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Abstract. We solve several open problems on the cardinality of atoms in the subvariety lattice

of residuated lattices and FL-algebras [4, Problems 17–19, pp. 437]. Namely, we prove that the
subvariety lattice of residuated lattices contains continuum many 4-potent commutative repre-

sentable atoms. Analogous results apply also to atoms in the subvariety lattice of FLi-algebras

and FLo-algebras. On the other hand, we show that the subvariety lattice of residuated lattices
contains only five 3-potent commutative representable atoms and two integral commutative

representable atoms. Inspired by the construction of atoms, we are also able to prove that the

variety of integral commutative representable residuated lattices is generated by its 1-generated
finite members.

1. Introduction

It is well known (see e.g. [4]) that the subvariety lattice Λ(FL) of pointed residuated lattices
(FL-algebras) is dually isomorphic to the lattice of substructural logics (i.e., the lattice of ax-
iomatic extensions of Full Lambek Calculus). This paper focuses on the cardinality of minimal
varieties of FL-algebras whose members satisfy some additional properties like commutativity,
representability etc. Recall that a nontrivial variety K of FL-algebras is called minimal if it has
only one, trivial, proper subvariety, i.e., K is an atom in Λ(FL). Note that minimal varieties of
FL-algebras correspond to maximally consistent substructural logics.

Recall that the class of all residuated lattices can be viewed as a subvariety of FL-algebras
(namely, every residuated lattice can be viewed as an FL-algebra satisfying the identity 1 = 0).
In [5, Problem 8.6] the authors posed a question whether there are uncountably many minimal
varieties of residuated lattices that satisfy x·y = y ·x or x2 = x3. This question was answered in [3]
by giving continuum many minimal varieties whose members are representable and satisfy x = x2.
Concerning the identity x · y = y · x, [3] gives only a partial answer by showing that there are at
least countably many minimal varieties of residuated lattices, whose members are representable
and commutative, leaving as an open question whether there are uncountable many of them or
not. The same question appears also in [4] together with related problems on FL-algebras; see [4,
Problems 17–19, pp. 437]. In Section 3 we solve the first problem by constructing continuum
many minimal varieties of residuated lattices whose members are 4-potent, commutative and
representable. The related problems on FL-algebras can be solved by easy modifications.

Section 4 shows that 4-potency is crucial in the above-mentioned result by proving that there
are only five minimal varieties of residuated lattices whose members are 3-potent, commutative
and representable. Another reasonable question is what happens if we replace the k-potency by
integrality. In this case it is possible to show that there are only two minimal varieties of residuated
lattices.

Finally, inspired by the construction of minimal varieties, we are also able to prove that the
variety of integral commutative representable residuated lattices is generated by its 1-generated
finite members (Section 5).

2. Preliminaries

The sets of natural numbers, integers and non-positive integers are denoted respectively N, Z
and Z−.

This paper deals only with commutative residuated lattices and commutative FL-algebras. For
definitions of general residuated lattices and FL-algebras see [4]. A commutative residuated lattice
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(CRL) is an algebra A = 〈A,∧,∨, ·,→, 1〉, where 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a commutative
monoid and for all x, y, z ∈ A we have

x · y ≤ z iff y ≤ x→ z .

From the definition of CRL it readily follows that the multiplication · is monotone in both argu-
ments while the residuum→ is antitone in the first argument and monotone in the second one. The
residuum is fully determined by the multiplication and the order since x→ y = max{z | x ·z ≤ y}.
We adopt the usual convention of writing xy for x · y. In the absence of parentheses, we assume
that the multiplication is performed first followed by the residuum and the lattice operations. The
n-fold products are defined inductively by x0 = 1 and xn+1 = xxn.

It is well known that the class of CRLs forms a variety (see e.g. [4]). Let A be a CRL. If 1 is
also a top element, we call A an integral commutative residuated lattice (ICRL). Let k ∈ N. Then
a CRL A is called k-potent if it satisfies xk+1 = xk. A CRL A is referred to as a commutative
residuated chain (CRC), if the lattice reduct of A forms a chain. Analogously an integral CRC
is called shortly ICRC. A CRL A is said to be representable if A is isomorphic to a subdirect
product of CRCs. The varieties of representable and integral CRLs are denoted respectively RCRL
and ICRL.

An FLe-algebra is a pointed CRL, i.e., an algebra A = 〈A,∧,∨, ·,→, 0, 1〉, where the reduct
〈A,∧,∨, ·,→, 1〉 is a CRL. If this reduct is an ICRL then A is called FLei-algebra. An FLe-algebra
is called FLeo-algebra if 0 is a bottom element. Finally, we call an FLe-algebra representable (resp.
k-potent) if the underlying CRL is representable (resp. k-potent). For details on CRLs and FLe-
algebras see [4]. The varieties of representable FLeo-algebras and representable FLei-algebras are
denoted respectively RFLeo and RFLei.

