Holland's Theorem for Idempotent Semirings and Applications to Residuated Lattices

Rostislav Horčík joint work with Nikolaos Galatos

Institute of Computer Science Academy of Sciences of the Czech Republic

Ordered Groups and Lattices in Algebraic Logic Tbilisi 2011

Rostislav Horčík (ICS)

Holland's Theorem

OGLAL 2011 1/36

	Rostis	lav H	lorčík	(ICS)
--	--------	-------	--------	-------

▶ ▲ ■ ▶ ■ つ Q C OGLAL 2011 2/36

イロト イヨト イヨト イヨト

Motivation

- 2 Idempotent semirings
- 3 Idempotent semimodules

• • • • • • • • • • • •

- Idempotent semirings
- Idempotent semimodules
 - 4 Holland's theorem for idempotent semirings

- **→ → →**

- Idempotent semirings
- Idempotent semimodules
 - Holland's theorem for idempotent semirings
- 5 FEP for integral idempotent semirings

< 17 ▶

- Idempotent semirings
- Idempotent semimodules
- Holland's theorem for idempotent semirings
- 5 FEP for integral idempotent semirings
 - Applications to residuated lattices
 - Conuclei
 - Cayley's and Holland's theorem
 - FEP

4 A N

- Idempotent semirings
- 3 Idempotent semimodules
- 4 Holland's theorem for idempotent semirings
- 5 FEP for integral idempotent semirings
- 6 Applications to residuated lattices
 - Conuclei
 - Cayley's and Holland's theorem
 - FEP

A (1) > A (2) > A

Theorem (Cayley 1854)

Every group **G** is embeddable into Sym(G).

Theorem (Cayley 1854)

Every group **G** is embeddable into Sym(G).

Theorem (Holland 1963)

Every ℓ -group can be embedded in the ℓ -group Aut(C) of the order-automorphisms on a chain **C**.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Cayley 1854) Every group **G** is embeddable into **Sym**(*G*).

Theorem (Holland 1963)

Every ℓ -group can be embedded in the ℓ -group Aut(C) of the order-automorphisms on a chain **C**.

Theorem (Anderson-Edwards 1984)

Every distributive ℓ -monoid can be embedded in the ℓ -monoid **End**(**C**) of the order-preserving maps on a chain **C**.

< ロ > < 同 > < 回 > < 回 >

Theorem (Cayley 1854) Every group **G** is embeddable into **Sym**(*G*).

Theorem (Holland 1963)

Every ℓ -group can be embedded in the ℓ -group Aut(C) of the order-automorphisms on a chain **C**.

Theorem (Anderson-Edwards 1984)

Every distributive ℓ -monoid can be embedded in the ℓ -monoid **End**(**C**) of the order-preserving maps on a chain **C**.

Theorem (Paoli-Tsinakis 2010)

Every distributive residuated lattice in which multiplication distributes over meets can be embedded as ℓ -monoid into **Res**(**C**) for a complete chain **C**.

Motivation

Idempotent semirings

- Idempotent semimodules
- 4 Holland's theorem for idempotent semirings
- 5 FEP for integral idempotent semirings
- 6 Applications to residuated lattices
 - Conuclei
 - Cayley's and Holland's theorem
 - FEP

• • • • • • • • • • • •

Definition

A structure $\mathbf{R} = \langle \mathbf{R}, +, \cdot, 1 \rangle$ is called a (unital) semiring if

- $\langle \mathbf{R}, + \rangle$ is a commutative semigroup,
- $\langle \boldsymbol{R},\cdot,\mathbf{1}\rangle$ is a monoid,
- a(b+c) = ab + ac and (b+c)a = ba + ca.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A structure $\mathbf{R} = \langle \mathbf{R}, +, \cdot, 1 \rangle$ is called a (unital) semiring if

- $\langle \mathbf{R}, + \rangle$ is a commutative semigroup,
- $\langle \boldsymbol{R},\cdot,\mathbf{1}\rangle$ is a monoid,
- a(b+c) = ab + ac and (b+c)a = ba + ca.

Definition

• $\mathbf{R}^{op} = \langle R, +, \odot, 1 \rangle$ denotes an opposite semiring where $x \odot y = y \cdot x$,

Definition

A structure $\mathbf{R} = \langle \mathbf{R}, +, \cdot, 1 \rangle$ is called a (unital) semiring if

- $\langle \mathbf{R}, + \rangle$ is a commutative semigroup,
- $\langle \boldsymbol{R},\cdot,\mathbf{1}\rangle$ is a monoid,
- a(b+c) = ab + ac and (b+c)a = ba + ca.

Definition

- $\mathbf{R}^{op} = \langle R, +, \odot, 1 \rangle$ denotes an opposite semiring where $x \odot y = y \cdot x$,
- $\mathbf{R}^+ = \langle \mathbf{R}, + \rangle$,

Definition

A structure $\mathbf{R} = \langle \mathbf{R}, +, \cdot, 1 \rangle$ is called a (unital) semiring if

- $\langle \mathbf{R}, + \rangle$ is a commutative semigroup,
- $\langle \boldsymbol{R},\cdot,\mathbf{1}\rangle$ is a monoid,
- a(b + c) = ab + ac and (b + c)a = ba + ca.

Definition

- **R**^{op} = ⟨*R*, +, ⊙, 1⟩ denotes an opposite semiring where x ⊙ y = y ⋅ x,
- $\mathbf{R}^+ = \langle R, + \rangle$,
- **R** is called idempotent if a + a = a. In that case **R**⁺ forms a (join)-semilattice.

Definition

Let **P** be a poset. A map $f: P \rightarrow P$ is said to be residuated iff it has a (left) residual $f^{\dagger}: P \rightarrow P$, i.e.

$$f(x) \leq y$$
 iff $x \leq f^{\dagger}(y)$.

 $Res(\mathbf{P})$ denotes the set of all residuated maps on \mathbf{P} .

< ロ > < 同 > < 回 > < 回 >

Definition

Let **P** be a poset. A map $f: P \rightarrow P$ is said to be residuated iff it has a (left) residual $f^{\dagger}: P \rightarrow P$, i.e.

$$f(x) \leq y$$
 iff $x \leq f^{\dagger}(y)$.

 $\operatorname{Res}(\mathbf{P})$ denotes the set of all residuated maps on \mathbf{P} .

Example

Let $\mathbf{L} = \langle L, \vee \rangle$ be a join-semilattice.

< ロ > < 同 > < 回 > < 回 >

Definition

Let **P** be a poset. A map $f: P \rightarrow P$ is said to be residuated iff it has a (left) residual $f^{\dagger}: P \rightarrow P$, i.e.

$$f(x) \leq y$$
 iff $x \leq f^{\dagger}(y)$.

