuated lattice.
Thus C embeds as a residuated lattice into Sσ for some conucleus
σ

Since Sσ is a subsemiring of S, Sσ is finite and belongs to K ∩Q.
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φ(r) ≤ φ(c) implies r ≤ c for all r ∈ R and c ∈ C.

Since A is integral, it is possible to show that S is in fact a finite
residuated lattice.
Thus C embeds as a residuated lattice into Sσ for some conucleus
σ

Since Sσ is a subsemiring of S, Sσ is finite and belongs to K ∩Q.
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Thank you!

Rostislav Horčík (ICS) Holland’s Theorem OGLAL 2011 36 / 36


	Motivation
	Idempotent semirings
	Idempotent semimodules
	Holland's theorem for idempotent semirings
	FEP for integral idempotent semirings
	Applications to residuated lattices
	Conuclei
	Cayley's and Holland's theorem
	FEP


