Disjunction Property and Complexity of Substructural Logics

Rostislav Horčík

Institute of Computer Science
Academy of Sciences of the Czech Republic
UNILOG 2010

Basic substructural logics

- Substructural logics are logics lacking some of the structural rules (contraction, exchange, left and right weakening).

$$
\begin{array}{cc}
\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} \text { (c) } & \frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \varphi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \varphi}(\mathrm{e}) \\
\frac{\Gamma, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} \text { (i) } & \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \alpha} \text { (o) }
\end{array}
$$

Basic substructural logics

- Substructural logics are logics lacking some of the structural rules (contraction, exchange, left and right weakening).

$$
\begin{array}{cc}
\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} \text { (c) } & \frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \varphi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \varphi}(\mathrm{e}) \\
\frac{\Gamma, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} \text { (i) } & \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \alpha} \text { (o) }
\end{array}
$$

- The weakest substructural logic called FL is a logic obtained from the sequent calculus for Intuitionistic logic by omitting (c), (e), (i) and (o). The language of $F L: \wedge, \vee, \cdot, /, \backslash, 0,1$.
- Let $S \subseteq\{c, e, i, o\}$. Then FL_{S} denotes the extension of FL by rules from S.

Cut elimination

Theorem (Komori, Ono)
Let $\{c\} \neq S \subseteq\{e, c, i, o\}$. Then $F L_{S}$ enjoys cut elimination.
The logic FL_{c} has not cut elimination. However, it can be equally presented by a different sequent calculus $\mathrm{FL}_{g c}$ arising from FL_{c} by replacing the contraction rule (c) by the global contraction rule (gc):

$$
\frac{\Gamma, \Sigma, \Sigma, \Delta \Rightarrow \varphi}{\Gamma, \Sigma, \Delta \Rightarrow \varphi}(\mathrm{gc})
$$

where Σ is any finite sequence of formulas. This means that a sequent is provable in FL_{c} iff it is provable in $\mathrm{FL}_{g c}$.

Theorem
Cut elimination holds for $F L_{g c}$.

Axiomatic extensions

- By a substructural logic we mean an axiomatic extension of FL.
- Let Γ be a set of axiomatic schemata. The axiomatic extension of FL by Γ is the calculus obtained from FL by adding new initial sequents $\Rightarrow \varphi$ for all formulas $\varphi \in \Gamma$.
- Let L be a substructural logic. The provability relation of L is denoted by \vdash_{L}.
- Given $S \subseteq\{c, e, i, o\}$, the logic $F L_{s}$ can be viewed as an axiomatic extension of FL. The following schemata correspond respectively to (c),(e), (i) and (o):

$$
\alpha \backslash(\alpha \cdot \alpha), \quad(\alpha \cdot \beta) \backslash(\beta \cdot \alpha), \quad \alpha \backslash 1, \quad 0 \backslash \alpha
$$

Algebraizability

- FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.

Algebraizability

- FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.
- Thus there is a dual isomorphism V between the lattice of axiomatic extensions of FL and the subvariety lattice of FL-algebras.

Algebraizability

- FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.
- Thus there is a dual isomorphism V between the lattice of axiomatic extensions of FL and the subvariety lattice of FL-algebras.
- Let L be a substructural logic. Then we have the following equivalences:

$$
\begin{aligned}
& \vdash_{L} \varphi \quad \text { iff } \quad \models_{\mathrm{V}(L)} 1=1 \wedge \varphi \quad[1 \leq \varphi] . \\
& \models_{\mathrm{v}(L)} \varphi=\psi \quad \text { iff } \quad \vdash_{L}(\varphi \backslash \psi) \wedge(\psi \backslash \varphi) .
\end{aligned}
$$

Algebraizability

- FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.
- Thus there is a dual isomorphism V between the lattice of axiomatic extensions of FL and the subvariety lattice of FL-algebras.
- Let L be a substructural logic. Then we have the following equivalences:

$$
\begin{aligned}
& \vdash_{L} \varphi \quad \text { iff } \quad \models_{\mathrm{v}(L)} 1=1 \wedge \varphi \quad[1 \leq \varphi] . \\
& \models_{\mathrm{v}(L)} \varphi=\psi \quad \text { iff } \quad \vdash_{L}(\varphi \backslash \psi) \wedge(\psi \backslash \varphi) .
\end{aligned}
$$

- By complexity of a logic L we mean the complexity of its set of theorems. Due to algebraizability it is the same as the complexity of the equational theory for $\mathrm{V}(L)$.

Algebraic semantics

Definition

An FL-algebra is an algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, /, \backslash, 0,1\rangle$, where $\langle A, \wedge, \vee\rangle$ is a lattice, $\langle A, \cdot, 1\rangle$ is a monoid and

$$
x \cdot y \leq z \quad \text { iff } \quad x \leq z / y \text { iff } y \leq x \backslash z .
$$

Algebraic semantics

Definition

An FL-algebra is an algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, /, \backslash, 0,1\rangle$, where $\langle A, \wedge, \vee\rangle$ is a lattice, $\langle A, \cdot, 1\rangle$ is a monoid and

$$
x \cdot y \leq z \quad \text { iff } \quad x \leq z / y \quad \text { iff } \quad y \leq x \backslash z
$$

Lemma

Let \mathbf{A} be a nontrivial FL-algebra. Then there is $a \in A$ such that $a<1$.

Proof.

Since \mathbf{A} is nontrivial, there is $b \in A$ such that $b \neq 1$. If $1 \not \leq b$ then $a=b \wedge 1<1$. If $b>1$ then we take $a=b \backslash 1 \leq 1 \backslash 1=1$. Moreover, $a<1$ otherwise $b=b \cdot a=b \cdot(b \backslash 1) \leq 1$.