Res(P) denotes the set of all residuated maps on P.

Example

Let $\mathbf{L} = \langle L, \vee \rangle$ be a join-semilattice.

• $End(L) = \langle End(L), \lor, \circ, id \rangle$ is an idempotent semiring,

Definition

Let **P** be a poset. A map $f: P \rightarrow P$ is said to be residuated iff it has a (left) residual $f^{\dagger}: P \rightarrow P$, i.e.

$$f(x) \leq y$$
 iff $x \leq f^{\dagger}(y)$.

Res(P) denotes the set of all residuated maps on P.

Example

- Let $\mathbf{L} = \langle L, \vee \rangle$ be a join-semilattice.
 - $End(L) = \langle End(L), \lor, \circ, id \rangle$ is an idempotent semiring,
 - Res(L) forms a subsemiring **Res**(L) of **End**(L) since residuated maps are closed under composition and pointwise join.

Let **L** be a join-semilattice. Recall that ideals on **L** forms an algebraic lattice $\mathcal{I}(\mathbf{L}) = \langle \mathcal{I}(\mathbf{L}), \cap, \vee \rangle$. We identify binary relations on **L** with functions from *L* to $\mathcal{P}(L)$.

A D b 4 A b

Let **L** be a join-semilattice. Recall that ideals on **L** forms an algebraic lattice $\mathcal{I}(\mathbf{L}) = \langle \mathcal{I}(\mathbf{L}), \cap, \vee \rangle$. We identify binary relations on **L** with functions from *L* to $\mathcal{P}(L)$.

Definition

A binary relation $R \subseteq L \times L$ is called compatible if

•
$$R(x) \in \mathcal{I}(\mathsf{L}),$$

•
$$R(x \lor y) = R(x) \lor R(y)$$
.

Let **L** be a join-semilattice. Recall that ideals on **L** forms an algebraic lattice $\mathcal{I}(\mathbf{L}) = \langle \mathcal{I}(\mathbf{L}), \cap, \vee \rangle$. We identify binary relations on **L** with functions from *L* to $\mathcal{P}(L)$.

Definition

A binary relation $R \subseteq L \times L$ is called compatible if

•
$$R(x) \in \mathcal{I}(\mathsf{L}),$$

•
$$R(x \lor y) = R(x) \lor R(y)$$
.

Example

The set of all compatible relations on L forms an idempotent semiring $\text{REnd}(L) = \langle \text{REnd}(L), \lor, \circ, Id \rangle$, where $Id(x) = \downarrow x$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Let **L** be a join-semilattice. Recall that ideals on **L** forms an algebraic lattice $\mathcal{I}(\mathbf{L}) = \langle \mathcal{I}(\mathbf{L}), \cap, \vee \rangle$. We identify binary relations on **L** with functions from *L* to $\mathcal{P}(L)$.

Definition

A binary relation $R \subseteq L \times L$ is called compatible if

•
$$R(x) \in \mathcal{I}(\mathsf{L}),$$

•
$$R(x \lor y) = R(x) \lor R(y).$$

Example

The set of all compatible relations on L forms an idempotent semiring $\mathbf{REnd}(\mathbf{L}) = \langle \mathsf{REnd}(\mathbf{L}), \lor, \circ, \mathit{Id} \rangle$, where $\mathit{Id}(x) = \downarrow x$.

Lemma

 $\operatorname{REnd}(\operatorname{L})\cong\operatorname{Res}(\operatorname{\mathcal{I}}(\operatorname{L})).$

- 2 Idempotent semirings
- Idempotent semimodules
- Holland's theorem for idempotent semirings
- 5 FEP for integral idempotent semirings
- 6 Applications to residuated lattices
 - Conuclei
 - Cayley's and Holland's theorem
 - FEP

A (1) > A (2) > A

Definition

Let $\mathbf{R} = \langle R, +, \cdot, 1 \rangle$ be a semiring. A left **R**-semimodule **M** is a commutative semigroup $\langle M, + \rangle$ together with a map $\star : R \times M \to M$ such that:

•
$$r \star (m+n) = r \star m + r \star n$$
,

•
$$(r+s) \star m = r \star m + s \star m$$
,

•
$$r \star (s \star m) = (r \cdot s) \star m$$
,

•
$$1 \star m = m$$
.

< ロ > < 同 > < 回 > < 回 >

Definition

Let $\mathbf{R} = \langle R, +, \cdot, 1 \rangle$ be a semiring. A left **R**-semimodule **M** is a commutative semigroup $\langle M, + \rangle$ together with a map $\star : R \times M \to M$ such that:

•
$$r \star (m+n) = r \star m + r \star n$$
,

•
$$(r+s) \star m = r \star m + s \star m$$
,

•
$$r \star (s \star m) = (r \cdot s) \star m$$
,

•
$$1 \star m = m$$
.

Definition

• $\mathbf{M}^+ = \langle \mathbf{M}, + \rangle$ is the scalar-free reduct.

Definition

Let $\mathbf{R} = \langle R, +, \cdot, 1 \rangle$ be a semiring. A left **R**-semimodule **M** is a commutative semigroup $\langle M, + \rangle$ together with a map $\star : R \times M \to M$ such that:

•
$$r \star (m+n) = r \star m + r \star n$$
,

•
$$(r+s) \star m = r \star m + s \star m$$
,

•
$$r \star (s \star m) = (r \cdot s) \star m$$
,

Definition

- $\mathbf{M}^+ = \langle \mathbf{M}, + \rangle$ is the scalar-free reduct.
- M is called idempotent if m + m = m. In that case M⁺ forms a (join)-semilattice.

Definition

Let $\mathbf{R} = \langle R, +, \cdot, 1 \rangle$ be a semiring. A left **R**-semimodule **M** is a commutative semigroup $\langle M, + \rangle$ together with a map $\star : R \times M \to M$ such that:

•
$$r \star (m+n) = r \star m + r \star n$$
,

•
$$(r+s) \star m = r \star m + s \star m$$
,

•
$$r \star (s \star m) = (r \cdot s) \star m$$
,

Definition

- $\mathbf{M}^+ = \langle \mathbf{M}, + \rangle$ is the scalar-free reduct.
- **M** is called idempotent if m + m = m. In that case **M**⁺ forms a (join)-semilattice.
- A right **R**-semimodule is defined analogously.

Example

Every semiring $\mathbf{R} = \langle \mathbf{R}, +, \cdot, 1 \rangle$ can be turned into a left **R**-semimodule $\langle \mathbf{R}, + \rangle$ using its multiplication as the left action.