Let A be a CRL or an FLe-algebra. Given S ⊆ A, the upset generated by S is denoted ↑S, i.e.,
↑S = {b ∈ A | (∃a ∈ S)(a ≤ b)}. A subset F of A is called a deductive filter of A if

• 1 ∈ F ,
• x ∈ F and x ≤ y implies y ∈ F (i.e., F is an upset),
• x, y ∈ F implies xy ∈ F ,
• x ∈ F implies x ∧ 1 ∈ F .

Clearly, ↑{1} is the least deductive filter of A. A deductive filter F is called nontrivial if F 6= ↑{1}.
The collection of all deductive filters of A forms a lattice ordered by the inclusion. Moreover, it is
known that this lattice is isomorphic to the congruence lattice of A (see [4]). Given a congruence
θ, the corresponding deductive filter is ↑(1/θ). Conversely, let F be a deductive filter of A. Then
the corresponding congruence θ = {〈a, b〉 ∈ A2 | a→ b, b→ a ∈ F}. Let a ∈ A such that a ≤ 1. It
is easy to see that the deductive filter generated by a (i.e., the least deductive filter of A containing
a) is the set F (a) = ↑{an | n ∈ N}.

In order to recognize minimal varieties of CRLs and FLe-algebras, we will use [4, Lemma 9.1]
which we restate here. A nontrivial algebra A is said to be strictly simple, if it lacks nontrivial
proper subalgebras and congruences. By proper subalgebra of A we mean a subalgebra B which
is not isomorphic to A. An element b ∈ A is called nearly term definable if there is an n-ary
term-operation t(x1, . . . , xn) such that t(a1, . . . , an) = b holds unless a1 = · · · = an = 1. Given an
algebra A, V(A) denotes the variety generated by A.

Lemma 2.1 ([4]). Let A be a strictly simple FLe-algebra or CRL with a bottom element ⊥ nearly
term definable by an n-ary term t. Then, V(A) is a minimal variety. Moreover, if A′ is a strictly
simple FLe-algebra or CRL with a bottom element nearly term definable by the same term t, then
V(A) ⊆ V(A′) if and only if A and A′ are isomorphic.

In the rest of this section we recall several useful constructions which we will need at the sequel.
Let A be a CRL. A conucleus on A is an interior operator σ on A (i.e., σ : A→ A is a monotone
map satisfying σ(x) ≤ x and σ(σ(x)) = σ(x) for all x ∈ A) such that σ(x)σ(y) ≤ σ(xy) and
σ(1) = 1 for all x, y ∈ A. We denote the image of σ by Aσ, i.e., Aσ = σ[A]. It follows immediately
from the definition that Aσ forms a submonoid of A.
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Let A = 〈A,∧,∨, ·,→, 1〉 be a CRL and σ a conucleus on A. Then the structure Aσ =
〈Aσ,∧σ,∨, ·,→σ, 1〉, where x∧σ y = σ(x∧ y) and x→σ y = σ(x→ y), is called a σ-contraction of
A. Observe that ∧σ = ∧ if 〈A,∧,∨〉 is a chain.

Theorem 2.2 ([4]). Let A be a CRL and σ a conucleus on A. Then Aσ is a CRL.

Each interior operator σ on a poset P is fully determined by its image as follows: σ(x) =
max{a ∈ Pσ | a ≤ x}. In fact, there exists a bijective correspondence between all interior
operators σ on a poset P and all subposets O of P satisfying the condition:

(1) max{a ∈ O | a ≤ x} exists for all x ∈ P.

Due to this one can characterize σ-contractions of a CRL A as subposets which are at the same
time submonoids and satisfy the condition (1), see [6].

Let A = 〈A,∧,∨, ·,→, 1〉 be an ICRL and a ∈ A. Note that the interval [a, 1] is closed under
all the operations except of the multiplication. If we define a new operation ◦a on [a, 1] by
x ◦a y = xy ∨ a, we obtain an ICRL [A]a = 〈[a, 1],∧,∨, ◦a,→, 1〉 (see e.g. [4]). The algebra [A]a
is in fact a nuclear retraction of A for the nucleus γ(x) = x ∨ a.

Let us illustrate the above notions on several examples of CRLs which we will need later on. Let
G be an Abelian `-group. Then G can be viewed as a CRL if we define x→ y = yx−1. Consider
the additive `-group of integers Z = 〈Z,∧,∨,+,→, 0〉 viewed as a CRC, i.e., x → y = y − x. Its
negative cone Z− is the image of an interior operator σ(x) = x ∧ 0. Since Z− is also closed under
+, σ is a conucleus. Thus Z− = Zσ forms an ICRC where x →σ y = (y − x) ∧ 0. Finally, let
n ∈ N. Consider the truncation Ln = [Z−]−n to the interval [−n, 0]. Then Ln is an ICRC where
the multiplication is given by x ◦−n y = −n ∨ (x+ y) and its residuum by x→σ y = (y − x) ∧ 0.
The algebra Ln is in fact the well-known (n+ 1)-valued Wajsberg hoop (see e.g. [1]).