Known complexity results

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...

Known complexity results

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

Known complexity results

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
- The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.

Known complexity results

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
- The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.
- PSPACE-hardness is proved by reduction to QBF.

Known complexity results

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
- The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.
- PSPACE-hardness is proved by reduction to QBF.
- The proof is proof-theoretical, long, and very technical (does not work in the presence of weakening).

Known complexity results

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
- The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.
- PSPACE-hardness is proved by reduction to QBF.
- The proof is proof-theoretical, long, and very technical (does not work in the presence of weakening).
- FL is PSPACE-complete (Kanovich 94, Kanazawa 99). The proof is a modification of the proof for MALL. The coding is simplified, uses QBF where the propositional part is in DNF.

Our aims

(1) As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.

Our aims

(1) As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.
(2) We would like to find method which is more general and can be applied possibly to a wider class of substructural logics. Our proof of PSPACE-hardness should be more algebraic therefore less dependent on the sequent calculus.

Our aims

(1) As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.
(2) We would like to find method which is more general and can be applied possibly to a wider class of substructural logics. Our proof of PSPACE-hardness should be more algebraic therefore less dependent on the sequent calculus.
(3) We will show by algebraic means that any substructural logic having a stronger version of disjunction property is PSPACE-hard.

Our aims

(1) As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.
(2) We would like to find method which is more general and can be applied possibly to a wider class of substructural logics.
Our proof of PSPACE-hardness should be more algebraic therefore less dependent on the sequent calculus.
(3) We will show by algebraic means that any substructural logic having a stronger version of disjunction property is PSPACE-hard.
(1) In fact, this result is analogous to that we have for superintuitionistic logics saying that each superintuitionistic logic with the disjunction property is PSPACE-hard.

Strong Disjunction Property

- Disjunction Property: provability of a disjunction implies provability of one of the disjuncts.

Strong Disjunction Property

- Disjunction Property: provability of a disjunction implies provability of one of the disjuncts.
- We need a stronger version with atomic assumptions.

Strong Disjunction Property

- Disjunction Property: provability of a disjunction implies provability of one of the disjuncts.
- We need a stronger version with atomic assumptions.

Definition (Strong Disjunction Property)

Let L be a substructural logic. Then L satisfies Strong Disjunction Property (SDP) if for all formulas φ, ψ and atoms v_{1}, \ldots, v_{n} we have $\vdash_{\mathrm{L}}\left(v_{1} \cdots v_{n}\right) \backslash(\varphi \vee \psi)$ implies $\vdash_{\mathrm{L}}\left(v_{1} \cdots v_{n}\right) \backslash \varphi$ or $\vdash_{\mathrm{L}}\left(v_{1} \cdots v_{n}\right) \backslash \psi$.

Theorem
Let $S \subseteq\{e, c, i, o\}$. Then FL_{S} has SDP.

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

$$
\frac{\vdots}{\frac{a_{3}, a_{1}, a_{5}, a_{2}, a_{4} \Rightarrow \varphi \vee \psi}{a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi}}(\text { e })
$$

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

$$
\frac{\frac{\vdots}{a_{3}, a_{5}, a_{2} \Rightarrow \varphi \vee \psi}}{\frac{a_{3}, a_{1}, a_{5}, a_{2}, a_{4} \Rightarrow \varphi \vee \psi}{a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi}} \text { (i) }
$$

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.
$\frac{\frac{\vdots}{a_{3}, a_{3}, a_{5}, a_{2}, a_{2}, a_{2} \Rightarrow \varphi \vee \psi}}{\frac{a_{3}, a_{5}, a_{2} \Rightarrow \varphi \vee \psi}{\frac{a_{3}, a_{1}, a_{5}, a_{2}, a_{4} \Rightarrow \varphi \vee \psi}{a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi}} \text { (c) }}$ (e)

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

$$
\begin{gathered}
\frac{\vdots}{\frac{a_{3}, a_{3}, a_{5}, a_{2}, a_{2}, a_{2} \Rightarrow \varphi}{a_{3}, a_{3}, a_{5}, a_{2}, a_{2}, a_{2} \Rightarrow \varphi \vee \psi}}\left(\begin{array}{l}
\frac{a_{3}, a_{5}, a_{2} \Rightarrow \varphi \vee \psi}{} \\
\frac{a_{3}, a_{1}, a_{5}, a_{2}, a_{4} \Rightarrow \varphi \vee \psi}{a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi} \\
\text { (i) } \\
\text { (c) }
\end{array}\right.
\end{gathered}
$$

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

$$
\frac{\vdots}{a_{3}, a_{3}, a_{5}, a_{2}, a_{2}, a_{2} \Rightarrow \varphi}
$$

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

$$
\frac{\vdots}{\frac{a_{3}, a_{3}, a_{5}, a_{2}, a_{2}, a_{2} \Rightarrow \varphi}{a_{3}, a_{5}, a_{2} \Rightarrow \varphi}} \text { (c) }
$$

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

$$
\frac{\vdots}{\frac{a_{3}, a_{3}, a_{5}, a_{2}, a_{2}, a_{2} \Rightarrow \varphi}{\frac{a_{3}, a_{5}, a_{2} \Rightarrow \varphi}{a_{3}, a_{1}, a_{5}, a_{2}, a_{4} \Rightarrow \varphi}} \text { (i) }} \text { (c) }
$$

Proof of SDP

- Let $\alpha=a_{1} \cdots a_{5}$ where a_{i} 's are atoms.
- Provability of $\alpha \backslash(\varphi \vee \psi)$ means that the sequent $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \vee \psi$ has a cut-free proof.
- If $S=\{c\}$, then consider a cut-free proof in $\mathrm{FL}_{g c}$.

$$
\frac{\vdots}{\frac{\vdots}{a_{3}, a_{3}, a_{5}, a_{2}, a_{2}, a_{2} \Rightarrow \varphi}} \frac{a_{3}, a_{5}, a_{2} \Rightarrow \varphi}{\frac{a_{3}, a_{1}, a_{5}, a_{2}, a_{4} \Rightarrow \varphi}{a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi}} \text { (i) } \text { (c) }
$$

Our results

Theorem
Let L be a consistent substructural logic having SDP. Then L is PSPACE-hard.