イロト イヨト イヨト イヨト

Example

Every semiring $\mathbf{R} = \langle \mathbf{R}, +, \cdot, 1 \rangle$ can be turned into a left **R**-semimodule $\langle \mathbf{R}, + \rangle$ using its multiplication as the left action.

Example

Every commutative semigroup (join-semilattice) $\mathbf{L} = \langle L, + \rangle$ can be turned into an (idempotent) **End**(**L**)-semimodule where the left action \star : End(**L**) × *L* → *L* is defined by $f \star m = f(m)$.

Let \mathbf{M} be a left \mathbf{R} -semimodule over a semiring \mathbf{R} .

Definition

A subset $E \subseteq M$ is called a separating set in **M** if for all $r, s \in R$ we have the following implication:

$$r \neq s \implies (\exists e \in E)(r \star e \neq s \star e).$$

< ロ > < 同 > < 回 > < 回 >

Let \mathbf{M} be a left \mathbf{R} -semimodule over a semiring \mathbf{R} .

Definition

A subset $E \subseteq M$ is called a separating set in **M** if for all $r, s \in R$ we have the following implication:

$$r \neq s \implies (\exists e \in E)(r \star e \neq s \star e).$$

Observations

1

Let \mathbf{M} be a left \mathbf{R} -semimodule over a semiring \mathbf{R} .

Definition

A subset $E \subseteq M$ is called a separating set in **M** if for all $r, s \in R$ we have the following implication:

$$r \neq s \implies (\exists e \in E)(r \star e \neq s \star e).$$

Observations

The map φ: **R** → **End**(**M**⁺) sending r ∈ R to f_r(m) = r ★ m is a semiring homomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathbf{M} be a left \mathbf{R} -semimodule over a semiring \mathbf{R} .

Definition

A subset $E \subseteq M$ is called a separating set in **M** if for all $r, s \in R$ we have the following implication:

$$r \neq s \implies (\exists e \in E)(r \star e \neq s \star e).$$

Observations

- The map φ: **R** → **End**(**M**⁺) sending r ∈ R to f_r(m) = r ★ m is a semiring homomorphism.
- If **M** has a separating set *E*, then ϕ is an embedding.

Separation set

Let \mathbf{M} be a left \mathbf{R} -semimodule over a semiring \mathbf{R} .

Definition

A subset $E \subseteq M$ is called a separating set in **M** if for all $r, s \in R$ we have the following implication:

$$r \neq s \implies (\exists e \in E)(r \star e \neq s \star e).$$

Observations

- The map $\phi: \mathbf{R} \to \mathbf{End}(\mathbf{M}^+)$ sending $r \in R$ to $f_r(m) = r \star m$ is a semiring homomorphism.
- If **M** has a separating set *E*, then ϕ is an embedding.
- The above holds also for a right R-semimodule if we replace End(M⁺) by End(M⁺)^{op}.

・ロト ・四ト ・ヨト ・ヨト

Corollary

Every idempotent semiring \mathbf{R} embeds into $\mathbf{End}(\mathbf{R}^+)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Corollary

Every idempotent semiring \mathbf{R} embeds into $\mathbf{End}(\mathbf{R}^+)$.

Proof.

Rostislav Horčík (ICS)

Holland's Theorem

OGLAL 2011 13 / 36

< ロ > < 同 > < 回 > < 回 >

Corollary

Every idempotent semiring \mathbf{R} embeds into $\mathbf{End}(\mathbf{R}^+)$.

Proof.

• Every idempotent semiring **R** can be viewed as an idempotent **R**-semimodule whose left action is just the multiplication in **R**.

A D b 4 A b

Corollary

Every idempotent semiring \mathbf{R} embeds into $\mathbf{End}(\mathbf{R}^+)$.

Proof.

- Every idempotent semiring R can be viewed as an idempotent
 R-semimodule whose left action is just the multiplication in R.
- Moreover, {1} is a separating set in the semimodule **R**.

< ロ > < 同 > < 回 > < 回 >

Let **R** be an idempotent semiring.

Definition

An **R**-semimodule **M** is residuated if **M** is idempotent and there is a map $\backslash : R \times M \rightarrow M$ such that

 $r \star m \leq n$ iff $m \leq r \setminus n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let **R** be an idempotent semiring.

Definition

An **R**-semimodule **M** is residuated if **M** is idempotent and there is a map $\backslash : R \times M \rightarrow M$ such that

 $r \star m \leq n$ iff $m \leq r \setminus n$.

Then \setminus is a right action since $1 \setminus m = m$ and $s \setminus (r \setminus m) = rs \setminus m$.

Let **R** be an idempotent semiring.

Definition

An **R**-semimodule **M** is residuated if **M** is idempotent and there is a map $\backslash : R \times M \rightarrow M$ such that

 $r \star m \leq n$ iff $m \leq r \setminus n$.

Then \setminus is a right action since $1 \setminus m = m$ and $s \setminus (r \setminus m) = rs \setminus m$.

Lemma

Let ${\bf M}$ be a residuated ${\bf R}$ -semimodule such that ${\bf M}^+$ forms a lattice. Then

•
$$r \setminus (m \wedge n) = r \setminus m \wedge r \setminus n$$
,

• $(r \lor s) \setminus m = r \setminus m \land s \setminus m$.

Let **R** be an idempotent semiring.

Definition

An **R**-semimodule **M** is residuated if **M** is idempotent and there is a map $\backslash : R \times M \rightarrow M$ such that

 $r \star m \leq n$ iff $m \leq r \setminus n$.

Then \setminus is a right action since $1 \setminus m = m$ and $s \setminus (r \setminus m) = rs \setminus m$.

Lemma

Let ${\bf M}$ be a residuated ${\bf R}$ -semimodule such that ${\bf M}^+$ forms a lattice. Then

•
$$r \setminus (m \wedge n) = r \setminus m \wedge r \setminus n$$
,

• $(r \lor s) \setminus m = r \setminus m \land s \setminus m$.

Thus $(\mathbf{M}^+)^\partial$ together with \setminus forms a right idempotent \mathbf{R} -semimodule.