3. Continuum many 4-potent minimal varieties

Let K be a variety. Its subvariety lattice is denoted Λ(K). In this section we are going to solve
the open problems [4, Problems 17–19, pp. 437]. Namely, we will prove that the subvariety lattices
Λ(RCRL), Λ(RFLei) and Λ(RFLeo) contain continuum many minimal varieties.

In order to construct algebras generating a minimal variety in a subvariety lattice, we will
need a method extending an ICRC by a new neutral element for the multiplication. Let A =
〈A,∧,∨, ·,→, 1A〉 be an ICRC with a coatom a = max(A\{1A}). We will extend the 1-free reduct

of A by adding a new neutral element 1A
′

in order to obtain a CRC A′ = 〈A′,∧,∨, ·,→, 1A′〉,
where A′ = A ∪ {1A′}. The new lattice order ∧,∨ is the extension of the original order letting

a ≤ 1A
′ ≤ 1A. Thus 1A becomes a top element of A′. Let x ∈ A ∪ {1A′} and y ∈ A \ {1A}. The

operations are extended as follows:

1A
′
· x = x = x · 1A

′
, 1A

′
→ x = x , y → 1A

′
= 1A , 1A → 1A

′
= a .

Lemma 3.1. Let A be an ICRC with a coatom a. Then A′ is an CRC.

Proof. Clearly, 〈A′,∧,∨〉 is a chain and 〈A′, ·, 1A′〉 forms a commutative monoid. We will check
that A′ satisfies the residuation property, i.e., xy ≤ z iff y ≤ x → z. Since A is a subuniverse of
the 1-free reduct of A′, we have xy ≤ z iff y ≤ x → z for all x, y, z ∈ A. Let x, y, z ∈ A ∪ {1A′}
and suppose that at least one of them equals 1A

′
. If x = 1A

′
then we have 1A

′ · y = y ≤ z iff
y ≤ z = 1A

′ → z. Thus assume x 6= 1A
′
. If z 6= 1A

′
(i.e., y = 1A

′
) then x · 1A′

= x ≤ z iff

1A
′ ≤ 1A ≤ x → z. Now assume z = 1A

′
. If x = 1A then 1A · y ≤ 1A

′
iff y ≤ a = 1A → 1A

′
.

If x ≤ a then x · y ≤ x ≤ 1A
′
. Thus x · y ≤ 1A

′
iff y ≤ 1A = x → 1A

′
. Summing up, A′ is a

CRC. �

Let A = 〈A,∧,∨,+,→, 〈0, 0〉〉 be the totally ordered Abelian `-group (viewed as a CRC) given
by the lexicographic product of two copies of Z, i.e., A = Z2 ordered lexicographically, + is
computed component-wise and 〈x, y〉 → 〈u, v〉 = 〈u− x, v − y〉. Recall that there are 2ℵ0 infinite
subsets of Z−. We construct for each infinite subset S ⊆ −2 +Z− = {−2 + z | z ∈ Z−} an algebra
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〈0, 0〉

〈−1, 0〉 = a

〈−1,−1〉

〈−1, S〉

〈−2, 1〉

〈−2, 0〉 = a2

〈−2,−1〉

〈−3, 1〉

〈−3, 0〉 = a3

〈−3,−1〉 = a4

Figure 1. The structure of the algebra [AσS
]〈−3,−1〉.

AS from the algebra A by means of a conucleus σS . We define the conucleus σS by defining its
image as follows:

AσS
= {〈0, 0〉, 〈−1, 0〉, 〈−1,−1〉} ∪

{〈−1, z〉 ∈ A | z ∈ S} ∪ {〈x, y〉 ∈ A | x ≤ −2} .

The set AσS
forms clearly a submonoid of A since 〈−1, x〉+ 〈−1, y〉 = 〈−2, x+ y〉 ∈ AσS

. Further
we have to check the condition (1), i.e., if max{x ∈ AσS

| x ≤ y} exists for each y ∈ A. The
existence is obvious for y ∈ AσS

. Suppose that y = 〈u, v〉 6∈ AσS
. Then u is greater than or equal

to −1. If u > 0, then the maximum is 〈0, 0〉. If u = 0 then the maximum is 〈−1, 0〉. If u = −1
then the maximum exists since the set M = {〈w, z〉 ∈ AσS

| w = −1} is dually well-ordered and
infinite (thus there is a lower bound of y in M). Hence AσS

is the image of a conucleus σS(x) =
max{y ∈ AσS

| y ≤ x} and AσS
forms an ICRC. Note that 〈x, y〉 →σS

〈u, v〉 = σS(u − x, v − y)
in AσS

. Finally, consider the truncated ICRC [AσS
]〈−3,−1〉. Its structure is depicted in Figure 1.

