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Introduction

Basic substructural logics

Substructural logics are logics lacking some of the structural rules
(contraction, exchange, left and right weakening).

Γ, α, α,∆⇒ ϕ
(c)

Γ, α,∆⇒ ϕ

Γ, α, β,∆⇒ ϕ
(e)

Γ, β, α,∆⇒ ϕ

Γ,∆⇒ ϕ
(i)

Γ, α,∆⇒ ϕ
Γ⇒ (o)

Γ⇒ α

The weakest substructural logic called FL is a logic obtained from
the sequent calculus for Intuitionistic logic by omitting (c), (e), (i)
and (o). The language of FL: ∧,∨, ·, /, \,0,1.
Let S ⊆ {c,e, i ,o}. Then FLS denotes the extension of FL by rules
from S.
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Introduction

Cut elimination

Theorem (Komori, Ono)
Let {c} 6= S ⊆ {e, c, i ,o}. Then FLS enjoys cut elimination.

The logic FLc has not cut elimination. However, it can be equally
presented by a different sequent calculus FLgc arising from FLc by
replacing the contraction rule (c) by the global contraction rule (gc):

Γ,Σ,Σ,∆⇒ ϕ
(gc)

Γ,Σ,∆⇒ ϕ

where Σ is any finite sequence of formulas. This means that a sequent
is provable in FLc iff it is provable in FLgc .

Theorem
Cut elimination holds for FLgc .
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Introduction

Axiomatic extensions

By a substructural logic we mean an axiomatic extension of FL.

Let Γ be a set of axiomatic schemata. The axiomatic extension of
FL by Γ is the calculus obtained from FL by adding new initial
sequents ⇒ ϕ for all formulas ϕ ∈ Γ.

Let L be a substructural logic. The provability relation of L is
denoted by `L.

Given S ⊆ {c,e, i ,o}, the logic FLS can be viewed as an
axiomatic extension of FL. The following schemata correspond
respectively to (c),(e), (i) and (o):

α \(α · α) , (α · β) \(β · α) , α \1 , 0 \α .
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Introduction

Algebraizability

FL is algebraizable and its equivalent algebraic semantics is the
variety of FL-algebras.

Thus there is a dual isomorphism V between the lattice of
axiomatic extensions of FL and the subvariety lattice of
FL-algebras.

Let L be a substructural logic. Then we have the following
equivalences:

`L ϕ iff |=V(L) 1 = 1 ∧ ϕ [1 ≤ ϕ] .

|=V(L) ϕ = ψ iff `L (ϕ \ψ) ∧ (ψ \ϕ) .

By complexity of a logic L we mean the complexity of its set of
theorems. Due to algebraizability it is the same as the complexity
of the equational theory for V(L).
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Introduction

Algebraic semantics

Definition
An FL-algebra is an algebra A = 〈A,∧,∨, ·, /, \,0,1〉, where 〈A,∧,∨〉 is
a lattice, 〈A, ·,1〉 is a monoid and

x · y ≤ z iff x ≤ z/y iff y ≤ x \ z .

Lemma
Let A be a nontrivial FL-algebra. Then there is a ∈ A such that a < 1.

Proof.
Since A is nontrivial, there is b ∈ A such that b 6= 1. If 1 6≤ b then
a = b ∧ 1 < 1. If b > 1 then we take a = b \1 ≤ 1 \1 = 1. Moreover,
a < 1 otherwise b = b · a = b · (b \1) ≤ 1.

Rostislav Horčík (ICS, ASCR) 6 / 20



Introduction

Algebraic semantics

Definition
An FL-algebra is an algebra A = 〈A,∧,∨, ·, /, \,0,1〉, where 〈A,∧,∨〉 is
a lattice, 〈A, ·,1〉 is a monoid and

x · y ≤ z iff x ≤ z/y iff y ≤ x \ z .