Theorem

Let \mathbf{R} be an id. semiring and \mathbf{M} a left id. \mathbf{R} -semimodule. Then

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

Let R be an id. semiring and M a left id. R-semimodule. Then

 I(M) is a complete residuated R-semimodule whose left action is given by

$$r \star I = \{m \in M \mid (\exists n \in I) (m \leq r \star n)\}, \ r \setminus J = \{m \in M \mid r \star m \in J\}.$$

< ロ > < 同 > < 回 > < 回 >

Theorem

Let R be an id. semiring and M a left id. R-semimodule. Then

 I(M) is a complete residuated R-semimodule whose left action is given by

$$r \star I = \{m \in M \mid (\exists n \in I) (m \leq r \star n)\}, \ r \setminus J = \{m \in M \mid r \star m \in J\}.$$

2 M embeds into $\mathcal{I}(M)$ as an **R**-semimodule via the map $m \mapsto \downarrow m$.

< ロ > < 同 > < 回 > < 回 >

Theorem

Let R be an id. semiring and M a left id. R-semimodule. Then

 I(M) is a complete residuated R-semimodule whose left action is given by

 $r \star I = \{m \in M \mid (\exists n \in I) (m \leq r \star n)\}, \ r \setminus J = \{m \in M \mid r \star m \in J\}.$

- **2** M embeds into $\mathcal{I}(M)$ as an **R**-semimodule via the map $m \mapsto \downarrow m$.
- **③** If E is a separating set in **M** then $\{\downarrow e \mid e \in E\}$ is a separating set in $\mathcal{I}(\mathbf{M})$.

Theorem

Let R be an id. semiring and M a left id. R-semimodule. Then

 I(M) is a complete residuated R-semimodule whose left action is given by

 $r \star I = \{m \in M \mid (\exists n \in I) (m \leq r \star n)\}, \ r \setminus J = \{m \in M \mid r \star m \in J\}.$

2 M embeds into I(M) as an R-semimodule via the map m → ↓m.
3 If E is a separating set in M then {↓e | e ∈ E} is a separating set in I(M).

Theorem

Any idempotent semiring **R** is embeddable into $\text{REnd}(R^+)$ which is isomorphic to $\text{Res}(\mathcal{I}(R^+))$.

イロン イ団と イヨン 一

Outline

- Motivation
- 2 Idempotent semirings
- 3 Idempotent semimodules

Holland's theorem for idempotent semirings

- FEP for integral idempotent semirings
- 6 Applications to residuated lattices
 - Conuclei
 - Cayley's and Holland's theorem
 - FEP

A (10) > A (10) > A (10)

• Let **M** be a left idempotent **R**-semimodule over an idempotent semiring **R**.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Let **M** be a left idempotent **R**-semimodule over an idempotent semiring **R**.
- Then every ideal *I* ∈ *I*(**M**⁺) induces a congruence ~_{*I*} on **M** defined as follows:

 $m \sim_I m'$ iff $(\forall r \in R)(r \star m \in I \Leftrightarrow r \star m' \in I)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let **M** be a left idempotent **R**-semimodule over an idempotent semiring **R**.
- Then every ideal *I* ∈ *I*(**M**⁺) induces a congruence ~_{*I*} on **M** defined as follows:

 $m \sim_I m'$ iff $(\forall r \in R)(r \star m \in I \Leftrightarrow r \star m' \in I)$.

• An ideal $I \in \mathcal{I}(\mathbf{M}^+)$ is called linear if $r \star m \in I$ and $s \star n \in I$ implies $r \star n \in I$ or $s \star m \in I$.

- Let **M** be a left idempotent **R**-semimodule over an idempotent semiring **R**.
- Then every ideal *I* ∈ *I*(**M**⁺) induces a congruence ~_{*I*} on **M** defined as follows:

 $m \sim_I m'$ iff $(\forall r \in R)(r \star m \in I \Leftrightarrow r \star m' \in I)$.

• An ideal $I \in \mathcal{I}(\mathbf{M}^+)$ is called linear if $r \star m \in I$ and $s \star n \in I$ implies $r \star n \in I$ or $s \star m \in I$.

Lemma

An ideal $I \in \mathcal{I}(\mathbf{M}^+)$ is linear iff \mathbf{M}/\sim_I is linearly ordered.

(EC) condition

 Consider the following quasi-identity in the language of semimodules:

 $u \le h \lor c \star a \& u \le h \lor d \star b \implies u \le h \lor c \star b \lor d \star a.$ (EC)

(EC) condition

 Consider the following quasi-identity in the language of semimodules:

 $u \le h \lor c \star a \& u \le h \lor d \star b \implies u \le h \lor c \star b \lor d \star a.$ (EC)

 The same quasi-identity can be considered also in the language of semirings:

$$u \le h \lor ca \& u \le h \lor db \implies u \le h \lor cb \lor da.$$
 (EC)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(EC) condition

 Consider the following quasi-identity in the language of semimodules:

 $u \le h \lor c \star a \& u \le h \lor d \star b \implies u \le h \lor c \star b \lor d \star a.$ (EC)

 The same quasi-identity can be considered also in the language of semirings:

 $u \le h \lor ca \& u \le h \lor db \implies u \le h \lor cb \lor da.$ (EC)

 If an idempotent semiring R satisfies (EC) as a semiring then it satisfies (EC) when viewed as an R-semimodule and also vice versa.

Quasivariety generated by chains

Let **R** be an idempotent semiring.

Lemma

- Every linearly ordered left idempotent R-semimodule M satisfies (EC).
- **2** Conversely, if **M** satisfies (EC) then every ideal $I \in \mathcal{I}(\mathbf{M}^+)$ maximal with respect to not containing an element *u* is linear.

< ロ > < 同 > < 回 > < 回 >

Quasivariety generated by chains

Let **R** be an idempotent semiring.

Lemma

- Every linearly ordered left idempotent R-semimodule M satisfies (EC).
- ② Conversely, if **M** satisfies (EC) then every ideal $I \in \mathcal{I}(\mathbf{M}^+)$ maximal with respect to not containing an element *u* is linear.

Theorem

Let **M** be a left idempotent **R**-semimodule. T.F.A.E:

- **M** satisfies (EC).
- In is embeddable into ∏_{i∈K} N_i for some family {N_i | i ∈ K} of linearly ordered left idempotent **R**-semimodules.

Let **R** be an idempotent semiring.

Definition

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let **R** be an idempotent semiring.

Definition

• Let $\langle K, \leq \rangle$ be a linearly ordered set and

Let **R** be an idempotent semiring.

Definition

- Let $\langle K, \leq \rangle$ be a linearly ordered set and
- {M_i | i ∈ K} a family of left idempotent **R**-semimodules whose left actions are denoted *⋆_i*.

Let **R** be an idempotent semiring.