Corollary
Let $S \subseteq\{e, c, i, o\}$. Then FL_{S} is PSPACE-hard.
For basic substructural logics without contraction we can even obtain PSPACE-completeness.

Theorem
Let $S \subseteq\{e, i, o\}$. Then FL_{S} is PSPACE-complete.

Quantified Boolean formulas (QBF)

- Let us start with a quantified Boolean formula

$$
Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)
$$

where $Q_{i} \in\{\forall, \exists\}$ and $B\left(x_{1}, \ldots, x_{n}\right)$ is in DNF.

Quantified Boolean formulas (QBF)

- Let us start with a quantified Boolean formula

$$
Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)
$$

where $Q_{i} \in\{\forall, \exists\}$ and $B\left(x_{1}, \ldots, x_{n}\right)$ is in DNF.

- Thus $B\left(x_{1}, \ldots, x_{n}\right)=D_{1} \vee \cdots \vee D_{k}$, where D_{i} 's are conjunctions of literals (i.e., x_{j} or $\neg x_{j}$) and every x_{j} appears in D_{i} at most once.

Quantified Boolean formulas (QBF)

- Let us start with a quantified Boolean formula

$$
Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)
$$

where $Q_{i} \in\{\forall, \exists\}$ and $B\left(x_{1}, \ldots, x_{n}\right)$ is in DNF.

- Thus $B\left(x_{1}, \ldots, x_{n}\right)=D_{1} \vee \cdots \vee D_{k}$, where D_{i} 's are conjunctions of literals (i.e., x_{j} or $\neg x_{j}$) and every x_{j} appears in D_{i} at most once.
- $\forall x \exists y(x \wedge \neg y) \vee(\neg x \wedge y)$ is true.

Quantified Boolean formulas (QBF)

- Let us start with a quantified Boolean formula

$$
Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)
$$

where $Q_{i} \in\{\forall, \exists\}$ and $B\left(x_{1}, \ldots, x_{n}\right)$ is in DNF.

- Thus $B\left(x_{1}, \ldots, x_{n}\right)=D_{1} \vee \cdots \vee D_{k}$, where D_{i} 's are conjunctions of literals (i.e., x_{j} or $\neg x_{j}$) and every x_{j} appears in D_{i} at most once.
- $\forall x \exists y(x \wedge \neg y) \vee(\neg x \wedge y)$ is true.
- $\exists y \forall x(x \wedge \neg y) \vee(\neg x \wedge y)$ if false.

Coding - propositional part

- Given $A=Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)$, we define FL-formula A^{*} in variables $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$.

Coding - propositional part

- Given $A=Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)$, we define FL-formula A^{*} in variables $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$.
- Let e be a classical evaluation of x_{1}, \ldots, x_{n}. Define

$$
x_{j}^{e}= \begin{cases}x_{j} & \text { if } e\left(x_{j}\right)=1 \\ \bar{x}_{j} & \text { if } e\left(x_{j}\right)=0\end{cases}
$$

Then $e^{*}=x_{1}^{e} \cdots x_{n}^{e}$.

Coding - propositional part

- Given $A=Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)$, we define FL-formula A^{*} in variables $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$.
- Let e be a classical evaluation of x_{1}, \ldots, x_{n}. Define

$$
x_{j}^{e}= \begin{cases}x_{j} & \text { if } e\left(x_{j}\right)=1 \\ \bar{x}_{j} & \text { if } e\left(x_{j}\right)=0\end{cases}
$$

Then $e^{*}=x_{1}^{e} \cdots x_{n}^{e}$.

- For each D_{i} we define $D_{i}^{*}=y_{1} \cdots y_{n}$, where

$$
y_{j}= \begin{cases}x_{j} & \text { if } x_{j} \in D_{i}, \\ \bar{x}_{j} & \text { if } \neg x_{j} \in D_{i} \\ x_{j} \vee \bar{x}_{j} & \text { otherwise }\end{cases}
$$

Coding - propositional part

- Given $A=Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)$, we define FL-formula A^{*} in variables $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$.
- Let e be a classical evaluation of x_{1}, \ldots, x_{n}. Define

$$
x_{j}^{e}= \begin{cases}x_{j} & \text { if } e\left(x_{j}\right)=1 \\ \bar{x}_{j} & \text { if } e\left(x_{j}\right)=0\end{cases}
$$

Then $e^{*}=x_{1}^{e} \cdots x_{n}^{e}$.

- For each D_{i} we define $D_{i}^{*}=y_{1} \cdots y_{n}$, where

$$
y_{j}= \begin{cases}x_{j} & \text { if } x_{j} \in D_{i}, \\ \bar{x}_{j} & \text { if } \neg x_{j} \in D_{i}, \\ x_{j} \vee \bar{x}_{j} & \text { otherwise }\end{cases}
$$

- Then $B^{*}=D_{1}^{*} \vee \cdots \vee D_{k}^{*}$.

Coding - propositional part

Lemma
Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Coding - propositional part

Lemma
Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Sketch of the proof (\Rightarrow)

- Assume that $e(B)=1$.

Coding - propositional part

Lemma
Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Sketch of the proof (\Rightarrow)

- Assume that $e(B)=1$.
- Then there has to be a disjunct D_{i} such that $e\left(D_{i}\right)=1$.