Lemma
Let A be a nontrivial FL-algebra. Then there is a ∈ A such that a < 1.

Proof.
Since A is nontrivial, there is b ∈ A such that b 6= 1. If 1 6≤ b then
a = b ∧ 1 < 1. If b > 1 then we take a = b \1 ≤ 1 \1 = 1. Moreover,
a < 1 otherwise b = b · a = b · (b \1) ≤ 1.
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Introduction

Known complexity results

There are results on stronger logics like classical, Intuitionistic,
Łukasiewicz...

Multiplicative additive fragment of Linear Logic (MALL) is
PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94).

The fact the MALL is in PSPACE follows from the existence of a
cut-free sequent calculus.

PSPACE-hardness is proved by reduction to QBF.

The proof is proof-theoretical, long, and very technical (does not
work in the presence of weakening).

FL is PSPACE-complete (Kanovich 94, Kanazawa 99). The proof
is a modification of the proof for MALL. The coding is simplified,
uses QBF where the propositional part is in DNF.
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Results

Our aims

1 As mentioned above, the proof of PSPACE-hardness is usually
done by reduction to QBF. The fact that the reduction works is
shown by analyzing the corresponding sequent calculus.

2 We would like to find method which is more general and can be
applied possibly to a wider class of substructural logics.
Our proof of PSPACE-hardness should be more algebraic
therefore less dependent on the sequent calculus.

3 We will show by algebraic means that any substructural logic
having a stronger version of disjunction property is PSPACE-hard.

4 In fact, this result is analogous to that we have for
superintuitionistic logics saying that each superintuitionistic logic
with the disjunction property is PSPACE-hard.
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Rostislav Horčík (ICS, ASCR) 8 / 20



Results

Strong Disjunction Property

Disjunction Property: provability of a disjunction implies provability
of one of the disjuncts.

We need a stronger version with atomic assumptions.

Definition (Strong Disjunction Property)

Let L be a substructural logic. Then L satisfies Strong Disjunction
Property (SDP) if for all formulas ϕ,ψ and atoms v1, . . . , vn we have
`L (v1 · · · vn) \(ϕ ∨ ψ) implies `L (v1 · · · vn) \ϕ or `L (v1 · · · vn) \ψ.

Theorem

Let S ⊆ {e, c, i ,o}. Then FLS has SDP.
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Results

Proof of SDP

Let α = a1 · · · a5 where ai ’s are atoms.

Provability of α \(ϕ ∨ ψ) means that the sequent
a1,a2,a3,a4,a5 ⇒ ϕ ∨ ψ has a cut-free proof.

If S = {c}, then consider a cut-free proof in FLgc .
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Rostislav Horčík (ICS, ASCR) 10 / 20



Results

Our results

Theorem
Let L be a consistent substructural logic having SDP. Then L is
PSPACE-hard.

Corollary

Let S ⊆ {e, c, i ,o}. Then FLS is PSPACE-hard.

For basic substructural logics without contraction we can even obtain
PSPACE-completeness.

Theorem
Let S ⊆ {e, i ,o}. Then FLS is PSPACE-complete.
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Results

Quantified Boolean formulas (QBF)

Let us start with a quantified Boolean formula

Qnxn · · ·Q1x1B(x1, . . . , xn) ,

where Qi ∈ {∀, ∃} and B(x1, . . . , xn) is in DNF.

Thus B(x1, . . . , xn) = D1 ∨ · · · ∨ Dk , where Di ’s are conjunctions of
literals (i.e., xj or ¬xj ) and every xj appears in Di at most once.

∀x∃y (x ∧ ¬y) ∨ (¬x ∧ y) is true.

∃y∀x (x ∧ ¬y) ∨ (¬x ∧ y) if false.
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Results

Coding – propositional part

Given A = Qnxn · · ·Q1x1B(x1, . . . , xn), we define FL-formula A∗ in
variables x1, . . . , xn, x̄1, . . . , x̄n.