Definition

- Let $\langle K, \leq \rangle$ be a linearly ordered set and
- {M_i | i ∈ K} a family of left idempotent **R**-semimodules whose left actions are denoted *_i.
- Then the ordinal sum ⊕_{i∈K} M_i is a left idempotent **R**-semimodule, whose underlying join-semilattice is the ordinal sum of {M_i⁺ | i ∈ K} and its left action is given by

$$r \star m = r \star_i m$$
 if $m \in M_i$.

イロト イ団ト イヨト イヨト

Holland's theorem for idempotent semirings

Let **R** be an idempotent semiring.

Theorem

Let \mathbf{M} be a left idempotent \mathbf{R} -semimodule satisfying (EC). Then

• There is a linearly ordered left id. **R**-semimodule **N** which is an ordinal sum of its s.i. factors.

Holland's theorem for idempotent semirings

Let **R** be an idempotent semiring.

Theorem

Let **M** be a left idempotent **R**-semimodule satisfying (EC). Then

- There is a linearly ordered left id. **R**-semimodule **N** which is an ordinal sum of its s.i. factors.
- If M has a one-element separating set {e} then N has a separating set E which is dually well ordered.

A B F A B F

Holland's theorem for idempotent semirings

Let **R** be an idempotent semiring.

Theorem

Let \mathbf{M} be a left idempotent \mathbf{R} -semimodule satisfying (EC). Then

- There is a linearly ordered left id. **R**-semimodule **N** which is an ordinal sum of its s.i. factors.
- If M has a one-element separating set {e} then N has a separating set E which is dually well ordered.

Theorem

The following are equivalent:

- R satisfies (EC).
- R is embeddable into End(C) for some chain C.
- **③ R** is embeddable into $\text{REnd}(\mathbf{C}) \cong \text{Res}(\mathcal{I}(\mathbf{C}))$ for some chain **C**.

Outline

- Motivation
- 2 Idempotent semirings
- 3 Idempotent semimodules
- 4 Holland's theorem for idempotent semirings

FEP for integral idempotent semirings

- Applications to residuated lattices
 - Conuclei
 - Cayley's and Holland's theorem
 - FEP

A (10) A (10)

Finite embeddability property

 Recall that a class K of algebras in the same language has the FEP if every finite partial subalgebra is embeddable into a finite member of K.

Finite embeddability property

- Recall that a class K of algebras in the same language has the FEP if every finite partial subalgebra is embeddable into a finite member of K.
- An idempotent semiring **R** is said to be integral if 1 is a top element with respect to the join-semilattice order on **R**.

Finite embeddability property

- Recall that a class K of algebras in the same language has the FEP if every finite partial subalgebra is embeddable into a finite member of K.
- An idempotent semiring **R** is said to be integral if 1 is a top element with respect to the join-semilattice order on **R**.
- We denote the variety of all integral idempotent semirings by ISR and Q its sub-quasivariety axiomatized by (EC).

< 口 > < 同 > < 回 > < 回 > < 回 > <

Theorem

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi : \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi : \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Sketch of the proof for $\boldsymbol{\mathsf{R}} \in \mathsf{K} \cap \mathsf{Q}$

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Sketch of the proof for $\boldsymbol{\mathsf{R}} \in \mathsf{K} \cap \mathsf{Q}$

• There is a linearly ordered left id. **R**-semimodule **M** with a d.w.o. separating set *E*.

A B b 4 B b

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Sketch of the proof for $\boldsymbol{\mathsf{R}} \in \mathsf{K} \cap \mathsf{Q}$

- There is a linearly ordered left id. **R**-semimodule **M** with a d.w.o. separating set *E*.
- Take a **R**-subsemimodule **N** of **M** generated by *E*, i.e., $N = R \star E$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Sketch of the proof for $\boldsymbol{\mathsf{R}} \in \mathsf{K} \cap \mathsf{Q}$

- There is a linearly ordered left id. **R**-semimodule **M** with a d.w.o. separating set *E*.
- Take a **R**-subsemimodule **N** of **M** generated by *E*, i.e., $N = R \star E$.
- Then **N** has is residuated and has ACC (Higman's lemma).

< 口 > < 同 > < 回 > < 回 > < 回 > <

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Sketch of the proof for $\boldsymbol{\mathsf{R}} \in \mathsf{K} \cap \mathsf{Q}$

- There is a linearly ordered left id. **R**-semimodule **M** with a d.w.o. separating set *E*.
- Take a **R**-subsemimodule **N** of **M** generated by *E*, i.e., $N = R \star E$.
- Then **N** has is residuated and has ACC (Higman's lemma).
- The dual N^{∂} is a right idempotent **R**-semimodule having DCC.

・ロト ・四ト ・ヨト ・ヨト

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Sketch of the proof for $\boldsymbol{\mathsf{R}} \in \mathsf{K} \cap \mathsf{Q}$

- There is a linearly ordered left id. **R**-semimodule **M** with a d.w.o. separating set *E*.
- Take a **R**-subsemimodule **N** of **M** generated by E, i.e., $N = R \star E$.
- Then **N** has is residuated and has ACC (Higman's lemma).
- The dual N^{∂} is a right idempotent **R**-semimodule having DCC.
- Take an **R**-subsemimodule **K** of \mathbf{N}^{∂} generated by $C \star E$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let K be a subvariety of ISR and $\mathbf{R} \in K$ generated by a finite set C. Then there is a finite $\mathbf{S} \in K$ and a surjective homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$. In addition, if $\mathbf{R} \in K \cap Q$ then $\mathbf{S} \in K \cap Q$ as well.

Sketch of the proof for $\boldsymbol{\mathsf{R}} \in \mathsf{K} \cap \mathsf{Q}$

- There is a linearly ordered left id. **R**-semimodule **M** with a d.w.o. separating set *E*.
- Take a **R**-subsemimodule **N** of **M** generated by E, i.e., $N = R \star E$.
- Then **N** has is residuated and has ACC (Higman's lemma).
- The dual N^{∂} is a right idempotent **R**-semimodule having DCC.
- Take an **R**-subsemimodule **K** of \mathbf{N}^{∂} generated by $C \star E$.
- Then **K** is finite residuated right **R**-semimodule.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Sketch of the proof (cont.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sketch of the proof (cont.)

• Hence there is a semiring homomorphism $\phi: \mathbf{R} \to \mathbf{Res}(\mathbf{K}^+)^{op}$.

< ロ > < 同 > < 回 > < 回 >

Sketch of the proof (cont.)

- Hence there is a semiring homomorphism $\phi: \mathbf{R} \to \mathbf{Res}(\mathbf{K}^+)^{op}$.
- Let $\mathbf{S} = \phi[\mathbf{R}]$.

Sketch of the proof (cont.)

