Disjunction Property and Complexity of Substructural Logics

Rostislav Horčík

Institute of Computer Science Academy of Sciences of the Czech Republic

UNILOG 2010

Rostislav Horčík (ICS, ASCR)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basic substructural logics

• Substructural logics are logics lacking some of the structural rules (contraction, exchange, left and right weakening).

$$\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} (c) \qquad \qquad \frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \varphi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \varphi} (e)$$
$$\frac{\Gamma, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} (i) \qquad \qquad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \alpha} (o)$$

Basic substructural logics

• Substructural logics are logics lacking some of the structural rules (contraction, exchange, left and right weakening).

$$\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} (c) \qquad \qquad \frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \varphi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \varphi} (e)$$

$$\frac{\Gamma, \Delta \Rightarrow \varphi}{\Gamma, \alpha, \Delta \Rightarrow \varphi} (i) \qquad \qquad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \alpha} (o)$$

- The weakest substructural logic called FL is a logic obtained from the sequent calculus for Intuitionistic logic by omitting (c), (e), (i) and (o). The language of FL: ∧, ∨, ·, /, ∖, 0, 1.
- Let S ⊆ {c, e, i, o}. Then FL_S denotes the extension of FL by rules from S.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Cut elimination

Theorem (Komori, Ono)

Let $\{c\} \neq S \subseteq \{e, c, i, o\}$. Then FL_S enjoys cut elimination.

The logic FL_c has not cut elimination. However, it can be equally presented by a different sequent calculus FL_{gc} arising from FL_c by replacing the contraction rule (c) by the global contraction rule (gc):

$$\frac{\Gamma, \Sigma, \Sigma, \Delta \Rightarrow \varphi}{\Gamma, \Sigma, \Delta \Rightarrow \varphi} \text{ (gc)}$$

where Σ is any finite sequence of formulas. This means that a sequent is provable in FL_c iff it is provable in FL_{gc}.

Theorem

Cut elimination holds for FL_{gc}.

・ロト ・四ト ・ヨト ・ヨト

Axiomatic extensions

- By a substructural logic we mean an axiomatic extension of FL.
- Let Γ be a set of axiomatic schemata. The axiomatic extension of FL by Γ is the calculus obtained from FL by adding new initial sequents ⇒ φ for all formulas φ ∈ Γ.
- Let L be a substructural logic. The provability relation of L is denoted by ⊢_L.
- Given S ⊆ {c, e, i, o}, the logic FL_S can be viewed as an axiomatic extension of FL. The following schemata correspond respectively to (c),(e), (i) and (o):

$$\alpha \setminus (\alpha \cdot \alpha), \qquad (\alpha \cdot \beta) \setminus (\beta \cdot \alpha), \qquad \alpha \setminus \mathbf{1}, \qquad \mathbf{0} \setminus \alpha.$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

 FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.

- FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.
- Thus there is a dual isomorphism V between the lattice of axiomatic extensions of FL and the subvariety lattice of FL-algebras.

- FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.
- Thus there is a dual isomorphism V between the lattice of axiomatic extensions of FL and the subvariety lattice of FL-algebras.
- Let *L* be a substructural logic. Then we have the following equivalences:

$$\vdash_{L} \varphi \quad \text{iff} \quad \models_{\mathsf{V}(L)} \mathsf{1} = \mathsf{1} \land \varphi \quad [\mathsf{1} \le \varphi].$$
$$\models_{\mathsf{V}(L)} \varphi = \psi \quad \text{iff} \quad \vdash_{L} (\varphi \setminus \psi) \land (\psi \setminus \varphi).$$

- FL is algebraizable and its equivalent algebraic semantics is the variety of FL-algebras.
- Thus there is a dual isomorphism V between the lattice of axiomatic extensions of FL and the subvariety lattice of FL-algebras.
- Let *L* be a substructural logic. Then we have the following equivalences:

$$\vdash_{L} \varphi \quad \text{iff} \quad \models_{\mathsf{V}(L)} \mathsf{1} = \mathsf{1} \land \varphi \quad [\mathsf{1} \le \varphi].$$
$$\models_{\mathsf{V}(L)} \varphi = \psi \quad \text{iff} \quad \vdash_{L} (\varphi \setminus \psi) \land (\psi \setminus \varphi).$$

 By complexity of a logic L we mean the complexity of its set of theorems. Due to algebraizability it is the same as the complexity of the equational theory for V(L).

Algebraic semantics

Definition

An FL-algebra is an algebra $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \backslash, 0, 1 \rangle$, where $\langle \mathbf{A}, \wedge, \vee \rangle$ is a lattice, $\langle \mathbf{A}, \cdot, 1 \rangle$ is a monoid and

 $x \cdot y \leq z$ iff $x \leq z/y$ iff $y \leq x \setminus z$.

Algebraic semantics

Definition

An FL-algebra is an algebra $\mathbf{A} = \langle \mathbf{A}, \wedge, \vee, \cdot, /, \backslash, 0, 1 \rangle$, where $\langle \mathbf{A}, \wedge, \vee \rangle$ is a lattice, $\langle \mathbf{A}, \cdot, 1 \rangle$ is a monoid and

$$x \cdot y \leq z$$
 iff $x \leq z/y$ iff $y \leq x \setminus z$.

