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Basic substructural logics

@ Substructural logics are logics lacking some of the structural rules
(contraction, exchange, left and right weakening).
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Basic substructural logics

@ Substructural logics are logics lacking some of the structural rules
(contraction, exchange, left and right weakening).

Moo A= p MaB,A= ¢
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@ The weakest substructural logic called FL is a logic obtained from
the sequent calculus for Intuitionistic logic by omitting (c), (e), (i)
and (o). The language of FL: A, V.-, /,\,0, 1.

@ Let SC {c,e,i,0}. Then FLg denotes the extension of FL by rules
from S.
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Cut elimination

Theorem (Komori, Ono)
Let{c} # S C {e,c,i,o0}. Then FLg enjoys cut elimination.
The logic FL. has not cut elimination. However, it can be equally

presented by a different sequent calculus FLy arising from FL; by
replacing the contraction rule (c) by the global contraction rule (gc):

MY,5 A=
ryasy 9

where ¥ is any finite sequence of formulas. This means that a sequent
is provable in FL iff it is provable in FLgc.

Theorem
Cut elimination holds for FLgc.
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Axiomatic extensions

@ By a substructural logic we mean an axiomatic extension of FL.

@ Let I be a set of axiomatic schemata. The axiomatic extension of
FL by T is the calculus obtained from FL by adding new initial
sequents = ¢ for all formulas ¢ € T.

@ Let L be a substructural logic. The provability relation of L is
denoted by .

@ Given S C {c, e, i, 0}, the logic FLg can be viewed as an
axiomatic extension of FL. The following schemata correspond
respectively to (c),(e), (i) and (0):

a\(a-a),  (a-P)\(B-a), a\1, O\a.
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Algebraizability

@ FL is algebraizable and its equivalent algebraic semantics is the
variety of FL-algebras.
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Algebraizability
@ FL is algebraizable and its equivalent algebraic semantics is the
variety of FL-algebras.

@ Thus there is a dual isomorphism V between the lattice of
axiomatic extensions of FL and the subvariety lattice of
FL-algebras.

@ Let L be a substructural logic. Then we have the following
equivalences:

FLe it By 1=1A¢ [1<¢].
Fvpy e =1 it Fr(e\v)A(\e).

@ By complexity of a logic L we mean the complexity of its set of
theorems. Due to algebraizability it is the same as the complexity
of the equational theory for V(L).
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Algebraic semantics

Definition
An FL-algebra is an algebra A = (A, A, V, -, /,\,0,1), where (A, A, V) is
a lattice, (A, -, 1) is a monoid and

x-y<z iff x<z/y iff y<x\z.
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Algebraic semantics

Definition
An FL-algebra is an algebra A = (A, A, V, -, /,\,0,1), where (A, A, V) is
a lattice, (A, -, 1) is a monoid and

x-y<z iff x<z/y iff y<x\z.

Lemma
Let A be a nontrivial FL-algebra. Then there is a € A such that a < 1.

Proof.

Since A is nontrivial, there is b € Asuch that b # 1. If 1 £ b then
a=bA1<1.lfb>1thenwetakea=b\1<1\1=1. Moreover,
a< 1otherwiseb=b-a=>b-(b\1) <1. O
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Known complexity results

@ There are results on stronger logics like classical, Intuitionistic,
tukasiewicz...

Rostislav Hor¢ik (ICS, ASCR) 7/20



Known complexity results

@ There are results on stronger logics like classical, Intuitionistic,
tukasiewicz...

@ Multiplicative additive fragment of Linear Logic (MALL) is
PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

Rostislav Hor¢ik (ICS, ASCR) 7/20



Known complexity results

@ There are results on stronger logics like classical, Intuitionistic,
tukasiewicz...

@ Multiplicative additive fragment of Linear Logic (MALL) is
PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

o The fact the MALL is in PSPACE follows from the existence of a
cut-free sequent calculus.

Rostislav Hor¢ik (ICS, ASCR) 7/20



Known complexity results

@ There are results on stronger logics like classical, Intuitionistic,
tukasiewicz...

@ Multiplicative additive fragment of Linear Logic (MALL) is
PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

o The fact the MALL is in PSPACE follows from the existence of a
cut-free sequent calculus.

o PSPACE-hardness is proved by reduction to QBF.