Coding - propositional part

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Sketch of the proof (\Rightarrow)

- Assume that $e(B)=1$.
- Then there has to be a disjunct D_{i} such that $e\left(D_{i}\right)=1$.
- We prove that $e^{*}=x_{1}^{e} \cdots x_{n}^{e} \leq y_{1} \cdots y_{n}=D_{i}^{*}$ in each $\mathbf{A} \in \mathrm{V}$ by showing $x_{j}^{e} \leq y_{j}$ for every j.

Coding - propositional part

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Sketch of the proof (\Rightarrow)

- Assume that $e(B)=1$.
- Then there has to be a disjunct D_{i} such that $e\left(D_{i}\right)=1$.
- We prove that $e^{*}=x_{1}^{e} \cdots x_{n}^{e} \leq y_{1} \cdots y_{n}=D_{i}^{*}$ in each $\mathbf{A} \in \mathrm{V}$ by showing $x_{j}^{e} \leq y_{j}$ for every j.
- Case $1-x_{j} \in D_{i}$: then (i) $e\left(x_{j}\right)=1$, i.e., $x_{j}^{e}=x_{j}$. (ii) $y_{j}=x_{j}$.

Coding - propositional part

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Sketch of the proof (\Rightarrow)

- Assume that $e(B)=1$.
- Then there has to be a disjunct D_{i} such that $e\left(D_{i}\right)=1$.
- We prove that $e^{*}=x_{1}^{e} \cdots x_{n}^{e} \leq y_{1} \cdots y_{n}=D_{i}^{*}$ in each $\mathbf{A} \in \mathrm{V}$ by showing $x_{j}^{e} \leq y_{j}$ for every j.
- Case $1-x_{j} \in D_{i}$: then (i) $e\left(x_{j}\right)=1$, i.e., $x_{j}^{e}=x_{j}$. (ii) $y_{j}=x_{j}$.
- Case $2-\neg x_{j} \in D_{i}$: then (i) $e\left(x_{j}\right)=0$, i.e., $x_{j}^{e}=\bar{x}_{j}$. (ii) $y_{j}=\bar{x}_{j}$.

Coding - propositional part

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Sketch of the proof (\Rightarrow)

- Assume that $e(B)=1$.
- Then there has to be a disjunct D_{i} such that $e\left(D_{i}\right)=1$.
- We prove that $e^{*}=x_{1}^{e} \cdots x_{n}^{e} \leq y_{1} \cdots y_{n}=D_{i}^{*}$ in each $\mathbf{A} \in \mathrm{V}$ by showing $x_{j}^{e} \leq y_{j}$ for every j.
- Case $1-x_{j} \in D_{i}$: then (i) $e\left(x_{j}\right)=1$, i.e., $x_{j}^{e}=x_{j}$. (ii) $y_{j}=x_{j}$.
- Case $2-\neg x_{j} \in D_{i}$: then (i) $e\left(x_{j}\right)=0$, i.e., $x_{j}^{e}=\bar{x}_{j}$. (ii) $y_{j}=\bar{x}_{j}$.
- Case $3-x_{j}, \neg x_{j} \notin D_{i}$: then $x_{j}^{e} \leq x_{j} \vee \bar{x}_{j}=y_{j}$.

Coding - propositional part

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_{1}, \ldots, x_{n}. Then $e(B)=1$ iff $\models \mathrm{v} 1 \leq e^{*} \backslash B^{*}$.

Sketch of the proof (\Rightarrow)

- Assume that $e(B)=1$.
- Then there has to be a disjunct D_{i} such that $e\left(D_{i}\right)=1$.
- We prove that $e^{*}=x_{1}^{e} \cdots x_{n}^{e} \leq y_{1} \cdots y_{n}=D_{i}^{*}$ in each $\mathbf{A} \in \mathrm{V}$ by showing $x_{j}^{e} \leq y_{j}$ for every j.
- Case $1-x_{j} \in D_{i}$: then (i) $e\left(x_{j}\right)=1$, i.e., $x_{j}^{e}=x_{j}$. (ii) $y_{j}=x_{j}$.
- Case $2-\neg x_{j} \in D_{i}$: then (i) $e\left(x_{j}\right)=0$, i.e., $x_{j}^{e}=\bar{x}_{j}$. (ii) $y_{j}=\bar{x}_{j}$.
- Case $3-x_{j}, \neg x_{j} \notin D_{i}$: then $x_{j}^{e} \leq x_{j} \vee \bar{x}_{j}=y_{j}$.
- Thus $\mathbf{A} \models 1 \leq e^{*} \backslash B^{*}$ for each $\mathbf{A} \in \mathrm{V}$.

Sketch of the proof (\Leftarrow)

- Let $\mathbf{A} \in \mathrm{V}$ be a nontrivial algebra. We have $a \in A$ such that $a<1$. Let v be the \mathbf{A}-evaluation s.t.

$$
v\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } e\left(x_{j}\right)=1, \\
a & \text { if } e\left(x_{j}\right)=0,
\end{array} \quad v\left(\bar{x}_{j}\right)= \begin{cases}a & \text { if } e\left(x_{j}\right)=1, \\
1 & \text { if } e\left(x_{j}\right)=0 .\end{cases}\right.
$$

Sketch of the proof (\Leftarrow)

- Let $\mathbf{A} \in \mathrm{V}$ be a nontrivial algebra. We have $a \in A$ such that $a<1$. Let v be the \mathbf{A}-evaluation s.t.

$$
v\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } e\left(x_{j}\right)=1, \\
a & \text { if } e\left(x_{j}\right)=0,
\end{array} \quad v\left(\bar{x}_{j}\right)= \begin{cases}a & \text { if } e\left(x_{j}\right)=1, \\
1 & \text { if } e\left(x_{j}\right)=0 .\end{cases}\right.
$$

- Note that $v\left(x_{j}^{e}\right)=1$ and $v\left(y_{j}\right) \in\{a, 1\}$. Thus
$v\left(D_{i}^{*}\right)=v\left(y_{1} \cdots y_{n}\right) \leq v\left(y_{j}\right)$ for each j.