Lemma

Let **A** be a nontrivial FL-algebra. Then there is $a \in A$ such that a < 1.

Proof.

Since **A** is nontrivial, there is $b \in A$ such that $b \neq 1$. If $1 \leq b$ then $a = b \land 1 < 1$. If b > 1 then we take $a = b \land 1 \leq 1 \land 1 = 1$. Moreover, a < 1 otherwise $b = b \cdot a = b \cdot (b \land 1) \leq 1$.

< 日 > < 同 > < 回 > < 回 > < □ > <

• There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

< ロ > < 同 > < 回 > < 回 >

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
 - The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.

< ロ > < 同 > < 回 > < 回 >

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
 - The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.
 - PSPACE-hardness is proved by reduction to QBF.

< ロ > < 同 > < 回 > < 回 >

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
 - The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.
 - PSPACE-hardness is proved by reduction to QBF.
 - The proof is proof-theoretical, long, and very technical (does not work in the presence of weakening).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- There are results on stronger logics like classical, Intuitionistic, Łukasiewicz...
- Multiplicative additive fragment of Linear Logic (MALL) is PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).
 - The fact the MALL is in PSPACE follows from the existence of a cut-free sequent calculus.
 - PSPACE-hardness is proved by reduction to QBF.
 - The proof is proof-theoretical, long, and very technical (does not work in the presence of weakening).
- FL is PSPACE-complete (Kanovich 94, Kanazawa 99). The proof is a modification of the proof for MALL. The coding is simplified, uses QBF where the propositional part is in DNF.

 As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.

A (10) A (10)

- As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.
- We would like to find method which is more general and can be applied possibly to a wider class of substructural logics. Our proof of PSPACE-hardness should be more algebraic therefore less dependent on the sequent calculus.

A (10) A (10)

- As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.
- We would like to find method which is more general and can be applied possibly to a wider class of substructural logics. Our proof of PSPACE-hardness should be more algebraic therefore less dependent on the sequent calculus.
- We will show by algebraic means that any substructural logic having a stronger version of disjunction property is PSPACE-hard.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- As mentioned above, the proof of PSPACE-hardness is usually done by reduction to QBF. The fact that the reduction works is shown by analyzing the corresponding sequent calculus.
- We would like to find method which is more general and can be applied possibly to a wider class of substructural logics. Our proof of PSPACE-hardness should be more algebraic therefore less dependent on the sequent calculus.
- We will show by algebraic means that any substructural logic having a stronger version of disjunction property is PSPACE-hard.
- In fact, this result is analogous to that we have for superintuitionistic logics saying that each superintuitionistic logic with the disjunction property is PSPACE-hard.

Strong Disjunction Property

• Disjunction Property: provability of a disjunction implies provability of one of the disjuncts.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strong Disjunction Property

- Disjunction Property: provability of a disjunction implies provability of one of the disjuncts.
- We need a stronger version with atomic assumptions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strong Disjunction Property

- Disjunction Property: provability of a disjunction implies provability of one of the disjuncts.
- We need a stronger version with atomic assumptions.

Definition (Strong Disjunction Property)

Let L be a substructural logic. Then L satisfies *Strong Disjunction Property* (SDP) if for all formulas φ , ψ and atoms v_1, \ldots, v_n we have $\vdash_{\mathsf{L}} (v_1 \cdots v_n) \setminus (\varphi \lor \psi)$ implies $\vdash_{\mathsf{L}} (v_1 \cdots v_n) \setminus \varphi$ or $\vdash_{\mathsf{L}} (v_1 \cdots v_n) \setminus \psi$.

Theorem

Let $S \subseteq \{e, c, i, o\}$. Then FL_S has SDP.

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

$$\frac{\cdot}{a_1, a_2, a_3, a_4, a_5 \Rightarrow \varphi \lor \psi}$$

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

$$\frac{\overline{a_3, a_1, a_5, a_2, a_4 \Rightarrow \varphi \lor \psi}}{a_1, a_2, a_3, a_4, a_5 \Rightarrow \varphi \lor \psi} (e)$$

イロン イロン イヨン イヨン 二日

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

$$\frac{\vdots}{\begin{array}{c} a_{3}, a_{5}, a_{2} \Rightarrow \varphi \lor \psi \\ \hline a_{3}, a_{1}, a_{5}, a_{2}, a_{4} \Rightarrow \varphi \lor \psi \\ \hline a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \Rightarrow \varphi \lor \psi \end{array}} (i)$$

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

٠

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

$$\frac{\overline{a_3, a_3, a_5, a_2, a_2, a_2 \Rightarrow \varphi}}{[a_3, a_3, a_5, a_2, a_2, a_2 \Rightarrow \varphi \lor \psi]} (\Rightarrow \lor) \\
\frac{\overline{a_3, a_3, a_5, a_2, a_2, a_2 \Rightarrow \varphi \lor \psi}}{[a_3, a_1, a_5, a_2, a_4 \Rightarrow \varphi \lor \psi]} (i) \\
\frac{\overline{a_3, a_1, a_5, a_2, a_4 \Rightarrow \varphi \lor \psi}}{[a_1, a_2, a_3, a_4, a_5 \Rightarrow \varphi \lor \psi]} (e)$$