Rostislav Hor¢ik (ICS, ASCR) 7120



Known complexity results

@ There are results on stronger logics like classical, Intuitionistic,
tukasiewicz...

@ Multiplicative additive fragment of Linear Logic (MALL) is
PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

o The fact the MALL is in PSPACE follows from the existence of a
cut-free sequent calculus.

o PSPACE-hardness is proved by reduction to QBF.

e The proof is proof-theoretical, long, and very technical (does not
work in the presence of weakening).

Rostislav Hor¢ik (ICS, ASCR) 7120



Known complexity results

@ There are results on stronger logics like classical, Intuitionistic,
tukasiewicz...

@ Multiplicative additive fragment of Linear Logic (MALL) is
PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

o The fact the MALL is in PSPACE follows from the existence of a
cut-free sequent calculus.

o PSPACE-hardness is proved by reduction to QBF.

e The proof is proof-theoretical, long, and very technical (does not
work in the presence of weakening).

@ FL is PSPACE-complete (Kanovich 94, Kanazawa 99). The proof
is a modification of the proof for MALL. The coding is simplified,
uses QBF where the propositional part is in DNF.
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Our aims

@ As mentioned above, the proof of PSPACE-hardness is usually
done by reduction to QBF. The fact that the reduction works is
shown by analyzing the corresponding sequent calculus.
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© We would like to find method which is more general and can be
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Our aims

@ As mentioned above, the proof of PSPACE-hardness is usually
done by reduction to QBF. The fact that the reduction works is
shown by analyzing the corresponding sequent calculus.

© We would like to find method which is more general and can be
applied possibly to a wider class of substructural logics.
Our proof of PSPACE-hardness should be more algebraic
therefore less dependent on the sequent calculus.

© We will show by algebraic means that any substructural logic
having a stronger version of disjunction property is PSPACE-hard.

@ In fact, this result is analogous to that we have for
superintuitionistic logics saying that each superintuitionistic logic
with the disjunction property is PSPACE-hard.
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Strong Disjunction Property

@ Disjunction Property: provability of a disjunction implies provability
of one of the disjuncts.
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Strong Disjunction Property

@ Disjunction Property: provability of a disjunction implies provability
of one of the disjuncts.

@ We need a stronger version with atomic assumptions.

Definition (Strong Disjunction Property)

Let L be a substructural logic. Then L satisfies Strong Disjunction
Property (SDP) if for all formulas ¢, ¢ and atoms vy, ..., v, we have

FL(vie--vn) \(p V) implies F (vy---vp)\@orbp (vi---vyp)\ .

Theorem
LetS C {e,c,i,o}. ThenFLg has SDP.
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Proof of SDP

@ Leta = ay - - - a5 where a;’s are atoms.

@ Provability of a \(¢ V ¥) means that the sequent
ais, &, as, as, as = ¢ V 1 has a cut-free proof.

@ If S = {c}, then consider a cut-free proof in FLgyc.
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@ Leta = ay - - - a5 where a;’s are atoms.

@ Provability of a \(¢ V ¥) means that the sequent
ais, &, as, as, as = ¢ V 1 has a cut-free proof.
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Proof of SDP

@ Leta = ay - - - a5 where a;’s are atoms.

@ Provability of a \(¢ V ¥) means that the sequent
ais, &, as, as, as = ¢ V 1 has a cut-free proof.

@ If S = {c}, then consider a cut-free proof in FLgyc.

az,as,8 = eV
as,a1,as, 82,84 = oV 1
a1,32,33,a4,a5:>g0\/¢

(i)
(e)
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Proof of SDP

@ Leta = ay - - - a5 where a;’s are atoms.

@ Provability of a \(¢ V ¥) means that the sequent
ais, &, as, as, as = ¢ V 1 has a cut-free proof.

@ If S = {c}, then consider a cut-free proof in FLgyc.

as,as,ds,d,d,a = eV

C
a3, as,a = oV (i)( )
as,ay,ds,da,a4 = 90\/1/) (e)
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Proof of SDP

@ Leta = ay - - - a5 where a;’s are atoms.

@ Provability of a \(¢ V ¥) means that the sequent
ais, &, as, as, as = ¢ V 1 has a cut-free proof.