Sketch of the proof (\Leftarrow)

- Let $\mathbf{A} \in \mathrm{V}$ be a nontrivial algebra. We have $a \in A$ such that $a<1$. Let v be the \mathbf{A}-evaluation s.t.

$$
v\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } e\left(x_{j}\right)=1, \\
a & \text { if } e\left(x_{j}\right)=0,
\end{array} \quad v\left(\bar{x}_{j}\right)= \begin{cases}a & \text { if } e\left(x_{j}\right)=1, \\
1 & \text { if } e\left(x_{j}\right)=0 .\end{cases}\right.
$$

- Note that $v\left(x_{j}^{e}\right)=1$ and $v\left(y_{j}\right) \in\{a, 1\}$. Thus $v\left(D_{i}^{*}\right)=v\left(y_{1} \cdots y_{n}\right) \leq v\left(y_{j}\right)$ for each j.
- Assume that $e(B)=0$. Then there has to be a literal z_{i} in each D_{i} s.t. $e\left(z_{i}\right)=0$.

Sketch of the proof (\Leftarrow)

- Let $\mathbf{A} \in \mathrm{V}$ be a nontrivial algebra. We have $a \in A$ such that $a<1$. Let v be the \mathbf{A}-evaluation s.t.

$$
v\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } e\left(x_{j}\right)=1, \\
a & \text { if } e\left(x_{j}\right)=0,
\end{array} \quad v\left(\bar{x}_{j}\right)= \begin{cases}a & \text { if } e\left(x_{j}\right)=1, \\
1 & \text { if } e\left(x_{j}\right)=0 .\end{cases}\right.
$$

- Note that $v\left(x_{j}^{e}\right)=1$ and $v\left(y_{j}\right) \in\{a, 1\}$. Thus $v\left(D_{i}^{*}\right)=v\left(y_{1} \cdots y_{n}\right) \leq v\left(y_{j}\right)$ for each j.
- Assume that $e(B)=0$. Then there has to be a literal z_{i} in each D_{i} s.t. $e\left(z_{i}\right)=0$.
- Case $1-z_{i}=x_{j}$: then $y_{j}=x_{j}$ and $v\left(x_{j}\right)=a$. Thus $v\left(D_{i}^{*}\right) \leq v\left(y_{j}\right)=a$.

Sketch of the proof (\Leftarrow)

- Let $\mathbf{A} \in \mathrm{V}$ be a nontrivial algebra. We have $a \in A$ such that $a<1$. Let v be the \mathbf{A}-evaluation s.t.

$$
v\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } e\left(x_{j}\right)=1, \\
a & \text { if } e\left(x_{j}\right)=0,
\end{array} \quad v\left(\bar{x}_{j}\right)= \begin{cases}a & \text { if } e\left(x_{j}\right)=1, \\
1 & \text { if } e\left(x_{j}\right)=0 .\end{cases}\right.
$$

- Note that $v\left(x_{j}^{e}\right)=1$ and $v\left(y_{j}\right) \in\{a, 1\}$. Thus $v\left(D_{i}^{*}\right)=v\left(y_{1} \cdots y_{n}\right) \leq v\left(y_{j}\right)$ for each j.
- Assume that $e(B)=0$. Then there has to be a literal z_{i} in each D_{i} s.t. $e\left(z_{i}\right)=0$.
- Case $1-z_{i}=x_{j}$: then $y_{j}=x_{j}$ and $v\left(x_{j}\right)=a$. Thus $v\left(D_{i}^{*}\right) \leq v\left(y_{j}\right)=a$.
- Case $2-z_{i}=\neg x_{j}$: then $y_{j}=\bar{x}_{j}$ and $v\left(\bar{x}_{j}\right)=a$. Thus $v\left(D_{i}^{*}\right) \leq v\left(y_{j}\right)=a$.

Sketch of the proof (\Leftarrow)

- Let $\mathbf{A} \in \mathrm{V}$ be a nontrivial algebra. We have $a \in A$ such that $a<1$. Let v be the \mathbf{A}-evaluation s.t.

$$
v\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } e\left(x_{j}\right)=1, \\
a & \text { if } e\left(x_{j}\right)=0,
\end{array} \quad v\left(\bar{x}_{j}\right)= \begin{cases}a & \text { if } e\left(x_{j}\right)=1, \\
1 & \text { if } e\left(x_{j}\right)=0 .\end{cases}\right.
$$

- Note that $v\left(x_{j}^{e}\right)=1$ and $v\left(y_{j}\right) \in\{a, 1\}$. Thus $v\left(D_{i}^{*}\right)=v\left(y_{1} \cdots y_{n}\right) \leq v\left(y_{j}\right)$ for each j.
- Assume that $e(B)=0$. Then there has to be a literal z_{i} in each D_{i} s.t. $e\left(z_{i}\right)=0$.
- Case $1-z_{i}=x_{j}$: then $y_{j}=x_{j}$ and $v\left(x_{j}\right)=a$. Thus $v\left(D_{i}^{*}\right) \leq v\left(y_{j}\right)=a$.
- Case $2-z_{i}=\neg x_{j}$: then $y_{j}=\bar{x}_{j}$ and $v\left(\bar{x}_{j}\right)=a$. Thus $v\left(D_{i}^{*}\right) \leq v\left(y_{j}\right)=a$.
- Thus $\mathbf{A} \not \vDash 1 \leq e^{*} \backslash B^{*}$.