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

$$\frac{\vdots}{a_3, a_3, a_5, a_2, a_2, a_2 \Rightarrow \varphi}$$

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

$$\frac{\vdots}{\frac{a_3, a_3, a_5, a_2, a_2, a_2 \Rightarrow \varphi}{a_3, a_5, a_2 \Rightarrow \varphi}} (c)$$

٠

イロン イロン イヨン イヨン 二日

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

$$\frac{\vdots}{\underline{a_3, a_3, a_5, a_2, a_2 \Rightarrow \varphi}}{\underline{a_3, a_5, a_2 \Rightarrow \varphi}} (c) \\
\frac{\vdots}{\underline{a_3, a_5, a_2 \Rightarrow \varphi}}{\underline{a_3, a_1, a_5, a_2, a_4 \Rightarrow \varphi}} (i)$$

Proof of SDP

- Let $\alpha = a_1 \cdots a_5$ where a_i 's are atoms.
- Provability of α \(φ ∨ ψ) means that the sequent a₁, a₂, a₃, a₄, a₅ ⇒ φ ∨ ψ has a cut-free proof.
- If $S = \{c\}$, then consider a cut-free proof in FL_{gc} .

٠

Our results

Theorem

Let L be a consistent substructural logic having SDP. Then L is PSPACE-hard.

Corollary

Let $S \subseteq \{e, c, i, o\}$. Then FL_S is PSPACE-hard.

For basic substructural logics without contraction we can even obtain PSPACE-completeness.

Theorem

```
Let S \subseteq \{e, i, o\}. Then FL_S is PSPACE-complete.
```

Quantified Boolean formulas (QBF)

Let us start with a quantified Boolean formula

 $Q_n x_n \cdots Q_1 x_1 B(x_1, \ldots, x_n)$,

where $Q_i \in \{\forall, \exists\}$ and $B(x_1, \ldots, x_n)$ is in DNF.

イロト 不得 トイヨト イヨト
Quantified Boolean formulas (QBF)

Let us start with a quantified Boolean formula

 $Q_n x_n \cdots Q_1 x_1 B(x_1, \ldots, x_n)$,

where $Q_i \in \{\forall, \exists\}$ and $B(x_1, \ldots, x_n)$ is in DNF.

Thus B(x₁,...,x_n) = D₁ ∨··· ∨ D_k, where D_i's are conjunctions of literals (i.e., x_i or ¬x_i) and every x_i appears in D_i at most once.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Quantified Boolean formulas (QBF)

Let us start with a quantified Boolean formula

 $Q_n x_n \cdots Q_1 x_1 B(x_1, \ldots, x_n)$,

where $Q_i \in \{\forall, \exists\}$ and $B(x_1, \ldots, x_n)$ is in DNF.

- Thus B(x₁,...,x_n) = D₁ ∨··· ∨ D_k, where D_i's are conjunctions of literals (i.e., x_j or ¬x_j) and every x_j appears in D_i at most once.
- $\forall x \exists y (x \land \neg y) \lor (\neg x \land y)$ is true.

イロト 不得 トイヨト イヨト

Quantified Boolean formulas (QBF)

Let us start with a quantified Boolean formula

$$Q_n x_n \cdots Q_1 x_1 B(x_1, \ldots, x_n)$$
,

where $Q_i \in \{\forall, \exists\}$ and $B(x_1, \ldots, x_n)$ is in DNF.

- Thus B(x₁,..., x_n) = D₁ ∨··· ∨ D_k, where D_i's are conjunctions of literals (i.e., x_j or ¬x_j) and every x_j appears in D_i at most once.
- $\forall x \exists y (x \land \neg y) \lor (\neg x \land y)$ is true.

•
$$\exists y \forall x (x \land \neg y) \lor (\neg x \land y)$$
 if false.

< 日 > < 同 > < 回 > < 回 > < 回 > <

• Given $A = Q_n x_n \cdots Q_1 x_1 B(x_1, \dots, x_n)$, we define FL-formula A^* in variables $x_1, \dots, x_n, \overline{x}_1, \dots, \overline{x}_n$.

3

イロト イヨト イヨト イヨト

- Given $A = Q_n x_n \cdots Q_1 x_1 B(x_1, \dots, x_n)$, we define FL-formula A^* in variables $x_1, \dots, x_n, \overline{x}_1, \dots, \overline{x}_n$.
- Let *e* be a classical evaluation of x_1, \ldots, x_n . Define

$$x_j^e = \begin{cases} x_j & \text{if } e(x_j) = 1, \\ \bar{x}_j & \text{if } e(x_j) = 0. \end{cases}$$

Then
$$e^* = x_1^e \cdots x_n^e$$
.