- Hence there is a semiring homomorphism $\phi: \mathbf{R} \to \mathbf{Res}(\mathbf{K}^+)^{op}$.
- Let $\mathbf{S} = \phi[\mathbf{R}]$.
- Then S ∈ K because varieties are closed under homomorphic images.

Sketch of the proof (cont.)

- Hence there is a semiring homomorphism $\phi: \mathbf{R} \to \mathbf{Res}(\mathbf{K}^+)^{op}$.
- Let $\mathbf{S} = \phi[\mathbf{R}]$.
- Then S ∈ K because varieties are closed under homomorphic images.
- Further $S \in Q$ because K^+ is linearly ordered.

Sketch of the proof (cont.)

- Hence there is a semiring homomorphism $\phi: \mathbf{R} \to \mathbf{Res}(\mathbf{K}^+)^{op}$.
- Let $\mathbf{S} = \phi[\mathbf{R}]$.
- Then S ∈ K because varieties are closed under homomorphic images.
- Further $S \in Q$ because K^+ is linearly ordered.
- Moreover **S** is finite because *K* is finite.

Sketch of the proof (cont.)

- Hence there is a semiring homomorphism $\phi: \mathbf{R} \to \mathbf{Res}(\mathbf{K}^+)^{op}$.
- Let $\mathbf{S} = \phi[\mathbf{R}]$.
- Then S ∈ K because varieties are closed under homomorphic images.
- Further $S \in Q$ because K^+ is linearly ordered.
- Moreover **S** is finite because *K* is finite.
- Finally, if $\phi(r) \leq^{\partial} \phi(c)$ then $r \leq c$.

Sketch of the proof (cont.)

- Hence there is a semiring homomorphism $\phi: \mathbf{R} \to \mathbf{Res}(\mathbf{K}^+)^{op}$.
- Let $\mathbf{S} = \phi[\mathbf{R}]$.
- Then S ∈ K because varieties are closed under homomorphic images.
- Further $S \in Q$ because K^+ is linearly ordered.
- Moreover **S** is finite because *K* is finite.
- Finally, if $\phi(r) \leq^{\partial} \phi(c)$ then $r \leq c$.

Corollary

Let K be a subvariety of ISR and Q the quasivariety of idempotent semirings axiomatized by (EC). Then K and $K \cap Q$ have the finite embeddability property.

Rostislav Horčík (ICS)

Outline

- Motivation
- 2 Idempotent semirings
- 3 Idempotent semimodules
- Holland's theorem for idempotent semirings
- 5 FEP for integral idempotent semirings
 - Applications to residuated lattices
 - Conuclei
 - Cayley's and Holland's theorem
 - FEP

A (10) > A (10) > A (10)

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \backslash, 1 \rangle$, where

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\langle \mathbf{A}, \cdot, \mathbf{1} \rangle$ is a monoid and

•
$$x \cdot y \leq z$$
 iff $x \leq z/y$ iff $y \leq x \setminus z$.

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \rangle$, where

- $\langle {\it A}, \wedge, \vee \rangle$ is a lattice,
- $\langle \mathbf{A}, \cdot, \mathbf{1} \rangle$ is a monoid and

•
$$x \cdot y \leq z$$
 iff $x \leq z/y$ iff $y \leq x \setminus z$.

Every residuated lattice forms an idempotent semiring.

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \backslash, 1 \rangle$, where

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\langle \mathbf{A}, \cdot, \mathbf{1} \rangle$ is a monoid and
- $x \cdot y \leq z$ iff $x \leq z/y$ iff $y \leq x \setminus z$.

Every residuated lattice forms an idempotent semiring.

Example

• If L is a complete lattice then **Res**(L) is a complete residuated lattice.

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \backslash, 1 \rangle$, where

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\langle \mathbf{A},\cdot,\mathbf{1}\rangle$ is a monoid and

•
$$x \cdot y \leq z$$
 iff $x \leq z/y$ iff $y \leq x \setminus z$.

Every residuated lattice forms an idempotent semiring.

Example

- If L is a complete lattice then **Res**(L) is a complete residuated lattice.
- If L is a lattice then REnd(L) ≅ Res(I(L)) is a complete residuated lattice.

Interior operators

Definition

Let **P** be a poset. A map $\sigma \colon P \to P$ is called an interior operator if

- $\sigma(\mathbf{X}) \leq \mathbf{X}$,
- $x \leq y$ implies $\sigma(x) \leq \sigma(y)$,
- $\sigma(\sigma(\mathbf{x})) = \sigma(\mathbf{x}).$

Interior operators

Definition

Let **P** be a poset. A map $\sigma \colon P \to P$ is called an interior operator if

- $\sigma(\mathbf{X}) \leq \mathbf{X}$,
- $x \leq y$ implies $\sigma(x) \leq \sigma(y)$,

•
$$\sigma(\sigma(\mathbf{x})) = \sigma(\mathbf{x}).$$

Observation

Let **L** be a complete lattice and $S \subseteq L$. Then S induces an interior operator on **L**:

$$\sigma_{\mathcal{S}}(\mathbf{x}) = \bigvee \{\mathbf{s} \in \mathcal{S} \mid \mathbf{s} \leq \mathbf{x}\}.$$

Conuclei

Definition

A conucleus σ on a residuated lattice **L** is an interior operator such that $\sigma(x)\sigma(y) \leq \sigma(xy)$ and $\sigma(1) = 1$.

< ロ > < 同 > < 回 > < 回 >

Definition

A conucleus σ on a residuated lattice **L** is an interior operator such that $\sigma(x)\sigma(y) \leq \sigma(xy)$ and $\sigma(1) = 1$.

Theorem

Let σ be a conucleus on a residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, \backslash, /, 1 \rangle$. Then $\mathbf{L}_{\sigma} = \langle \sigma[L], \wedge_{\sigma}, \vee, \cdot, \backslash_{\sigma}, /_{\sigma}, 1 \rangle$ is a residuated lattice called conuclear contraction, where $x \wedge_{\sigma} y = \sigma(x \wedge y)$, $x \setminus_{\sigma} y = \sigma(x \setminus y)$ and $x/y = \sigma(x/y)$.

Definition

A conucleus σ on a residuated lattice **L** is an interior operator such that $\sigma(x)\sigma(y) \leq \sigma(xy)$ and $\sigma(1) = 1$.

Theorem

Let σ be a conucleus on a residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, \rangle, /, 1 \rangle$. Then $\mathbf{L}_{\sigma} = \langle \sigma[L], \wedge_{\sigma}, \vee, \cdot, \rangle_{\sigma}, /_{\sigma}, 1 \rangle$ is a residuated lattice called conuclear contraction, where $x \wedge_{\sigma} y = \sigma(x \wedge y), x \rangle_{\sigma} y = \sigma(x \setminus y)$ and $x/y = \sigma(x/y)$.