Coding of quantifiers

- We define inductively formulas $A_{0}^{*}, \ldots, A_{n}^{*}$.

Coding of quantifiers

- We define inductively formulas $A_{0}^{*}, \ldots, A_{n}^{*}$.
- First, $A_{0}^{*}=B^{*}$.

Coding of quantifiers

- We define inductively formulas $A_{0}^{*}, \ldots, A_{n}^{*}$.
- First, $A_{0}^{*}=B^{*}$.
- Let $i>0$. If $Q_{i}=\forall$ then

$$
A_{i}^{*}=\left(x_{i} \vee \bar{x}_{i}\right) \backslash A_{i-1}^{*},
$$

Coding of quantifiers

- We define inductively formulas $A_{0}^{*}, \ldots, A_{n}^{*}$.
- First, $A_{0}^{*}=B^{*}$.
- Let $i>0$. If $Q_{i}=\forall$ then

$$
A_{i}^{*}=\left(x_{i} \vee \bar{x}_{i}\right) \backslash A_{i-1}^{*},
$$

whereas, if $Q_{i}=\exists$ then

$$
A_{i}^{*}=\left(x_{i} \backslash A_{i-1}^{*}\right) \vee\left(\bar{x}_{i} \backslash A_{i-1}^{*}\right),
$$

Coding of quantifiers

- We define inductively formulas $A_{0}^{*}, \ldots, A_{n}^{*}$.
- First, $A_{0}^{*}=B^{*}$.
- Let $i>0$. If $Q_{i}=\forall$ then

$$
A_{i}^{*}=\left(x_{i} \vee \bar{x}_{i}\right) \backslash A_{i-1}^{*},
$$

whereas, if $Q_{i}=\exists$ then

$$
A_{i}^{*}=\left(\left(x_{i} \backslash q_{i}\right) \vee\left(\bar{x}_{i} \backslash q_{i}\right)\right) /\left(A_{i-1}^{*} \backslash q_{i} \wedge 1\right),
$$

where q_{i} is a fresh variable.

Coding of quantifiers

- We define inductively formulas $A_{0}^{*}, \ldots, A_{n}^{*}$.
- First, $A_{0}^{*}=B^{*}$.
- Let $i>0$. If $Q_{i}=\forall$ then

$$
A_{i}^{*}=\left(x_{i} \vee \bar{x}_{i}\right) \backslash A_{i-1}^{*},
$$

whereas, if $Q_{i}=\exists$ then

$$
A_{i}^{*}=\left(\left(x_{i} \backslash q_{i}\right) \vee\left(\bar{x}_{i} \backslash q_{i}\right)\right) /\left(A_{i-1}^{*} \backslash q_{i} \wedge 1\right)
$$

where q_{i} is a fresh variable.

- Thus we have a polynomial-time translation of $Q_{n} x_{n} \cdots Q_{1} x_{1} B\left(x_{1}, \ldots, x_{n}\right)$ to the FL-formula A_{n}^{*}.

Main lemma

Lemma

Let L be a consistent substructural logic having SDP, $0 \leq i \leq n$, and e be a classical evaluation of x_{i+1}, \ldots, x_{n}. Then $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ iff $\vdash_{\mathrm{L}} e^{*} \backslash A_{i}^{*}$.

Main lemma

Lemma

Let L be a consistent substructural logic having SDP, $0 \leq i \leq n$, and e be a classical evaluation of x_{i+1}, \ldots, x_{n}. Then $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ iff $\vdash_{\mathrm{L}} e^{*} \backslash A_{i}^{*}$.

Proof

- Let $\mathrm{V}(\mathrm{L})$ be the corresponding variety of FL-algebras.

Main lemma

Lemma

Let L be a consistent substructural logic having SDP, $0 \leq i \leq n$, and e be a classical evaluation of x_{i+1}, \ldots, x_{n}. Then $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ iff $\vdash_{\mathrm{L}} e^{*} \backslash A_{i}^{*}$.

Proof

- Let $\mathrm{V}(\mathrm{L})$ be the corresponding variety of FL -algebras.
- By induction on i. We have seen the proof for the case $i=0$.

Main lemma

Lemma

Let L be a consistent substructural logic having SDP, $0 \leq i \leq n$, and e be a classical evaluation of x_{i+1}, \ldots, x_{n}. Then $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ iff $\vdash_{\mathrm{L}} e^{*} \backslash A_{i}^{*}$.

Proof

- Let $\mathrm{V}(\mathrm{L})$ be the corresponding variety of FL -algebras.
- By induction on i. We have seen the proof for the case $i=0$.
- Suppose that $i>0$.

Main lemma

Lemma

Let L be a consistent substructural logic having SDP, $0 \leq i \leq n$, and e be a classical evaluation of x_{i+1}, \ldots, x_{n}. Then $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ iff $\vdash_{\llcorner } e^{*} \backslash A_{i}^{*}$.

Proof

- Let $\mathrm{V}(\mathrm{L})$ be the corresponding variety of FL -algebras.
- By induction on i. We have seen the proof for the case $i=0$.
- Suppose that $i>0$.
- Let e be a classical evaluation of x_{i+1}, \ldots, x_{n}.

Main lemma

Lemma

Let L be a consistent substructural logic having SDP, $0 \leq i \leq n$, and e be a classical evaluation of x_{i+1}, \ldots, x_{n}. Then $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ iff $\vdash_{\mathrm{L}} e^{*} \backslash A_{i}^{*}$.

Proof

- Let $\mathrm{V}(\mathrm{L})$ be the corresponding variety of FL-algebras.
- By induction on i. We have seen the proof for the case $i=0$.
- Suppose that $i>0$.
- Let e be a classical evaluation of x_{i+1}, \ldots, x_{n}.
- Denote by e_{0}, e_{1} the extensions of e which evaluate x_{i} respectively by 0,1 .