イロト 不得 トイヨト イヨト

- Given $A = Q_n x_n \cdots Q_1 x_1 B(x_1, \dots, x_n)$, we define FL-formula A^* in variables $x_1, \dots, x_n, \overline{x}_1, \dots, \overline{x}_n$.
- Let *e* be a classical evaluation of x_1, \ldots, x_n . Define

$$x_j^e = \begin{cases} x_j & \text{if } e(x_j) = 1, \\ ar{x}_j & \text{if } e(x_j) = 0. \end{cases}$$

Then
$$e^* = x_1^e \cdots x_n^e$$
.

• For each D_i we define $D_i^* = y_1 \cdots y_n$, where

$$y_j = egin{cases} x_j & ext{if } x_j \in D_i, \ ar{x}_j & ext{if }
egin{array}{c} x_j \in D_i, \ x_j \lor ar{x}_j & ext{otherwise.} \end{cases}$$

- Given $A = Q_n x_n \cdots Q_1 x_1 B(x_1, \dots, x_n)$, we define FL-formula A^* in variables $x_1, \dots, x_n, \overline{x}_1, \dots, \overline{x}_n$.
- Let *e* be a classical evaluation of x_1, \ldots, x_n . Define

$$x_j^e = egin{cases} x_j & ext{if } e(x_j) = 1, \ ar{x}_j & ext{if } e(x_j) = 0. \end{cases}$$

Then
$$e^* = x_1^e \cdots x_n^e$$
.

• For each D_i we define $D_i^* = y_1 \cdots y_n$, where

$$y_j = egin{cases} x_j & ext{if } x_j \in D_i, \ ar{x}_j & ext{if }
egin{array}{c} x_j \in D_i, \ x_j \lor ar{x}_j & ext{otherwise.} \end{cases}$$

• Then
$$B^* = D_1^* \vee \cdots \vee D_k^*$$
.

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

イロン イ理 とく ヨン イヨン

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

Sketch of the proof (\Rightarrow)

• Assume that e(B) = 1.

3

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

Sketch of the proof (\Rightarrow)

- Assume that e(B) = 1.
- Then there has to be a disjunct D_i such that $e(D_i) = 1$.

3

イロト 不得 トイヨト イヨト

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

Sketch of the proof (\Rightarrow)

- Assume that e(B) = 1.
- Then there has to be a disjunct D_i such that $e(D_i) = 1$.
- We prove that e^{*} = x₁^e · · · x_n^e ≤ y₁ · · · y_n = D_i^{*} in each A ∈ V by showing x_i^e ≤ y_j for every j.

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

Sketch of the proof (\Rightarrow)

- Assume that e(B) = 1.
- Then there has to be a disjunct D_i such that $e(D_i) = 1$.
- We prove that e^{*} = x₁^e · · · x_n^e ≤ y₁ · · · y_n = D_j^{*} in each A ∈ V by showing x_j^e ≤ y_j for every j.
- Case $1 x_j \in D_i$: then (i) $e(x_j) = 1$, i.e., $x_j^e = x_j$. (ii) $y_j = x_j$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

Sketch of the proof (\Rightarrow)

- Assume that e(B) = 1.
- Then there has to be a disjunct D_i such that $e(D_i) = 1$.
- We prove that e^{*} = x₁^e · · · x_n^e ≤ y₁ · · · y_n = D_j^{*} in each A ∈ V by showing x_j^e ≤ y_j for every j.
- Case $1 x_j \in D_i$: then (i) $e(x_j) = 1$, i.e., $x_j^e = x_j$. (ii) $y_j = x_j$.
- Case $2 \neg x_j \in D_i$: then (i) $e(x_j) = 0$, i.e., $x_j^e = \overline{x}_j$. (ii) $y_j = \overline{x}_j$.

イロト 不得 トイヨト イヨト ヨー ろくの

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

Sketch of the proof (\Rightarrow)

- Assume that e(B) = 1.
- Then there has to be a disjunct D_i such that $e(D_i) = 1$.
- We prove that e^{*} = x₁^e · · · x_n^e ≤ y₁ · · · y_n = D_j^{*} in each A ∈ V by showing x_j^e ≤ y_j for every j.
- Case $1 x_j \in D_i$: then (i) $e(x_j) = 1$, i.e., $x_j^e = x_j$. (ii) $y_j = x_j$.
- Case $2 \neg x_j \in D_i$: then (i) $e(x_j) = 0$, i.e., $x_j^e = \bar{x}_j$. (ii) $y_j = \bar{x}_j$.
- Case $3 x_j, \neg x_j \notin D_i$: then $x_j^e \le x_j \lor \bar{x}_j = y_j$.

Lemma

Let V be a nontrivial subvariety of FL and e a classical evaluation of x_1, \ldots, x_n . Then e(B) = 1 iff $\models_V 1 \le e^* \setminus B^*$.