This ICRC is clearly 4-potent (i.e., it satisfies x5 = x4) because x4 = 〈−3,−1〉 for every x 6= 〈0, 0〉.
Define AS as the subalgebra of [AσS

]〈−3,−1〉 generated by a = 〈−1, 0〉. We will prove that each

AS contains some important elements. First, note that there is a term r(x) = x2 → x4 such that
rAS (a) = 〈−2, 0〉 →σS

〈−3,−1〉 = σS(−1,−1) = 〈−1,−1〉. Thus 〈−1,−1〉 ∈ AS . Since the set S is
dually well-ordered, we can index its elements by natural numbers, i.e., S = {c0 > c1 > c2 > · · · }.

Lemma 3.2. Let n ∈ N. Then there is a term sn(x) such that sAS
n (a) = 〈−1, cn〉 for each AS.

Thus 〈−1, cn〉 ∈ AS for all n ∈ N.

Proof. By induction on n. Let s0(x) be the term x→ r(x)2. Then

sAS
0 (a) = 〈−1, 0〉 →σS

〈−2,−2〉 = σS(−1,−2) = 〈−1, c0〉 ,

since 〈−1, c0〉 is the predecessor of 〈−1,−1〉. Now assume that there is a term sn(x) such that
sAS
n (a) = 〈−1, cn〉. Let sn+1(x) = x→ r(x) · sn(x). Then

sAS
n+1(a) = 〈−1, 0〉 →σS

〈−2, cn − 1〉 = σS(−1, cn − 1) = 〈−1, cn+1〉 .

�
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Lemma 3.3. Let n ∈ N. Then there is a term tn(x) such that tAS
n (a) = 〈−2, n〉 for each AS.

Thus 〈−2, n〉 ∈ AS for all n ∈ N.

Proof. By induction on n. For n = 0 it is clear since 〈−2, 0〉 = a2. Assume that there is tn(x)
such that tAS

n (a) = 〈−2, n〉. Consider a term tn+1(x) = r(x)→ x · tn(x). Then

tAS
n+1(a) = 〈−1,−1〉 →σS

〈−3, n〉 = σS(−2, n+ 1) = 〈−2, n+ 1〉 .

�

The 4-potent ICRC AS generated by a is simple since the only nontrivial deductive filter of
AS is F (a) = ↑{a4} = AS . However, AS is not strictly simple because {a4, 〈0, 0〉} forms a proper
nontrivial subalgebra. In order to obtain a strictly simple CRC from AS , we use the construction
from Lemma 3.1 and extend AS by a new neutral element.

Lemma 3.4. The algebra A′S is strictly simple with a nearly term definable bottom element.

Proof. We will show that any element x 6= 1A
′
S generates A′S . First, we can make the top element

〈0, 0〉 = x → x. Second, we can produce a = 〈−1, 0〉 = 〈0, 0〉 → 1A
′
S since 〈−1, 0〉 is the coatom

of AS . Since AS is generated by a, we are done. Moreover the bottom element a4 is nearly term
definable by the term x4 ∧ (x→ 1)4. �

Finally, we have to prove that A′R and A′S are not isomorphic for different sets R,S so that we
can invoke Lemma 2.1.

Lemma 3.5. Let R,S ⊆ −2 + Z− such that R 6= S. Then AS is not isomorphic to AR. The
same is true also for A′S and A′R.

Proof. Let us enumerate the elements of R,S as follows: R = {d0 > d1 > d2 > · · · } and
S = {c0 > c1 > c2 > · · · }. Suppose that f is an isomorphism from AS to AR. Since f is an
order-preserving bijection, f must be the identity when restricted to the set {a, a3}, i.e., f(a) = a
and f(a3) = a3. It follows from Lemma 3.2 that 〈−1, cn〉 ∈ AS , 〈−1, dn〉 ∈ AR and

f(−1, cn) = f(sAS
n (a)) = sAR

n (f(a)) = sAR
n (a) = 〈−1, dn〉

for all n ∈ N. Assume that k is the least natural number such that ck 6= dk. Without any loss of
generality suppose that ck > dk. Lemma 3.3 has two consequences. First, 〈−2,−ck〉 ∈ AS , AR.
Second, we have f(−2, n) = f(tAS

n (a)) = tAR
n (f(a)) = tAR

n (a) = 〈−2, n〉 for all n ∈ N. Thus we
get

a3 = f(a3) = f(〈−1, ck〉 ◦〈−3,−1〉 〈−2,−ck〉) =

〈−1, dk〉 ◦〈−3,−1〉 〈−2,−ck〉 = 〈−3, dk − ck〉 ∨ 〈−3,−1〉 = 〈−3,−1〉 = a4 ,

which is a contradiction since a3 6= a4.
The above argument also shows that 1-free reducts of AS and AR are not isomorphic either.