Main lemma

Lemma

Let L be a consistent substructural logic having SDP, $0 \leq i \leq n$, and e be a classical evaluation of x_{i+1}, \ldots, x_{n}. Then $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ iff $\vdash_{\mathrm{L}} e^{*} \backslash A_{i}^{*}$.

Proof

- Let $\mathrm{V}(\mathrm{L})$ be the corresponding variety of FL-algebras.
- By induction on i. We have seen the proof for the case $i=0$.
- Suppose that $i>0$.
- Let e be a classical evaluation of x_{i+1}, \ldots, x_{n}.
- Denote by e_{0}, e_{1} the extensions of e which evaluate x_{i} respectively by 0,1 .
- Note that $e_{0}^{*}=\bar{x}_{i} \cdot e^{*}$ and $e_{1}^{*}=x_{i} \cdot e^{*}$.

Proof (\Rightarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ and $Q_{i}=\exists$.

Proof (\Rightarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$ or $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$, say the first holds.

Proof (\Rightarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$ or $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$, say the first holds.
- By induction hypotheses we have $1 \leq e_{0}^{*} \backslash A_{i-1}^{*}$, i.e., $e_{0}^{*} \leq A_{i-1}^{*}$ for each $\mathbf{A} \in \mathrm{V}(\mathrm{L})$.

Proof (\Rightarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$ or $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$, say the first holds.
- By induction hypotheses we have $1 \leq e_{0}^{*} \backslash A_{i-1}^{*}$, i.e., $e_{0}^{*} \leq A_{i-1}^{*}$ for each $\mathbf{A} \in \mathrm{V}(\mathrm{L})$.
- Thus $\bar{x}_{i} \cdot e^{*}=e_{0}^{*} \leq A_{i-1}^{*}$, i.e., $e^{*} \leq \bar{x}_{i} \backslash A_{i-1}^{*}$.

Proof (\Rightarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$ or $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$, say the first holds.
- By induction hypotheses we have $1 \leq e_{0}^{*} \backslash A_{i-1}^{*}$, i.e., $e_{0}^{*} \leq A_{i-1}^{*}$ for each $\mathbf{A} \in \mathrm{V}(\mathrm{L})$.
- Thus $\bar{x}_{i} \cdot e^{*}=e_{0}^{*} \leq A_{i-1}^{*}$, i.e., $e^{*} \leq \bar{x}_{i} \backslash A_{i-1}^{*}$.
- By transitivity of the implication we get

$$
\begin{aligned}
& e^{*} \leq \bar{x}_{i} \backslash A_{i-1}^{*} \leq\left(\bar{x}_{i} \backslash q_{i}\right) /\left(A_{i-1}^{*} \backslash q_{i}\right) \leq \\
& \quad\left(\left(x_{i} \backslash q_{i}\right) \vee\left(\bar{x}_{i} \backslash q_{i}\right)\right) /\left(A_{i-1}^{*} \backslash q_{i} \wedge 1\right)=A_{i}^{*}
\end{aligned}
$$

Proof (\Rightarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=1$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$ or $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=1$, say the first holds.
- By induction hypotheses we have $1 \leq e_{0}^{*} \backslash A_{i-1}^{*}$, i.e., $e_{0}^{*} \leq A_{i-1}^{*}$ for each $\mathbf{A} \in \mathrm{V}(\mathrm{L})$.
- Thus $\bar{x}_{i} \cdot e^{*}=e_{0}^{*} \leq A_{i-1}^{*}$, i.e., $e^{*} \leq \bar{x}_{i} \backslash A_{i-1}^{*}$.
- By transitivity of the implication we get

$$
\begin{aligned}
& e^{*} \leq \bar{x}_{i} \backslash A_{i-1}^{*} \leq\left(\bar{x}_{i} \backslash q_{i}\right) /\left(A_{i-1}^{*} \backslash q_{i}\right) \leq \\
& \quad\left(\left(x_{i} \backslash q_{i}\right) \vee\left(\bar{x}_{i} \backslash q_{i}\right)\right) /\left(A_{i-1}^{*} \backslash q_{i} \wedge 1\right)=A_{i}^{*}
\end{aligned}
$$

- Consequently, $1 \leq e^{*} \backslash A_{i}^{*}$ for each algebra $\mathbf{A} \in \mathrm{V}(\mathrm{L})$.

Proof (\Leftarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=0$ and $Q_{i}=\exists$.

Proof (\Leftarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=0$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$ and $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$.

Proof (\Leftarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=0$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$ and $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$.
- By induction hypotheses there are $\mathbf{A}_{0}, \mathbf{A}_{1} \in \mathrm{~V}(\mathrm{~L})$ such that $\mathbf{A}_{0} \not \vDash e_{0}^{*} \backslash \boldsymbol{A}_{i-1}^{*}$ and $\mathbf{A}_{1} \not \models e_{1}^{*} \backslash \boldsymbol{A}_{i-1}^{*}$.