Let e be a classical evaluation of x1, . . . , xn. Define

xe
j =

{
xj if e(xj) = 1,
x̄j if e(xj) = 0.

Then e∗ = xe
1 · · · x

e
n .

For each Di we define D∗
i = y1 · · · yn, where

yj =


xj if xj ∈ Di ,
x̄j if ¬xj ∈ Di ,
xj ∨ x̄j otherwise.

Then B∗ = D∗
1 ∨ · · · ∨ D∗

k .
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Rostislav Horčík (ICS, ASCR) 13 / 20



Results

Coding – propositional part

Lemma
Let V be a nontrivial subvariety of FL and e a classical evaluation of
x1, . . . , xn. Then e(B) = 1 iff |=V 1 ≤ e∗ \B∗.

Sketch of the proof (⇒)
Assume that e(B) = 1.
Then there has to be a disjunct Di such that e(Di) = 1.
We prove that e∗ = xe

1 · · · x
e
n ≤ y1 · · · yn = D∗

i in each A ∈ V by
showing xe

j ≤ yj for every j .
Case 1 – xj ∈ Di : then (i) e(xj) = 1, i.e., xe

j = xj . (ii) yj = xj .
Case 2 – ¬xj ∈ Di : then (i) e(xj) = 0, i.e., xe

j = x̄j . (ii) yj = x̄j .
Case 3 – xj ,¬xj 6∈ Di : then xe

j ≤ xj ∨ x̄j = yj .
Thus A |= 1 ≤ e∗ \B∗ for each A ∈ V.
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Results

Sketch of the proof (⇐)
Let A ∈ V be a nontrivial algebra. We have a ∈ A such that a < 1.
Let v be the A-evaluation s.t.

v(xj) =

{
1 if e(xj) = 1,
a if e(xj) = 0,

v(x̄j) =

{
a if e(xj) = 1,
1 if e(xj) = 0.

Note that v(xe
j ) = 1 and v(yj) ∈ {a,1}. Thus

v(D∗
i ) = v(y1 · · · yn) ≤ v(yj) for each j .

Assume that e(B) = 0. Then there has to be a literal zi in each Di
s.t. e(zi) = 0.
Case 1 – zi = xj : then yj = xj and v(xj) = a. Thus
v(D∗

i ) ≤ v(yj) = a.
Case 2 – zi = ¬xj : then yj = x̄j and v(x̄j) = a. Thus
v(D∗

i ) ≤ v(yj) = a.
Thus A 6|= 1 ≤ e∗ \B∗.
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Results

Coding of quantifiers

We define inductively formulas A∗
0, . . . ,A

∗
n.

First, A∗
0 = B∗.

Let i > 0. If Qi = ∀ then

A∗
i = (xi ∨ x̄i) \A∗

i−1 ,

whereas, if Qi = ∃ then

Thus we have a polynomial-time translation of
Qnxn · · ·Q1x1B(x1, . . . , xn) to the FL-formula A∗

n.
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Results

Main lemma

Lemma
Let L be a consistent substructural logic having SDP, 0 ≤ i ≤ n, and e
be a classical evaluation of xi+1, . . . , xn. Then e(Qixi · · ·Q1x1B) = 1 iff
`L e∗ \A∗

i .

Proof
Let V(L) be the corresponding variety of FL-algebras.
By induction on i . We have seen the proof for the case i = 0.
Suppose that i > 0.
Let e be a classical evaluation of xi+1, . . . , xn.
Denote by e0,e1 the extensions of e which evaluate xi respectively
by 0,1.
Note that e∗0 = x̄i · e∗ and e∗1 = xi · e∗.
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Results

Proof (⇒)

Assume that e(Qixi · · ·Q1x1B) = 1 and Qi = ∃.