Sketch of the proof (\Rightarrow)

- Assume that e(B) = 1.
- Then there has to be a disjunct D_i such that $e(D_i) = 1$.
- We prove that e^{*} = x₁^e · · · x_n^e ≤ y₁ · · · y_n = D_j^{*} in each A ∈ V by showing x_j^e ≤ y_j for every j.
- Case $1 x_j \in D_i$: then (i) $e(x_j) = 1$, i.e., $x_j^e = x_j$. (ii) $y_j = x_j$.
- Case $2 \neg x_j \in D_i$: then (i) $e(x_j) = 0$, i.e., $x_j^e = \bar{x}_j$. (ii) $y_j = \bar{x}_j$.
- Case $3 x_j, \neg x_j \notin D_i$: then $x_j^e \le x_j \lor \bar{x}_j = y_j$.
- Thus $\mathbf{A} \models 1 \leq e^* \setminus B^*$ for each $\mathbf{A} \in V$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Sketch of the proof (\Leftarrow)

$$v(x_j) = \begin{cases} 1 & \text{if } e(x_j) = 1, \\ a & \text{if } e(x_j) = 0, \end{cases}$$
 $v(\bar{x}_j) = \begin{cases} a & \text{if } e(x_j) = 1, \\ 1 & \text{if } e(x_j) = 0. \end{cases}$

Sketch of the proof (\Leftarrow)

Let A ∈ V be a nontrivial algebra. We have a ∈ A such that a < 1.
 Let v be the A-evaluation s.t.

$$v(x_j) = \begin{cases} 1 & \text{if } e(x_j) = 1, \\ a & \text{if } e(x_j) = 0, \end{cases}$$
 $v(\bar{x}_j) = \begin{cases} a & \text{if } e(x_j) = 1, \\ 1 & \text{if } e(x_j) = 0. \end{cases}$

• Note that $v(x_j^e) = 1$ and $v(y_j) \in \{a, 1\}$. Thus $v(D_i^*) = v(y_1 \cdots y_n) \le v(y_j)$ for each *j*.

Sketch of the proof (\Leftarrow)

$$v(x_j) = \begin{cases} 1 & \text{if } e(x_j) = 1, \\ a & \text{if } e(x_j) = 0, \end{cases}$$
 $v(\bar{x}_j) = \begin{cases} a & \text{if } e(x_j) = 1, \\ 1 & \text{if } e(x_j) = 0. \end{cases}$

- Note that $v(x_j^e) = 1$ and $v(y_j) \in \{a, 1\}$. Thus $v(D_i^*) = v(y_1 \cdots y_n) \le v(y_j)$ for each j.
- Assume that e(B) = 0. Then there has to be a literal z_i in each D_i s.t. e(z_i) = 0.

Sketch of the proof (\Leftarrow)

$$v(x_j) = \begin{cases} 1 & \text{if } e(x_j) = 1, \\ a & \text{if } e(x_j) = 0, \end{cases}$$
 $v(\bar{x}_j) = \begin{cases} a & \text{if } e(x_j) = 1, \\ 1 & \text{if } e(x_j) = 0. \end{cases}$

• Note that
$$v(x_j^e) = 1$$
 and $v(y_j) \in \{a, 1\}$. Thus $v(D_i^*) = v(y_1 \cdots y_n) \le v(y_j)$ for each j .

- Assume that e(B) = 0. Then there has to be a literal z_i in each D_i s.t. e(z_i) = 0.
- Case $1 z_i = x_j$: then $y_j = x_j$ and $v(x_j) = a$. Thus $v(D_i^*) \le v(y_j) = a$.

Sketch of the proof (\Leftarrow)

$$v(x_j) = \begin{cases} 1 & \text{if } e(x_j) = 1, \\ a & \text{if } e(x_j) = 0, \end{cases}$$
 $v(\bar{x}_j) = \begin{cases} a & \text{if } e(x_j) = 1, \\ 1 & \text{if } e(x_j) = 0. \end{cases}$

• Note that
$$v(x_j^e) = 1$$
 and $v(y_j) \in \{a, 1\}$. Thus $v(D_i^*) = v(y_1 \cdots y_n) \le v(y_j)$ for each j .

- Assume that e(B) = 0. Then there has to be a literal z_i in each D_i s.t. e(z_i) = 0.
- Case $1 z_i = x_j$: then $y_j = x_j$ and $v(x_j) = a$. Thus $v(D_i^*) \le v(y_j) = a$.
- Case $2 z_i = \neg x_j$: then $y_j = \bar{x}_j$ and $v(\bar{x}_j) = a$. Thus $v(D_i^*) \le v(y_j) = a$.

Sketch of the proof (\Leftarrow)

$$v(x_j) = \begin{cases} 1 & \text{if } e(x_j) = 1, \\ a & \text{if } e(x_j) = 0, \end{cases}$$
 $v(\bar{x}_j) = \begin{cases} a & \text{if } e(x_j) = 1, \\ 1 & \text{if } e(x_j) = 0. \end{cases}$

• Note that
$$v(x_j^e) = 1$$
 and $v(y_j) \in \{a, 1\}$. Thus $v(D_i^*) = v(y_1 \cdots y_n) \le v(y_j)$ for each j .