Lemma

Let **A** be a complete residuated lattice and S a submonoid of **A**. Then the interior operator σ_S on **A** is a conucleus.

Lemma

Assumptions:

• Let **A**, **B** be residuated lattices such that **B** is complete and **C** a partial subalgebra of **A**.

< ロ > < 同 > < 回 > < 回 >

Lemma

Assumptions:

- Let **A**, **B** be residuated lattices such that **B** is complete and **C** a partial subalgebra of **A**.
- Further, let **D** be the idempotent subsemiring of **A** generated by C.

(4) (5) (4) (5)

Lemma

Assumptions:

- Let **A**, **B** be residuated lattices such that **B** is complete and **C** a partial subalgebra of **A**.
- Further, let **D** be the idempotent subsemiring of **A** generated by C.
- Suppose that there is a semiring homomorphism φ: D → B such that for all d ∈ D and c ∈ C

$$\phi(d) \leq \phi(c) \implies d \leq c$$
.

A B F A B F

A D M A A A M M

Lemma

Assumptions:

- Let **A**, **B** be residuated lattices such that **B** is complete and **C** a partial subalgebra of **A**.
- Further, let **D** be the idempotent subsemiring of **A** generated by C.
- Suppose that there is a semiring homomorphism φ: D → B such that for all d ∈ D and c ∈ C

$$\phi(d) \leq \phi(c) \implies d \leq c$$
.

Conclusions:

- Then $\sigma_{\phi[D]}$ is a conucleus and
- $\phi: \mathbf{C} \to \mathbf{B}_{\sigma_{\phi[D]}}$ is an embedding of residuated lattices.

Cayley's theorem for residuated lattices

Theorem

Let **A**, **B** be residuated lattices such that **B** is complete. If **A** embeds into **B** via ϕ as an idempotent semiring, then **A** embeds into $\mathbf{B}_{\sigma_{\phi[A]}}$ as a residuated lattice.

A B F A B F

Cayley's theorem for residuated lattices

Theorem

Let **A**, **B** be residuated lattices such that **B** is complete. If **A** embeds into **B** via ϕ as an idempotent semiring, then **A** embeds into $\mathbf{B}_{\sigma_{\phi[A]}}$ as a residuated lattice.

Corollary (Cayley's theorem for residuated lattices)

Let **A** be a residuated lattice and A^+ its join-semilattice reduct. Then **A** embeds into a conuclear contraction of $\text{REnd}(A^+) \cong \text{Res}(\mathcal{I}(A^+))$. In addition, if **A** is complete then **A** embeds into a conuclear contraction of $\text{Res}(A^+)$.

Cayley's theorem for residuated lattices

Theorem

Let **A**, **B** be residuated lattices such that **B** is complete. If **A** embeds into **B** via ϕ as an idempotent semiring, then **A** embeds into $\mathbf{B}_{\sigma_{\phi[A]}}$ as a residuated lattice.

Corollary (Cayley's theorem for residuated lattices)

Let **A** be a residuated lattice and A^+ its join-semilattice reduct. Then **A** embeds into a conuclear contraction of $\text{REnd}(A^+) \cong \text{Res}(\mathcal{I}(A^+))$. In addition, if **A** is complete then **A** embeds into a conuclear contraction of $\text{Res}(A^+)$.

Theorem (Blount-Tsinakis)

Every residuated lattice embeds into a nuclear retraction of a powerset monoid.

Holland's theorem for residuated lattices

Theorem (Holland's theorem for residuated lattices)

Let **A** be a residuated lattice. The following are equivalent:

- **4** satisfies (EC) (equivalently, $(h \lor ca) \land (h \lor db) \le h \lor cb \lor da$).
- A embeds into a conuclear contraction of REnd(C) for a chain C.
- A embeds into a conuclear contraction of Res(C') for a complete chain C'.

Classes where Holland's theorem (does not) applies

Prelinear residuated lattices, i.e., those where
 1 = (x \ y ∧ 1) ∨ (y \ x ∧ 1) holds. This class includes all semilinear varieties and ℓ-groups.

Classes where Holland's theorem (does not) applies

- Prelinear residuated lattices, i.e., those where
 1 = (x \ y ∧ 1) ∨ (y \ x ∧ 1) holds. This class includes all semilinear varieties and ℓ-groups.
- Commutative cancellative residuated lattices.

Classes where Holland's theorem (does not) applies

- Prelinear residuated lattices, i.e., those where
 1 = (x \ y ∧ 1) ∨ (y \ x ∧ 1) holds. This class includes all semilinear varieties and ℓ-groups.
- Commutative cancellative residuated lattices.
- Distributive residuated lattices satisfying $x(y \land z) = xy \land xz$ and $(y \land z)x = yx \land zx$.

Classes where Holland's theorem (does not) applies

- Prelinear residuated lattices, i.e., those where
 1 = (x \ y ∧ 1) ∨ (y \ x ∧ 1) holds. This class includes all semilinear varieties and ℓ-groups.
- Commutative cancellative residuated lattices.
- Distributive residuated lattices satisfying $x(y \land z) = xy \land xz$ and $(y \land z)x = yx \land zx$.
- There are also non-distributive integral residuated lattices satisfying (EC).

Classes where Holland's theorem (does not) applies

- Prelinear residuated lattices, i.e., those where
 1 = (x \ y ∧ 1) ∨ (y \ x ∧ 1) holds. This class includes all semilinear varieties and ℓ-groups.
- Commutative cancellative residuated lattices.
- Distributive residuated lattices satisfying $x(y \land z) = xy \land xz$ and $(y \land z)x = yx \land zx$.
- There are also non-distributive integral residuated lattices satisfying (EC).
- Let Z₂ = ⟨{0,1},+,0⟩ be the two-element group (ordered discretely). Consider its extension by a top and bottom element T,⊥. Then its lattice reduct is distributive and (EC) does not hold in this extension.

FEP for integral residuated lattices

Let IRL be the variety of integral residuated lattices (i.e., $x \le 1$).

Theorem

• • • • • • • • • • • • •

Let IRL be the variety of integral residuated lattices (i.e., $x \le 1$).

Theorem

 Let V₁ be a subvariety of IRL axiomatized by the set E of identities using only ∨, ·, 1.

Let IRL be the variety of integral residuated lattices (i.e., $x \le 1$).