Then e0(Qi−1xi−1 · · ·Q1x1B) = 1 or e1(Qi−1xi−1 · · ·Q1x1B) = 1,
say the first holds.
By induction hypotheses we have 1 ≤ e∗0 \A∗

i−1, i.e., e∗0 ≤ A∗
i−1 for

each A ∈ V(L).
Thus x̄i · e∗ = e∗0 ≤ A∗

i−1, i.e., e∗ ≤ x̄i \A∗
i−1.

By transitivity of the implication we get

e∗ ≤ x̄i \A∗
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Proof (⇐)
Assume that e(Qixi · · ·Q1x1B) = 0 and Qi = ∃.

Then e0(Qi−1xi−1 · · ·Q1x1B) = 0 and e1(Qi−1xi−1 · · ·Q1x1B) = 0.
By induction hypotheses there are A0,A1 ∈ V(L) such that
A0 6|= e∗0 \A∗

i−1 and A1 6|= e∗1 \A∗
i−1.

Note that

e∗0 \A∗
i−1 = x̄i · e∗ \A∗

i−1 = e∗ \(x̄i \A∗
i−1) ,

e∗1 \A∗
i−1 = xi · e∗ \A∗

i−1 = e∗ \(xi \A∗
i−1) .

By SDP there is A ∈ V(L) such that
A 6|= 1 ≤ e∗ \((x̄i \A∗

i−1) ∨ (xi \A∗
i−1)), i.e., there is an A-evaluation

v such that v(e∗) > v((x̄i \A∗
i−1) ∨ (xi \A∗

i−1)).
W.l.o.g. assume that v(qi) = v(A∗

i−1). Then

v(e∗) > v((x̄i \A∗
i−1) ∨ (xi \A∗

i−1)) =

v(((xi \qi) ∨ (x̄i \qi))/(A∗
i−1 \qi ∧ 1)) = v(A∗

i ) .

Consequently, A 6|= 1 ≤ e∗ \A∗
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Rostislav Horčík (ICS, ASCR) 19 / 20



Results

Proof (⇐)
Assume that e(Qixi · · ·Q1x1B) = 0 and Qi = ∃.
Then e0(Qi−1xi−1 · · ·Q1x1B) = 0 and e1(Qi−1xi−1 · · ·Q1x1B) = 0.
By induction hypotheses there are A0,A1 ∈ V(L) such that
A0 6|= e∗0 \A∗

i−1 and A1 6|= e∗1 \A∗
i−1.

Note that

e∗0 \A∗
i−1 = x̄i · e∗ \A∗

i−1 = e∗ \(x̄i \A∗
i−1) ,

e∗1 \A∗
i−1 = xi · e∗ \A∗

i−1 = e∗ \(xi \A∗
i−1) .

By SDP there is A ∈ V(L) such that
A 6|= 1 ≤ e∗ \((x̄i \A∗

i−1) ∨ (xi \A∗
i−1)), i.e., there is an A-evaluation

v such that v(e∗) > v((x̄i \A∗
i−1) ∨ (xi \A∗

i−1)).

W.l.o.g. assume that v(qi) = v(A∗
i−1). Then

v(e∗) > v((x̄i \A∗
i−1) ∨ (xi \A∗

i−1)) =

v(((xi \qi) ∨ (x̄i \qi))/(A∗
i−1 \qi ∧ 1)) = v(A∗

i ) .

Consequently, A 6|= 1 ≤ e∗ \A∗
i .
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Results

Remarks

We have presented a relatively simple proof (in comparison with
MALL) of PSPACE-hardness (PSPACE-completeness) for some
substructural logics.

We have now a method for proving PSPACE-hardness of a
substructural logic just by showing SDP.

Is there an algebraic proof of SDP for basic substructural logics?

We need even less than SDP, namely
if `L α \((x \ϕ) ∨ (x̄ \ϕ)) then `L α \(x \ϕ) or `L α \(x̄ \ϕ),

where ϕ is a formula, α is a product of atoms, and x , x̄ are atoms.
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