Since the 1-free reduct of AS (resp. AR) is a subalgebra of the 1-free reduct of A′S (resp. A′R),
it follows that A′S and A′R cannot be isomorphic. �

Using Lemma 2.1 and the lemmas above, we get the following theorem.

Theorem 3.6. There are 2ℵ0 minimal varieties in Λ(RCRL), Λ(RFLei) and Λ(RFLeo). All the
minimal varieties satisfy the identity x5 = x4, i.e., their members are 4-potent.

Proof. The first claim follows immediately from Lemma 2.1. For the second observe that we can
make AS into an FLei-algebra BS by interpreting the constant 0 as a = 〈−1, 0〉. Thus BS is
strictly simple since it is generated by 0. Moreover, the bottom element of BS is term-definable
by the term 04. The last claim can be proved as the first one since each A′S can be made into an
FLeo-algebra by interpreting 0 as a4. �
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4. 3-potent and integral minimal varieties

In the previous section we have seen that there are continuum many minimal varieties in
Λ(RCRL). However, all the constructed generators A′S are 4-potent and non-integral. Thus there
is a natural question how many minimal varieties we have if we restrict our attention on 3-potent
(resp. integral) representable CRLs.

First, we will show that Λ(RCRL) contains only finitely many minimal varieties whose members
are 3-potent. We start by defining a simple finite ICRC U3 = 〈U3,∧,∨, ◦,⇒, 0〉 which behaves
almost like L3 = 〈L3,∧,∨, ·,→, 0〉. Recall that L3 = {−3,−2,−1, 0}, the multiplication on L3 is
given by xy = −3 ∨ (x + y) and the residuum by x → y = (y − x) ∧ 0. Define U3 = L3 ∪ {−2∗}.
The order is given by −3 < −2 < −2∗ < −1 < 0. The multiplication is defined by x ◦ y = xy for
x, y ∈ L3, −2∗ ◦ x = −3 = x ◦ −2∗ for x 6= 0, and −2∗ ◦ 0 = −2∗ = 0 ◦ −2∗. The residuum ⇒ is
fully determined by ◦ and the order. The operations ◦ and ⇒ are described in Figure 2.

◦ −3 −2 −2∗ −1 0
−3 −3 −3 −3 −3 −3
−2 −3 −3 −3 −3 −2
−2∗ −3 −3 −3 −3 −2∗

−1 −3 −3 −3 −2 −1
0 −3 −2 −2∗ −1 0

⇒ −3 −2 −2∗ −1 0
−3 0 0 0 0 0
−2 −1 0 0 0 0
−2∗ −1 −1 0 0 0
−1 −2∗ −1 −1 0 0

0 −3 −2 −2∗ −1 0

Figure 2. The multiplication and residuum in U3.

Now we will characterize all subdirectly irreducible 3-potent ICRCs generated by its coatom.
Such algebras have always coatom because of the following lemma which directly follows from [4,
Lemma 3.59, 3.60].

Lemma 4.1. Let k ∈ N. A k-potent CRL is subdirectly irreducible iff it has a unique subcover of
1.

Lemma 4.2. Let A be a 3-potent ICRC. Suppose that A has a coatom a which generates A.
Then we have the following:

(1) If A is 1-potent then A ∼= L1.
(2) If A is 2-potent and not 1-potent then A ∼= L2.
(3) If A is not 2-potent then A ∼= L3 or A ∼= U3.

Proof. If A is 1-potent then A = {a < 1} and A is clearly isomorphic to L1. If A is 2-potent and
not 1-potent then B = {a2 < a < 1} ⊆ A is closed under multiplication. We will show that B
is closed also under →. Let x, y ∈ B. If x ≤ y then x → y = 1. Further, 1 → x = x. The only
remaining case is a→ a2. Since a ≤ a→ a2 < 1 and a is a coatom, we have a→ a2 = a. Thus B =
A and A ∼= L2. Finally, assume that A is not 2-potent. Let B = {a3 < a2 ≤ a→ a3 < a < 1} ⊆ A.
The set B is closed under multiplication because a(a→ a3) = a3. We show that B is closed also
under →. Let x, y ∈ B. If x ≤ y then x → y = 1. Further, 1 → x = x. Since a ≤ a → a2 < 1
and a is a coatom, we have a → a2 = a. Similarly a2 → a3 = a and (a → a3) → a3 = a. Then
a→ (a→ a3) = a2 → a3 = a. Finally, we have to check (a→ a3)→ a2 ∈ B. If a→ a3 = a2 then
(a→ a3)→ a2 = 1 and A ∼= L3. If a→ a3 > a2 then (a→ a3)→ a2 = a and A ∼= U3. �

The classification of 3-potent ICRCs generated by their coatom can be used in order to char-
acterize 3-potent non-integral CRCs generated by their top element. The characterization uses
the construction given in Lemma 3.1. The following proposition is a modification of [3, Proposi-
tion 4.6].