@ If S = {c}, then consider a cut-free proof in FLgyc.

d3,da3,4a5,da2,dp,82 =
a3,a3,85,82,82,8> = ¢ V1
as, a,a = p Vi
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Proof of SDP

@ Leta = ay - - - a5 where a;’s are atoms.

@ Provability of a \(¢ V ¥) means that the sequent
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Proof of SDP

@ Leta = ay - - - a5 where a;’s are atoms.

@ Provability of a \(¢ V ¥) means that the sequent
ais, &, as, as, as = ¢ V 1 has a cut-free proof.

@ If S = {c}, then consider a cut-free proof in FLgyc.

as, a3, ds,dz, 8,82 =
as,as,dp = ¢ (l
as,a(,das,daz,a4 = ¢ (e)
a,a,83,84,85 = ¢

()
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Our results

Theorem

Let L be a consistent substructural logic having SDP. Then L is
PSPACE-hard.

Corollary
Let S C {e,c,i,o}. ThenFLg is PSPACE-hard.

For basic substructural logics without contraction we can even obtain
PSPACE-completeness.

Theorem
Let S C {e,i,o0}. ThenFLg is PSPACE-complete.
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Quantified Boolean formulas (QBF)

@ Let us start with a quantified Boolean formula

Qan"'Q1X1B(X1’--'»Xn)>

where Q; € {V,3} and B(x, ..., Xp) is in DNF.
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Quantified Boolean formulas (QBF)

@ Let us start with a quantified Boolean formula
Qan‘ v Q1X1B(X17"'7Xn)>

where Q; € {V,3} and B(x, ..., Xp) is in DNF.

@ Thus B(xq,...,Xn) = Dy V --- Vv Dy, where D;’s are conjunctions of
literals (i.e., x; or —x;) and every x; appears in D; at most once.

@ Vx3y (x A—y)V (=x Ay)is true.

@ JyVx(x A—y)V (—x Ay)if false.
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Coding — propositional part

@ Given A= Quxp--- Qix1B(x1, ..., Xn), we define FL-formula A* in
variables xq,...,Xn, X1, ..., Xn.
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Coding — propositional part
@ Given A= Quxp--- Qix1B(x1, ..., Xn), we define FL-formula A* in
variables xq,...,Xn, X1, ..., Xn.
@ Let e be a classical evaluation of xq, ..., x,. Define

{x, if () =1,

% ife(x)=0.

)

Then e* = x7--- x5.
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Coding — propositional part
@ Given A= Quxp--- Qix1B(x1, ..., Xn), we define FL-formula A* in
variables xq,...,Xn, X1, ..., Xn.
@ Let e be a classical evaluation of xq, ..., x,. Define

{Xj f e(x)

X; ife(x) =

e _
in

1,
Then e* = x7--- x5.
@ For each D; we define D} = yy - - yp, where
Xj if x; € D,
Yi=4% if ~x; € D,
X;V X; otherwise.
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Coding — propositional part

@ Given A= Quxp--- Qix1B(x1, ..., Xn), we define FL-formula A* in
variables xq,...,Xn, X1, ..., Xn.
@ Let e be a classical evaluation of xq, ..., x,. Define
we_ JXi if e(x;) =1,
! X; if e(x;) = 0.

Then e* = x7--- x5.
@ For each D; we define D} = yy - - yp, where
Xj if x; € D,
Yi=4% if ~x; € D,
X;V X; otherwise.
@ Then B*=D;Vv---V Dj.
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Coding — propositional part

Lemma

LetV be a nontrivial subvariety of FL and e a classical evaluation of
Xt,...,Xp. Thene(B) =1 iffl=y 1 < e*\ B*.
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Coding — propositional part
Lemma
LetV be a nontrivial subvariety of FL and e a classical evaluation of

Xt,...,Xp. Thene(B) =1 iffl=y 1 < e*\ B*.

Sketch of the proof (=)
@ Assume that e(B) = 1.
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Sketch of the proof (<)

@ Let A € V be a nontrivial algebra. We have a € Asuchthata< 1.

Let v be the A-evaluation s.t.

L)1 ife(x) =1, _\_ Ja ife(x) =1
V(Xf)_{a o) — 0. V(Xf)_{1 it e(x) = .

)
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Sketch of the proof (<)

@ Let A € V be a nontrivial algebra. We have a € Asuchthata< 1.
Let v be the A-evaluation s.t.
) _ a if e(x))
v(X) = { !