Proof (\Leftarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=0$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$ and $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$.
- By induction hypotheses there are $\mathbf{A}_{0}, \mathbf{A}_{1} \in \mathrm{~V}(\mathrm{~L})$ such that $\mathbf{A}_{0} \not \vDash e_{0}^{*} \backslash A_{i-1}^{*}$ and $\mathbf{A}_{1} \not \models e_{1}^{*} \backslash A_{i-1}^{*}$.
- Note that

$$
\begin{aligned}
& e_{0}^{*} \backslash A_{i-1}^{*}=\bar{x}_{i} \cdot e^{*} \backslash A_{i-1}^{*}=e^{*} \backslash\left(\bar{x}_{i} \backslash A_{i-1}^{*}\right) \\
& e_{1}^{*} \backslash A_{i-1}^{*}=x_{i} \cdot e^{*} \backslash A_{i-1}^{*}=e^{*} \backslash\left(x_{i} \backslash A_{i-1}^{*}\right)
\end{aligned}
$$

Proof (\Leftarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=0$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$ and $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$.
- By induction hypotheses there are $\mathbf{A}_{0}, \mathbf{A}_{1} \in \mathrm{~V}(\mathrm{~L})$ such that $\mathbf{A}_{0} \not \vDash e_{0}^{*} \backslash A_{i-1}^{*}$ and $\mathbf{A}_{1} \not \models e_{1}^{*} \backslash A_{i-1}^{*}$.
- Note that

$$
\begin{aligned}
& e_{0}^{*} \backslash A_{i-1}^{*}=\bar{x}_{i} \cdot e^{*} \backslash A_{i-1}^{*}=e^{*} \backslash\left(\bar{x}_{i} \backslash A_{i-1}^{*}\right) \\
& e_{1}^{*} \backslash A_{i-1}^{*}=x_{i} \cdot e^{*} \backslash A_{i-1}^{*}=e^{*} \backslash\left(x_{i} \backslash A_{i-1}^{*}\right)
\end{aligned}
$$

- By SDP there is $\mathbf{A} \in \mathrm{V}(\mathrm{L})$ such that
$\mathbf{A} \not \vDash 1 \leq e^{*} \backslash\left(\left(\bar{x}_{i} \backslash \boldsymbol{A}_{i-1}^{*}\right) \vee\left(x_{i} \backslash \boldsymbol{A}_{i-1}^{*}\right)\right)$, i.e., there is an \mathbf{A}-evaluation v such that $v\left(e^{*}\right)>v\left(\left(\bar{x}_{i} \backslash \boldsymbol{A}_{i-1}^{*}\right) \vee\left(x_{i} \backslash \boldsymbol{A}_{i-1}^{*}\right)\right)$.

Proof (\Leftarrow)

- Assume that $e\left(Q_{i} x_{i} \cdots Q_{1} x_{1} B\right)=0$ and $Q_{i}=\exists$.
- Then $e_{0}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$ and $e_{1}\left(Q_{i-1} x_{i-1} \cdots Q_{1} x_{1} B\right)=0$.
- By induction hypotheses there are $\mathbf{A}_{0}, \mathbf{A}_{1} \in \mathrm{~V}(\mathrm{~L})$ such that $\mathbf{A}_{0} \not \models e_{0}^{*} \backslash A_{i-1}^{*}$ and $\mathbf{A}_{1} \not \models e_{1}^{*} \backslash A_{i-1}^{*}$.
- Note that

$$
\begin{aligned}
& e_{0}^{*} \backslash A_{i-1}^{*}=\bar{x}_{i} \cdot e^{*} \backslash A_{i-1}^{*}=e^{*} \backslash\left(\bar{x}_{i} \backslash A_{i-1}^{*}\right) \\
& e_{1}^{*} \backslash A_{i-1}^{*}=x_{i} \cdot e^{*} \backslash A_{i-1}^{*}=e^{*} \backslash\left(x_{i} \backslash A_{i-1}^{*}\right)
\end{aligned}
$$

- By SDP there is $\mathbf{A} \in \mathrm{V}(\mathrm{L})$ such that
$\mathbf{A} \not \vDash 1 \leq e^{*} \backslash\left(\left(\bar{x}_{i} \backslash A_{i-1}^{*}\right) \vee\left(x_{i} \backslash A_{i-1}^{*}\right)\right)$, i.e., there is an \mathbf{A}-evaluation v such that $v\left(e^{*}\right)>v\left(\left(\bar{x}_{i} \backslash A_{i-1}^{*}\right) \vee\left(x_{i} \backslash A_{i-1}^{*}\right)\right)$.
- W.I.o.g. assume that $v\left(q_{i}\right)=v\left(A_{i-1}^{*}\right)$. Then

$$
\begin{aligned}
v\left(e^{*}\right)>v\left(\left(\bar{x}_{i} \backslash\right.\right. & \left.\left.A_{i-1}^{*}\right) \vee\left(x_{i} \backslash A_{i-1}^{*}\right)\right)= \\
& v\left(\left(\left(x_{i} \backslash q_{i}\right) \vee\left(\bar{x}_{i} \backslash q_{i}\right)\right) /\left(A_{i-1}^{*} \backslash q_{i} \wedge 1\right)\right)=v\left(A_{i}^{*}\right) .
\end{aligned}
$$

Consequently, $\mathbf{A} \not \vDash 1 \leq e^{*} \backslash A_{i}^{*}$.

Remarks

- We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.

Remarks

- We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.
- We have now a method for proving PSPACE-hardness of a substructural logic just by showing SDP.

Remarks

- We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.
- We have now a method for proving PSPACE-hardness of a substructural logic just by showing SDP.
- Is there an algebraic proof of SDP for basic substructural logics?

Remarks

- We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.
- We have now a method for proving PSPACE-hardness of a substructural logic just by showing SDP.
- Is there an algebraic proof of SDP for basic substructural logics?
- We need even less than SDP, namely

$$
\text { if } \vdash_{\llcorner } \alpha \backslash((x \backslash \varphi) \vee(\bar{x} \backslash \varphi)) \text { then } \vdash_{\llcorner } \alpha \backslash(x \backslash \varphi) \text { or } \vdash_{\llcorner } \alpha \backslash(\bar{x} \backslash \varphi) \text {, }
$$

where φ is a formula, α is a product of atoms, and x, \bar{x} are atoms.