Proposition 4.3. Let A = 〈A,∧,∨, ·,→, 1〉 be a CRC with a top element > 6= 1. If A is generated
by >, then A = B′ for an ICRC B = 〈B,∧,∨, ·,→,>〉, where B = A \ {1}. Furthermore, B is
generated by its coatom a = > → 1. Finally, if A is k-potent then B is k-potent.
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Proof. Let B = A \ {1}. Since A is generated by >, for each b ∈ B there is a term t such that
t(>) = b. Moreover, we can assume that t does not contain ∧,∨ because 〈A,∧,∨〉 is a chain. We
will prove by induction on the complexity of t that b> = b for all b ∈ B. More formally we will
prove the following statement: if t(>) ∈ B then t(>)> = t(>). To see the base case, assume that
t(x) = x (if t(x) = 1 then t(>) 6∈ B). Since >> = >, the statement holds. Now assume that
t(x) = r(x)s(x) and t(>) ∈ B. Since t(>) 6= 1, either r(>) 6= 1 or s(>) 6= 1. Without any loss
of generality assume that r(>) 6= 1. Then by induction hypothesis r(>)> = r(>). Consequently,
t(>)> = r(>)s(>)> = r(>)s(>). Finally, assume that t(x) = r(x) → s(x) and t(>) ∈ B.
If r(>) = 1 then t(>) = s(>) 6= 1. Thus by induction hypotheses we have s(>)> = s(>).
Consequently, t(>)> = s(>)> = s(>) = t(>). Now suppose that r(>) 6= 1. Then by induction
hypothesis r(>)> = r(>). Consequently,

> → t(>) = > → (r(>)→ s(>)) = r(>)> → s(>) = r(>)→ s(>) = t(>) .

Thus t(>)> ≤ t(>). The other inequality holds always since 1 ≤ >.
Next observe that > covers 1 in A since > ≤ >x = x for x > 1. Let a = > → 1. We claim that

1 covers a. Clearly 1 6≤ > → 1 otherwise > = 1> ≤ 1. Moreover, if x < 1 then x> = x ≤ 1, so
x ≤ > → 1. Thus a is a coatom in B.

Now we will prove that B is a subalgebra of the 1-free reduct of A. Let x, y ∈ B. Since z> = z
for all z ∈ B, we have xy 6= 1. Thus B is closed under multiplication. If x ≤ y then x = x> ≤ y
which is equivalent to > ≤ x→ y ∈ B. If x > y then 1 > x→ y ∈ B. Thus B is also closed under
→. Moreover > acts like the monoidal identity on B. Consequently, B = 〈B,∧,∨, ·,→,>〉 forms
an ICRC with a coatom a. Finally, it is easy to see that A = B′.

To see that B is generated by a, note that a→ a = > because a> = a. Since A is generated by
>, we have a term t(x) for each b ∈ B such that t(a) = b. Again we may assume that ∧,∨ do not
occur in t. The term t may contain the constant 1. Thus we have to show that it is possible to
eliminate 1’s from t. We will do it again by induction on the complexity of t, i.e., we are going to
prove the following formal statement: if t(a) ∈ B then there is a term t′ such that t′(a) = t(a) and
1 does not occur in t′. The base case is trivial because t(a) ∈ B implies t(x) = x which does not
contain 1. Now assume that t(x) = r(x)s(x) and t(a) ∈ B. Thus r(a) ∈ B or s(a) ∈ B. Without
any loss of generality suppose that r(a) ∈ B. Then by induction hypothesis we have a term r′

not containing 1 such that r′(a) = r(a). If s(a) = 1 then we can set t′ = r′. If s(a) 6= 1 then
again by induction hypothesis there is a term s′ not containing 1 such that s′(a) = s(a). Thus
t′ = r′s′ is the desired term. Finally, assume that t(x) = r(x) → s(x) and t(x) ∈ B. If r(a) = 1
then t(a) = s(a) ∈ B. Consequently, we can set t′ = s′ where s′ is the 1-free term such that
s′(a) = s(a) whose existence follows from the induction hypothesis. If r(a) 6= 1 then by induction
hypothesis we have a 1-free term r′ such that r′(a) = r(a). Clearly, if s(a) 6= 1 as well then we
can set t′ = r′ → s′ using the 1-free term s′ from the induction hypothesis. If s(a) = 1 then there
are two cases. First, r(a) < 1. Then t(a) = r(a) → 1 = > because r(a)> = r(a) < 1. Thus
t′(x) = x→ x is the desired term. Second, r(a) = >. Then t(a) = > → 1 = a. Thus t′(x) = x is
the desired term.