L)1 ife(x) 1
V(X’)_{ : 1 if e(x;) = 0.

)

=1
a ife(x;)) =0,

@ Note that v(x?) = 1 and v(y;) € {a,1}. Thus
v(DF) = v(yi - yn) < v(y)) for each j.
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)

=1
a ife(x;)) =0,

@ Note that v(x?) = 1 and v(y;) € {a,1}. Thus
V(D7) = v(ys---yn) < v(y;) for each j.

@ Assume that e(B) = 0. Then there has to be a literal z; in each D;
s.t. e(z;)) =0.

@ Case 1 -2z = x;: then y; = x; and v(x;) = a. Thus
v(D;) < v(y) = a
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Sketch of the proof (<)

@ Let A € V be a nontrivial algebra. We have a € Asuchthata< 1.
Let v be the A-evaluation s.t.
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=1
a ife(x;)) =0,

@ Note that v(x?) = 1 and v(y;) € {a,1}. Thus
V(D7) = v(ys---yn) < v(y;) for each j.
@ Assume that e(B) = 0. Then there has to be a literal z; in each D;
s.t. e(z;)) =0.
@ Case 1 -2z = x;: then y; = x; and v(x;) = a. Thus
v(D;) < v(y) = a
@ Case 2 - z; = —x;: then y; = X; and v(X;) = a. Thus
v(D;) < v(y) = a
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Sketch of the proof (<)

@ Let A € V be a nontrivial algebra. We have a € Asuchthata< 1.
Let v be the A-evaluation s.t.
) _ a if e(x))
v(X) = { !

L)1 ife(x) 1
V(X’)_{ : 1 it e(x) = 0.

)

=1
a ife(x;)) =0,

@ Note that v(x?) = 1 and v(y;) € {a,1}. Thus
V(D7) = v(ys---yn) < v(y;) for each j.
@ Assume that e(B) = 0. Then there has to be a literal z; in each D;
s.t. e(z;)) =0.
@ Case 1 -2z = x;: then y; = x; and v(x;) = a. Thus
v(D;) < v(y) = a
@ Case 2 - z; = —x;: then y; = X; and v(X;) = a. Thus
v(D;) < v(y) = a
@ Thus A1 <e*\B"
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Coding of quantifiers

@ We define inductively formulas Ag, ..., A;.

Rostislav Hor¢ik (ICS, ASCR) 16/20



Coding of quantifiers

@ We define inductively formulas A, . ..

@ First, A = B".

Rostislav Hor¢ik (ICS, ASCR)

16/20



Coding of quantifiers

@ We define inductively formulas Ag, ..., A;.
@ First, A* = B*.

@ Leti> 0. If Q; =Vthen

A= (X VXi)\ A,

Rostislav Hor¢ik (ICS, ASCR) 16/20



Coding of quantifiers

@ We define inductively formulas Ag, ..., A;.
@ First, A = B".
@ Leti> 0. If Q; =Vthen
A7 =XV Xi)\ Ay,
whereas, if Q; = 3 then

Ar = (G \ A1) V (X \ A1),

Rostislav Hor¢ik (ICS, ASCR) 16/20



Coding of quantifiers

@ We define inductively formulas Ag, ..., A;.
@ First, A = B".
@ Leti> 0. If Q; =Vthen
A7 =XV Xi)\ Ay,
whereas, if Q; = 3 then

A =((xi\g) vV (Xi\a))/ (A1 \gi A1),
where q; is a fresh variable.

Rostislav Hor¢ik (ICS, ASCR) 16/20



Coding of quantifiers

@ We define inductively formulas Ag, ..., A;.
@ First, A = B".
@ Leti> 0. If @ = Vthen
A7 =XV Xi)\ Ay,
whereas, if Q; = 3 then

A =((xi\g) vV (Xi\a))/ (A1 \gi A1),
where q; is a fresh variable.