- Assume that e(B) = 0. Then there has to be a literal z_i in each D_i s.t. e(z_i) = 0.
- Case $1 z_i = x_j$: then $y_j = x_j$ and $v(x_j) = a$. Thus $v(D_i^*) \le v(y_j) = a$.
- Case $2 z_i = \neg x_j$: then $y_j = \bar{x}_j$ and $v(\bar{x}_j) = a$. Thus $v(D_i^*) \le v(y_j) = a$.

• Thus
$$\mathbf{A} \not\models \mathbf{1} \leq e^* \setminus B^*$$
.

• We define inductively formulas A_0^*, \ldots, A_n^* .

크

イロン イ理 とく ヨン イヨン

- We define inductively formulas A_0^*, \ldots, A_n^* .
- First, $A_0^* = B^*$.

<ロ> <四> <四> <四> <四> <四</p>

- We define inductively formulas A_0^*, \ldots, A_n^* .
- First, $A_0^* = B^*$.
- Let i > 0. If $Q_i = \forall$ then

$$A_i^* = (x_i \vee \bar{x}_i) \setminus A_{i-1}^*$$

- We define inductively formulas A_0^*, \ldots, A_n^* .
- First, $A_0^* = B^*$.
- Let i > 0. If $Q_i = \forall$ then

$$A_i^* = (x_i \vee \bar{x}_i) \setminus A_{i-1}^*$$

whereas, if $Q_i = \exists$ then

$$A_i^* = (x_i \setminus A_{i-1}^*) \vee (\bar{x}_i \setminus A_{i-1}^*),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- We define inductively formulas A_0^*, \ldots, A_n^* .
- First, $A_0^* = B^*$.
- Let i > 0. If $Q_i = \forall$ then

$$A_i^* = (x_i \vee \bar{x}_i) \setminus A_{i-1}^*$$

whereas, if $Q_i = \exists$ then

$$A_i^* = \left((x_i \setminus q_i) \vee (\bar{x}_i \setminus q_i) \right) / (A_{i-1}^* \setminus q_i \wedge 1),$$

where q_i is a fresh variable.

- We define inductively formulas A_0^*, \ldots, A_n^* .
- First, $A_0^* = B^*$.

• Let
$$i > 0$$
. If $Q_i = \forall$ then

$$A_i^* = (x_i \vee \bar{x}_i) \setminus A_{i-1}^*$$

whereas, if $Q_i = \exists$ then

$$\boldsymbol{A}_{i}^{*}=\left((\boldsymbol{x}_{i}\setminus\boldsymbol{q}_{i})\vee(\bar{\boldsymbol{x}}_{i}\setminus\boldsymbol{q}_{i})\right)/(\boldsymbol{A}_{i-1}^{*}\setminus\boldsymbol{q}_{i}\wedge\boldsymbol{1})\,,$$

where q_i is a fresh variable.

• Thus we have a polynomial-time translation of $Q_n x_n \cdots Q_1 x_1 B(x_1, \dots, x_n)$ to the FL-formula A_n^* .

Lemma

Let L be a consistent substructural logic having SDP, $0 \le i \le n$, and e be a classical evaluation of x_{i+1}, \ldots, x_n . Then $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ iff $\vdash_L e^* \setminus A_i^*$.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Lemma

Let L be a consistent substructural logic having SDP, $0 \le i \le n$, and e be a classical evaluation of x_{i+1}, \ldots, x_n . Then $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ iff $\vdash_L e^* \setminus A_i^*$.

Proof

• Let V(L) be the corresponding variety of FL-algebras.

Lemma

Let L be a consistent substructural logic having SDP, $0 \le i \le n$, and e be a classical evaluation of x_{i+1}, \ldots, x_n . Then $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ iff $\vdash_L e^* \setminus A_i^*$.

Proof

- Let V(L) be the corresponding variety of FL-algebras.
- By induction on *i*. We have seen the proof for the case i = 0.

Lemma

Let L be a consistent substructural logic having SDP, $0 \le i \le n$, and e be a classical evaluation of x_{i+1}, \ldots, x_n . Then $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ iff $\vdash_L e^* \setminus A_i^*$.

Proof

- Let V(L) be the corresponding variety of FL-algebras.
- By induction on *i*. We have seen the proof for the case i = 0.
- Suppose that *i* > 0.

Lemma

Let L be a consistent substructural logic having SDP, $0 \le i \le n$, and e be a classical evaluation of x_{i+1}, \ldots, x_n . Then $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ iff $\vdash_L e^* \setminus A_i^*$.

Proof

- Let V(L) be the corresponding variety of FL-algebras.
- By induction on *i*. We have seen the proof for the case i = 0.
- Suppose that i > 0.
- Let *e* be a classical evaluation of x_{i+1}, \ldots, x_n .

・ロト ・ 四ト ・ ヨト ・ ヨト …

Lemma

Let L be a consistent substructural logic having SDP, $0 \le i \le n$, and e be a classical evaluation of x_{i+1}, \ldots, x_n . Then $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ iff $\vdash_L e^* \setminus A_i^*$.