The last claim of the proposition follows from the fact that 〈B,∧,∨, ·,→〉 is a subalgebra of
〈A,∧,∨, ·,→〉 and k-potency axiom does not involve the constant 1. �

Corollary 4.4. Let A be a 3-potent CRC having a top element > 6= 1. If A is generated by >
then A is isomorphic to one of the algebras L′1,L

′
2,L
′
3,U

′
3.

Proof. Using Proposition 4.3, we get A = B′ for a 3-potent ICRC B generated by its coatom.
Invoking Lemma 4.2, the algebra B has to be one of L1,L2,L3,U3. �

Theorem 4.5. There are exactly five 3-potent minimal varieties in the subvariety lattice Λ(RCRL),
namely varieties generated by L1,L

′
1,L
′
2,L
′
3,U

′
3.

Proof. It is obvious that all of L1,L
′
1,L
′
2,L
′
3,U

′
3 generate minimal variety in Λ(RCRL) since all of

them are finite and strictly simple. Conversely, every minimal variety is generated by a subdirectly
irreducible algebra. Thus assume that V(A) is a minimal variety generated by a subdirectly
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irreducible 3-potent representable CRL A. To prove the claim, we will show that A contains one
of L1, L′1, L′2, L′3, U′3 as a subalgebra.

Since A is subdirectly irreducible, it has to be a chain. We may also assume that A is generated
by its unique subcover a of 1 in A (see Lemma 4.1). Then a3 is an idempotent element. Using [4,
Lemma 3.51], the interval [a3, a3 → 1] forms a subalgebra of A. Since a belongs to this interval,
we have A = [a3, a3 → 1], i.e., ⊥ = a3 is a bottom element of A and > = a3 → 1 is its top
element. If A is integral then A is isomorphic to one of L1, L2, L3, U3 by Lemma 4.2. In
any case, {⊥ = a3,> = 1} forms a subalgebra of A isomorphic to L1. Thus assume that A is
not integral, i.e., > = a3 → 1 6= 1. Now consider a subalgebra B of A generated by >. Using
Corollary 4.4, B has to be isomorphic to one of L′1,L

′
2,L
′
3,U

′
3. Thus the theorem follows. �

In the rest of this section we replace 3-potency with integrality and we show that there are only
two minimal varieties in Λ(RCRL) whose members are integral. In fact, we obtain even a more
general statement by showing that these two minimal varieties are the only minimal varieties in
Λ(ICRL).

Theorem 4.6. There are exactly two minimal varieties in Λ(ICRL), namely varieties generated
by L1 and Z−.

Proof. Let A be a subdirectly irreducible ICRL, i.e., A is nontrivial. Thus there is a strictly
negative element a < 1 in A. We will show that V(A) contains either L1 or Z−. Consider the
non-increasing sequence 〈ak〉k∈N. If ak+1 = ak for some k ∈ N, then k ≥ 1 and ak is idempotent.
Then it is easy to see that {ak, 1} forms a subalgebra of A isomorphic to L1. Thus in this case
we have L1 ∈ V(A).

Now assume that ak+1 < ak holds for all k ∈ N, i.e., 〈ak〉k∈N is a strictly decreasing sequence.
We will show that Z− ∈ ISHPU(A) ⊆ V(A). Consider a non-principal ultrafilter U on N and

the corresponding ultrapower B = AN/U . Set ~1 = 〈1, 1, . . .〉/U , ~a = 〈a, a, . . .〉/U , and ~b =
〈ak+1〉k∈N/U . Let θ be the congruence on B corresponding to the filter F (~a) generated by ~a. In

particular, we have ~1/θ = ~a/θ. Further, note that ~b 6∈ F (~a). Indeed, if ~b ∈ F (~a) = ↑{~am | m ∈ N},
then for some m ∈ N and J ∈ U we have ak+1 ≥ am for all k ∈ J . However, 〈ak+1〉k∈N is strictly
decreasing. Thus J has to be finite. Consequently, U has to be principal (a contradiction).

We claim that Z− is isomorphic to the subalgebra of B/θ generated by~b/θ via the map f(−n) =
~bn/θ. First, note that

~bm ·~bn = 〈am(k+1)〉k∈N/U · 〈an(k+1)〉k∈N/U = 〈a(m+n)(k+1)〉k∈N/U = ~bm+n .

Thus ~bm/θ ·~bn/θ = ~bm+n/θ. Second, we will check that ~bm/θ → ~bn/θ = ~bn−m/θ for m < n. Note
that for all k ∈ N we have

a(n−m)(k+1) ≤ am(k+1) → an(k+1) < a(n−m)(k+1)−1 ≤ a→ a(n−m)(k+1) .