Theorem

- Let V₁ be a subvariety of IRL axiomatized by the set E of identities using only ∨, ·, 1.
- Further, let V₂ be the subvariety of V₁ relatively axiomatized by (h ∨ ca) ∧ (h ∨ db) ≤ h ∨ cb ∨ da (i.e., by (EC)).

Let IRL be the variety of integral residuated lattices (i.e., $x \le 1$).

Theorem

- Let V₁ be a subvariety of IRL axiomatized by the set *E* of identities using only ∨, ·, 1.
- Further, let V₂ be the subvariety of V₁ relatively axiomatized by (h ∨ ca) ∧ (h ∨ db) ≤ h ∨ cb ∨ da (i.e., by (EC)).
- Then V₁ and V₂ have the finite embeddability property.

Let IRL be the variety of integral residuated lattices (i.e., $x \le 1$).

Theorem

- Let V₁ be a subvariety of IRL axiomatized by the set *E* of identities using only ∨, ·, 1.
- Further, let V₂ be the subvariety of V₁ relatively axiomatized by (h ∨ ca) ∧ (h ∨ db) ≤ h ∨ cb ∨ da (i.e., by (EC)).
- Then V_1 and V_2 have the finite embeddability property.

Sketch of the proof for V_2

Let IRL be the variety of integral residuated lattices (i.e., $x \le 1$).

Theorem

- Let V₁ be a subvariety of IRL axiomatized by the set *E* of identities using only ∨, ·, 1.
- Further, let V₂ be the subvariety of V₁ relatively axiomatized by (h ∨ ca) ∧ (h ∨ db) ≤ h ∨ cb ∨ da (i.e., by (EC)).
- Then V_1 and V_2 have the finite embeddability property.

Sketch of the proof for V_2

• Let K be a subvariety of ISR axiomatized by ${\mathcal E}$ and

FEP for integral residuated lattices

Let IRL be the variety of integral residuated lattices (i.e., x < 1).

Theorem

- Let V_1 be a subvariety of IRL axiomatized by the set \mathcal{E} of identities using only $\vee, \cdot, 1$.
- Further, let V_2 be the subvariety of V_1 relatively axiomatized by $(h \lor ca) \land (h \lor db) \le h \lor cb \lor da$ (i.e., by (EC)).
- Then V₁ and V₂ have the finite embeddability property.

Sketch of the proof for V_2

- Let K be a subvariety of ISR axiomatized by \mathcal{E} and
- Q the guasivariety of idempotent semirings axiomatized by (EC).

-

FEP for integral residuated lattices

Let IRL be the variety of integral residuated lattices (i.e., x < 1).

Theorem

- Let V_1 be a subvariety of IRL axiomatized by the set \mathcal{E} of identities using only $\vee, \cdot, 1$.
- Further, let V_2 be the subvariety of V_1 relatively axiomatized by $(h \lor ca) \land (h \lor db) \le h \lor cb \lor da$ (i.e., by (EC)).
- Then V₁ and V₂ have the finite embeddability property.

Sketch of the proof for V_2

- Let K be a subvariety of ISR axiomatized by \mathcal{E} and
- Q the guasivariety of idempotent semirings axiomatized by (EC).
- Suppose $A \in V_2$. Then its semiring reduct belongs to $K \cap Q$.

• Let C be a finite partial subalgebra of A.

- Let C be a finite partial subalgebra of A.
- Consider the subsemiring **R** of **A** generated by *C*.

- Let C be a finite partial subalgebra of A.
- Consider the subsemiring **R** of **A** generated by *C*.
- Then $\mathbf{R} \in \mathbf{K} \cap \mathbf{Q}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Let C be a finite partial subalgebra of A.
- Consider the subsemiring **R** of **A** generated by *C*.
- Then $\mathbf{R} \in \mathbf{K} \cap \mathbf{Q}$.
- $\bullet\,$ By FEP for $K\cap Q$ there is a finite semiring $\bm{S}\in K\cap Q$ and

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sketch of the proof (cont.)

- Let **C** be a finite partial subalgebra of **A**.
- Consider the subsemiring **R** of **A** generated by *C*.
- Then $\mathbf{R} \in \mathbf{K} \cap \mathbf{Q}$.
- By FEP for $K \cap Q$ there is a finite semiring $\boldsymbol{S} \in K \cap Q$ and
- there is a surjective semiring homomorphism ϕ : $\mathbf{R} \to \mathbf{S}$ such that $\phi(r) \le \phi(c)$ implies $r \le c$ for all $r \in \mathbf{R}$ and $c \in C$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of the proof (cont.)

- Let **C** be a finite partial subalgebra of **A**.
- Consider the subsemiring **R** of **A** generated by *C*.
- Then $\mathbf{R} \in \mathbf{K} \cap \mathbf{Q}$.
- By FEP for $K \cap Q$ there is a finite semiring $\boldsymbol{S} \in K \cap Q$ and
- there is a surjective semiring homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$.
- Since **A** is integral, it is possible to show that **S** is in fact a finite residuated lattice.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Sketch of the proof (cont.)

- Let **C** be a finite partial subalgebra of **A**.
- Consider the subsemiring **R** of **A** generated by *C*.
- Then $\mathbf{R} \in \mathbf{K} \cap \mathbf{Q}$.
- By FEP for $K \cap Q$ there is a finite semiring $\boldsymbol{S} \in K \cap Q$ and
- there is a surjective semiring homomorphism $\phi : \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \le \phi(c)$ implies $r \le c$ for all $r \in R$ and $c \in C$.
- Since **A** is integral, it is possible to show that **S** is in fact a finite residuated lattice.
- Thus **C** embeds as a residuated lattice into \mathbf{S}_{σ} for some conucleus σ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of the proof (cont.)

- Let **C** be a finite partial subalgebra of **A**.
- Consider the subsemiring **R** of **A** generated by *C*.
- Then $\mathbf{R} \in \mathbf{K} \cap \mathbf{Q}$.
- By FEP for $K \cap Q$ there is a finite semiring $\boldsymbol{S} \in K \cap Q$ and
- there is a surjective semiring homomorphism $\phi \colon \mathbf{R} \to \mathbf{S}$ such that $\phi(r) \leq \phi(c)$ implies $r \leq c$ for all $r \in R$ and $c \in C$.
- Since **A** is integral, it is possible to show that **S** is in fact a finite residuated lattice.
- Thus **C** embeds as a residuated lattice into \mathbf{S}_{σ} for some conucleus σ
- Since S_{σ} is a subsemiring of S, S_{σ} is finite and belongs to $K \cap Q$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

Rostislav Horčík (ICS)

Holland's Theorem

OGLAL 2011 36 / 36

2

イロト イヨト イヨト イヨト