Proof

- Let V(L) be the corresponding variety of FL-algebras.
- By induction on *i*. We have seen the proof for the case i = 0.
- Suppose that i > 0.
- Let *e* be a classical evaluation of x_{i+1}, \ldots, x_n .
- Denote by e₀, e₁ the extensions of e which evaluate x_i respectively by 0, 1.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Lemma

Let L be a consistent substructural logic having SDP, $0 \le i \le n$, and e be a classical evaluation of x_{i+1}, \ldots, x_n . Then $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ iff $\vdash_L e^* \setminus A_i^*$.

Proof

- Let V(L) be the corresponding variety of FL-algebras.
- By induction on *i*. We have seen the proof for the case i = 0.
- Suppose that i > 0.
- Let *e* be a classical evaluation of x_{i+1}, \ldots, x_n .
- Denote by e₀, e₁ the extensions of e which evaluate x_i respectively by 0, 1.
- Note that $e_0^* = \bar{x}_i \cdot e^*$ and $e_1^* = x_i \cdot e^*$.

Proof (\Rightarrow)

• Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ and $Q_i = \exists$.

2

イロン イ理 とく ヨン 一

Proof (\Rightarrow)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$ or $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$, say the first holds.

3
Proof (\Rightarrow)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$ or $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$, say the first holds.
- By induction hypotheses we have 1 ≤ e^{*}₀ \ A^{*}_{i-1}, i.e., e^{*}₀ ≤ A^{*}_{i-1} for each A ∈ V(L).

3

Proof (\Rightarrow)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$ or $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$, say the first holds.
- By induction hypotheses we have 1 ≤ e^{*}₀ \ A^{*}_{i-1}, i.e., e^{*}₀ ≤ A^{*}_{i-1} for each A ∈ V(L).
- Thus $\bar{x}_i \cdot e^* = e_0^* \le A_{i-1}^*$, i.e., $e^* \le \bar{x}_i \setminus A_{i-1}^*$.

Proof (\Rightarrow)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$ or $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$, say the first holds.
- By induction hypotheses we have 1 ≤ e^{*}₀ \ A^{*}_{i-1}, i.e., e^{*}₀ ≤ A^{*}_{i-1} for each A ∈ V(L).
- Thus $\bar{x}_i \cdot e^* = e_0^* \le A_{i-1}^*$, i.e., $e^* \le \bar{x}_i \setminus A_{i-1}^*$.
- By transitivity of the implication we get

$$egin{aligned} e^* &\leq ar{x}_i \setminus oldsymbol{A}^*_{i-1} \leq (ar{x}_i \setminus oldsymbol{q}_i)/(oldsymbol{A}^*_{i-1} \setminus oldsymbol{q}_i) \leq \ &((x_i \setminus oldsymbol{q}_i) ee (ar{x}_i \setminus oldsymbol{q}_i))/(oldsymbol{A}^*_{i-1} \setminus oldsymbol{q}_i \wedge oldsymbol{1}) = oldsymbol{A}^*_i \,. \end{aligned}$$

3

Proof (\Rightarrow)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 1$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$ or $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 1$, say the first holds.
- By induction hypotheses we have 1 ≤ e^{*}₀ \ A^{*}_{i-1}, i.e., e^{*}₀ ≤ A^{*}_{i-1} for each A ∈ V(L).
- Thus $\bar{x}_i \cdot e^* = e_0^* \le A_{i-1}^*$, i.e., $e^* \le \bar{x}_i \setminus A_{i-1}^*$.
- By transitivity of the implication we get

$$egin{aligned} e^* &\leq ar{x}_i \setminus A^*_{i-1} \leq (ar{x}_i \setminus q_i)/(A^*_{i-1} \setminus q_i) \leq \ &((x_i \setminus q_i) ee (ar{x}_i \setminus q_i))/(A^*_{i-1} \setminus q_i \wedge 1) = A^*_i \,. \end{aligned}$$

• Consequently, $1 \le e^* \setminus A_j^*$ for each algebra $\mathbf{A} \in V(L)$.

Proof (⇐)

• Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 0$ and $Q_i = \exists$.

Rostislav Horčík (ICS, ASCR)

Proof (⇐)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 0$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$ and $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$.

3

・ロト ・四ト ・ヨト ・ヨト

Proof (⇐)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 0$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$ and $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$.
- By induction hypotheses there are $A_0, A_1 \in V(L)$ such that $A_0 \not\models e_0^* \setminus A_{i-1}^*$ and $A_1 \not\models e_1^* \setminus A_{i-1}^*$.

3

Proof (⇐)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 0$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$ and $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$.
- By induction hypotheses there are $\mathbf{A}_0, \mathbf{A}_1 \in V(L)$ such that $\mathbf{A}_0 \not\models e_0^* \setminus A_{i-1}^*$ and $\mathbf{A}_1 \not\models e_1^* \setminus A_{i-1}^*$.
- Note that

$$\begin{array}{rcl} \boldsymbol{e}_{0}^{*} \setminus \boldsymbol{A}_{i-1}^{*} &=& \bar{\boldsymbol{x}}_{i} \cdot \boldsymbol{e}^{*} \setminus \boldsymbol{A}_{i-1}^{*} = \boldsymbol{e}^{*} \setminus (\bar{\boldsymbol{x}}_{i} \setminus \boldsymbol{A}_{i-1}^{*}), \\ \boldsymbol{e}_{1}^{*} \setminus \boldsymbol{A}_{i-1}^{*} &=& \boldsymbol{x}_{i} \cdot \boldsymbol{e}^{*} \setminus \boldsymbol{A}_{i-1}^{*} = \boldsymbol{e}^{*} \setminus (\boldsymbol{x}_{i} \setminus \boldsymbol{A}_{i-1}^{*}). \end{array}$$