Thus ~bn−m ≤ ~bm → ~bn ≤ ~a→ ~bn−m. Consequently,

~bn−m/θ ≤ ~bm/θ → ~bn/θ ≤ ~a/θ → ~bn−m/θ = ~1/θ → ~bn−m/θ = ~bn−m/θ .

Finally, since ~b 6∈ F (~a), we have ~bn 6∈ F (~a) for all n ≥ 1. Consequently, ~bm/θ > ~bn/θ for m < n

because ~bm/θ → ~bn/θ = ~bn−m/θ 6= 1/θ. Thus f is an order-preserving bijection. �

5. Generating class for representable ICRLs

The construction of the ICRC AS given in Section 3 using a conucleus can be modified in
order to produce a large class of 1-generated algebras. In fact, we can prove that each finite
ICRC embeds into one of them. Thus we obtain a new generating class for the variety of integral
representable CRLs, namely the class of 1-generated finite members.

We start with a definition of the lexicographic product for ICRCs. Let A = 〈A,∧A,∨A, ∗A,→A, 1A〉
and B = 〈B,∧B,∨B, ∗B,→B, 1B〉 be ICRCs. Define an algebra A

→
× B = 〈A×B,∧,∨, ·,→, 〈1A, 1B〉〉
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such that the lattice operations ∧,∨ are determined by the lexicographic order ≤lex on A×B, the
reduct 〈A×B, ·, 〈1A, 1B〉〉 is the direct product of the monoidal reducts of A and B, and

〈x, y〉 → 〈u, v〉 =

{
〈x→A u, 1B〉 if x ∗A (x→A u) <A u ,

〈x→A u, y →B v〉 otherwise.

We call A cancellative if its monoidal reduct is cancellative.

Proposition 5.1. Let A,B be nontrivial ICRCs. Then the lexicographic product A
→
× B is an

ICRC iff A is cancellative.

Proof. First, assume that A is cancellative. Clearly 〈A×B,≤lex〉 is a chain with the top element
〈1A, 1B〉. We will show that

(2) 〈x, y〉 · 〈w, z〉 ≤lex 〈u, v〉 iff 〈w, z〉 ≤lex 〈x, y〉 → 〈u, v〉 .

To see the left-to-right implication of (2), assume that 〈x ∗A w, y ∗B z〉 ≤lex 〈u, v〉. Thus x∗Aw ≤A

u, i.e., w ≤A x →A u. If w <A x →A u or 〈x, y〉 → 〈u, v〉 = 〈x→A u, 1B〉, the right-hand side
of (2) is obviously true. Thus suppose that w = x→A u and x∗A (x→A u) = u. Then x∗Aw = u.
By our assumption we must have y ∗B z ≤B v. Consequently, z ≤B y →B v which means that the
right-hand side of (2) is true also in this case. Conversely, assume that 〈w, z〉 ≤lex 〈x, y〉 → 〈u, v〉.
Then w ≤A x→A u, i.e., x∗Aw ≤A u. If x∗Aw <A u then the left-hand side of (2) is true. Thus
suppose that x ∗A w = u. Then u = x ∗A w ≤A x ∗A (x→A u) ≤A u. Thus w = x→A u because
A is cancellative. Consequently, z ≤B y →B v. Thus y∗B z ≤B v, i.e., 〈x ∗A w, y ∗B z〉 ≤lex 〈u, v〉.

Now, assume that A is not cancellative. Then there are a, b, c ∈ A such that a <A b and
a ∗A c = b ∗A c. Let u ∈ B, u < 1B. Then 〈a, 1B〉 <lex 〈b, u〉 but

〈b, u〉 · 〈c, 1B〉 = 〈b ∗A c, u〉 = 〈a ∗A c, u〉 <lex 〈a ∗A c, 1B〉 = 〈a, 1B〉 · 〈c, 1B〉 .

Thus the multiplication on A×B is not order-preserving, i.e., A
→
× B cannot be a CRL. �

Note that {〈1A, b〉 | b ∈ B} forms always a subalgebra of A
→
× B isomorphic to B.

Now we will describe the above-mentioned construction of 1-generated ICRCs. Let A =
〈A,∧A,∨A, ∗A,→A, 1A〉 be a finitely generated ICRC. Let G = {g1 < g2 < · · · < gn} be the
generating set for A. Extend g1 < g2 < · · · < gn to a sequence 〈gi〉i∈N letting g0 = 1A and

gn+1 = gn+2 = · · · = 1A. We will define a conucleus σ on the lexicographic product B = Z−
→
× A

by giving its image Bσ. Let Bi = {〈−i, x〉 | x ∈ A, x ≤ gi} for i ∈ N. