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Uninorm logic (UL)

Proof-theoretically:

UL is the logic given by the hypersequent calculus for Full Lambek
extended by exchange and Avron’s communication rule.

Algebraically:

UL is the logic of commutative totally ordered FL-algebras
(FLe-chains).
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Algebraic semantics
Definition
An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

A = 〈A,∧,∨, ·,→, 0, 1〉
such that

〈A,∧,∨〉 is a lattice,

〈A, ·, 1〉 is a commutative monoid,

ab ≤ c iff b ≤ a→ c.

A complete FLe-algebra is an FLe-algebra whose lattice reduct is
complete.

A totally ordered FLe-algebra is called FLe-chain.

An FLe-chain A is dense if a < b implies a < c < b for some c ∈ A.
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Density rule
Theorem (Metcalfe, Montagna 2007; Ciabattoni, Metcalfe 2008)
UL is strongly complete w.r.t. the class of densely ordered FLe-chains.

... d
G | Γ⇒ p | Σ, p ⇒ Π

Density, p is fresh
G | Γ,Σ⇒ Π

First replace sequents of the form Λ, p ⇒ p in d by Λ⇒ 1.

The left occurrences of p in d are replaced by Γ.

The right occurrences of p in d are replaced as follows:

Λ⇒ p  Λ,Σ⇒ Π .
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Densifiable varieties
Definition
A variety V ordered algebras is said to be densifiable if every gap (g , h) of
a chain in V can be filled by another chain in V.

g

h

e(g)

e(h)
pembedding e

A ∈ V B ∈ V

Theorem
Let V be a densifiable variety. Then every (nontrivial) finite or countable
chain in V is embeddable into a countable dense chain in V.
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Corresponding residuated frame
Let A = 〈A,∧,∨, ·,→, 0, 1〉 be an FLe-chain having a gap (g , h).

Define W = 〈Ap∗,A ∪ {p},N〉 by

apn N b iff ahn ≤ b
a N p iff a ≤ g

apm N p iff ahm−1 ≤ 1

where a, b ∈ A, n ≥ 0 and m ≥ 1.

Lemma
W can be extended so that it is residuated.
W+ forms an FLe-chain.
A embeds into W+ via x 7→ {x}BC.
{g}BC ( {p}BC ( {h}BC.
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Idempotent commutative semirings

Definition
An idempotent commutative semiring (ic-semiring) is an algebra

A = 〈A,∨, ·, 1,⊥〉

such that

〈A,∨,⊥〉 is semilattice with a bottom element,
〈A, ·, 1〉 is a commutative monoid,
a(b ∨ c) = ab ∨ ac.

Fact
Every complete FLe-algebra forms an ic-semiring.
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Formal power series
Let A = 〈A,∨, ·, 1,⊥〉 be an ic-semiring. Then the ic-semiring of formal
power series AJXK consists of:

t =
∨

n∈N
tnXn , tn ∈ A . (terms ⊥Xn are omitted)

The operations are defined

t ∨ s =
∨

n∈N
(tn ∨ sn)Xn

t · s =
∨

n∈N

 ∨
i+j=n

tisj

Xn

A embeds into AJXK via a 7→ a ∨
∨

n≥1⊥Xn.
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Formal power series (cont.)
Let A = 〈A,∨,∧, ·,→, 1, 0〉 be a complete FLe-algebra. Then AJXK is a
complete FLe-algebra as well where

t ∧ s =
∨

n∈N
(tn ∧ sn)Xn ,

X k → s =
∨

n∈N
sk+nXn , (discard the first k el.)

a→ s =
∨

n∈N
(a→ sn)Xn ,

t → s =

 ∨
k∈N

tkX k

→ s =
∧

k∈N
(tk → (X k → s)) .
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Nuclei
Let A be an FLe-algebra. Then the following concepts are equivalent:

1 A semiring congruence θ ∈ A× A such that

max a/θ exists for all a ∈ A .

2 A nucleus on A is a closure operator γ : A→ A such that

γ(a)γ(b) ≤ γ(ab) .

3 A nuclear retraction is a subset C ⊆ A closed under arbitrary meets
such that

a ∈ A and c ∈ C =⇒ a→ c ∈ C .

Fact
Then A/θ is (not only an ic-semiring but also) an FLe-algebra.
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Algebraic construction
Start with the given FLe-chain A with a gap (g , h). If it is not complete
then take its DM-completion.

Consider the subset C ⊆ AJXK consisting of the following formal series for
all a ∈ A:

â =
∨

n∈N
(hn → a)Xn ,

ã = (a→ g) ∨
∨
n≥1

(ahn−1 → 1)Xn .

Theorem
C is a nuclear retraction corresponding to a semiring congruence θ.
Thus AJXK/θ is an FLe-chain isomorphic to W+.
A embeds into AJXK/θ via a 7→ â.
ĝ < 1̃ < ĥ.

Rostislav Horčík (ICS) Density elimination TbiLLC 2013 12 / 14



Algebraic construction
Start with the given FLe-chain A with a gap (g , h). If it is not complete
then take its DM-completion.

Consider the subset C ⊆ AJXK consisting of the following formal series for
all a ∈ A:
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â =
∨

n∈N
(hn → a)Xn ,
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â =
∨

n∈N
(hn → a)Xn ,
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Explanation
Recall X ∈ AJXK plays the role of the new element filling the gap (g , h).

1 Original elements â:

Most of the time we pretend X to be h. Consider the semiring
congruence η on AJXK generated by X = h. Then

â = max a/η .

2 New elements ã:

We are looking for a finer congruence θ. What maxX/θ could be?

X θ X · 1̂ θ g ∨ X · 1̂ = 1̃ .

Generate the nuclear retraction by {â | a ∈ A} ∪ {1̃}. Thus we
introduce elements ã = a→ 1̃.
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Rostislav Horčík (ICS) Density elimination TbiLLC 2013 13 / 14



Explanation
Recall X ∈ AJXK plays the role of the new element filling the gap (g , h).

1 Original elements â:
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Thank you!
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