3

Proof (⇐)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 0$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$ and $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$.
- By induction hypotheses there are $\mathbf{A}_0, \mathbf{A}_1 \in V(L)$ such that $\mathbf{A}_0 \not\models e_0^* \setminus A_{i-1}^*$ and $\mathbf{A}_1 \not\models e_1^* \setminus A_{i-1}^*$.
- Note that

$$\begin{array}{rcl} \boldsymbol{e}_{0}^{*} \setminus \boldsymbol{A}_{i-1}^{*} &=& \bar{\boldsymbol{x}}_{i} \cdot \boldsymbol{e}^{*} \setminus \boldsymbol{A}_{i-1}^{*} = \boldsymbol{e}^{*} \setminus (\bar{\boldsymbol{x}}_{i} \setminus \boldsymbol{A}_{i-1}^{*}), \\ \boldsymbol{e}_{1}^{*} \setminus \boldsymbol{A}_{i-1}^{*} &=& \boldsymbol{x}_{i} \cdot \boldsymbol{e}^{*} \setminus \boldsymbol{A}_{i-1}^{*} = \boldsymbol{e}^{*} \setminus (\boldsymbol{x}_{i} \setminus \boldsymbol{A}_{i-1}^{*}). \end{array}$$

• By SDP there is $\mathbf{A} \in V(L)$ such that $\mathbf{A} \not\models 1 \leq e^* \setminus ((\bar{x}_i \setminus A^*_{i-1}) \lor (x_i \setminus A^*_{i-1}))$, i.e., there is an \mathbf{A} -evaluation v such that $v(e^*) > v((\bar{x}_i \setminus A^*_{i-1}) \lor (x_i \setminus A^*_{i-1}))$.

イロン イロン イヨン イヨン 二日

Proof (⇐)

- Assume that $e(Q_i x_i \cdots Q_1 x_1 B) = 0$ and $Q_i = \exists$.
- Then $e_0(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$ and $e_1(Q_{i-1}x_{i-1}\cdots Q_1x_1B) = 0$.
- By induction hypotheses there are $\mathbf{A}_0, \mathbf{A}_1 \in V(L)$ such that $\mathbf{A}_0 \not\models e_0^* \setminus A_{i-1}^*$ and $\mathbf{A}_1 \not\models e_1^* \setminus A_{i-1}^*$.
- Note that

$$\begin{array}{rcl} e_0^* \setminus A_{i-1}^* &=& \bar{x}_i \cdot e^* \setminus A_{i-1}^* = e^* \setminus (\bar{x}_i \setminus A_{i-1}^*), \\ e_1^* \setminus A_{i-1}^* &=& x_i \cdot e^* \setminus A_{i-1}^* = e^* \setminus (x_i \setminus A_{i-1}^*). \end{array}$$

• By SDP there is $\mathbf{A} \in V(L)$ such that $\mathbf{A} \not\models 1 \le e^* \setminus ((\bar{x}_i \setminus A_{i-1}^*) \lor (x_i \setminus A_{i-1}^*))$, i.e., there is an \mathbf{A} -evaluation v such that $v(e^*) > v((\bar{x}_i \setminus A_{i-1}^*) \lor (x_i \setminus A_{i-1}^*))$.

• W.I.o.g. assume that $v(q_i) = v(A_{i-1}^*)$. Then

$$v(e^*) > v((ar{x}_i \setminus A^*_{i-1}) \lor (x_i \setminus A^*_{i-1})) = v(((x_i \setminus q_i) \lor (ar{x}_i \setminus q_i))/(A^*_{i-1} \setminus q_i \land 1)) = v(A^*_i).$$

Consequently, $\mathbf{A} \not\models 1 \leq e^* \setminus A_i^*$.

イロト 不得 トイヨト イヨト 二日

 We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.
- We have now a method for proving PSPACE-hardness of a substructural logic just by showing SDP.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.
- We have now a method for proving PSPACE-hardness of a substructural logic just by showing SDP.
- Is there an algebraic proof of SDP for basic substructural logics?

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- We have presented a relatively simple proof (in comparison with MALL) of PSPACE-hardness (PSPACE-completeness) for some substructural logics.
- We have now a method for proving PSPACE-hardness of a substructural logic just by showing SDP.
- Is there an algebraic proof of SDP for basic substructural logics?
- We need even less than SDP, namely
 if ⊢_L α \((x \ φ) ∨ (x̄ \ φ)) then ⊢_L α \(x \ φ) or ⊢_L α \(x̄ \ φ),

 where φ is a formula, α is a product of atoms, and x, x̄ are atoms.

イロト 不得 トイヨト イヨト