@ Thus we have a polynomial-time translation of
Qnxn- - Qix1B(xq,. .., xn) to the FL-formula A;,.
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Main lemma

Lemma

Let L be a consistent substructural logic having SDP, 0 < i < n, and e
be a classical evaluation of Xj.1,...,Xn. Then e(QiX;--- Qix1B) = 1 iff
L e* \ AT
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Main lemma

Lemma

Let L be a consistent substructural logic having SDP, 0 < i < n, and e
be a classical evaluation of Xj1,...,Xn. Then e(Qix;--- Qi x1B) = 1 iff
L e* \ A;k

Proof
@ Let V(L) be the corresponding variety of FL-algebras.
@ By induction on i. We have seen the proof for the case i = 0.
@ Suppose that i > 0.

@ Let e be a classical evaluation of X, 1, ..., Xn.
@ Denote by ey, 1 the extensions of e which evaluate x; respectively
by 0, 1.

@ Note that e} = X;- " and €] = x; - *.
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Proof (=)

@ Assume that e(Qix;--- Qix;B) =1and Q; = 3.
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@ Assume that e(Qix;--- Qix;B) =1and Q; = 3.

@ Then eo(oi_1X,'_1 s Q1X1 B) =1 or ey (Q,'_1X,'_1 s Q1X1 B) =1,
say the first holds.

@ By induction hypotheses we have 1 < g5\ A7_,, i.e., g5 < A7, for
each A € V(L).

@ Thus x;-e* =g < Af ,,ie, e <X \A ;.
@ By transitivity of the implication we get

" <X\ A1 < (X\q)/(A1\ai) <
((xi\ag) v (xi\a)/ (A \gin1) = Af.

@ Consequently, 1 < e*\ A7 for each algebra A € V(L).
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Proof (<)
@ Assume that e(Qix;--- Qi xyB) =0and Q; = 3.
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@ Then eo(Q/,1X,',1 < QX B) =0and 61(0,',1X,',1 < Qy X B) =0.
@ By induction hypotheses there are Ag, Ay € V(L) such that
Ao i~ e\ A7y and A [~ el \ A7 ;.
@ Note that
e \A_1 = Xi-e\A_y =€ \(Xi\A,),
e\AL = X \A =€ \(6\A ).
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Proof (<)

@ Assume that e(Qix;--- Qix;B) =0and Q; = 3.
@ Then eo(Q/,1X,',1 < QX B) =0and 61(0,',1X,',1 < Qy X B) =0.
@ By induction hypotheses there are Ag, Ay € V(L) such that
Ao ~ ey \ A7y and Ay [£= e\ A4
@ Note that
e \A_1 = Xi-e\A;=e \(\A_y),
e\AL, = X \AL =e"\(x\A ).
@ By SDP there is A € V(L) such that
AFET<e \((x\A{)V(x\A;,)),ie.,thereis an A-evaluation
v such that v(e*) > v((x;\ A7_{) V (xi \ A_,)).
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Proof (<)

@ Assume that e(Qix;--- Qix;B) =0and Q; = 3.
@ Then eo(Q/,1X,',1 < QX B) =0and 61(0,',1X,',1 < Qy X B) =0.
@ By induction hypotheses there are Ag, Ay € V(L) such that
Ao ~ ey \ A7y and Ay [£= e\ A4
@ Note that
& \A1 = X \AL =€ \(X\A4),
ej\AL, = X e \Al =6 \(x\A,).
@ By SDP there is A € V(L) such that
AFET<e \((x\A{)V(x\A;,)),ie.,thereis an A-evaluation
v such that v(e*) > (( N\AT )V (X \AFy)).
@ W.l.o.g. assume that v(q;) = v(A;*_1). Then

v(e®) > v((X\ A1) V (Xi\ Ai_4)) =
v(((xi\ai) v (Xi\ i)/ (A1 \gi A 1)) = v(AT).
Consequently, A =1 < e*\ A7.
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Remarks

@ We have presented a relatively simple proof (in comparison with
MALL) of PSPACE-hardness (PSPACE-completeness) for some
substructural logics.
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@ We have presented a relatively simple proof (in comparison with
MALL) of PSPACE-hardness (PSPACE-completeness) for some
substructural logics.

@ We have now a method for proving PSPACE-hardness of a
substructural logic just by showing SDP.

@ Is there an algebraic proof of SDP for basic substructural logics?

@ We need even less than SDP, namely

if =0 a\((x\ ) V (X\¢)) then L a\(x\ p) or b a\(X\ ¢),
where ¢ is a formula, « is a product of atoms, and x, x are atoms.
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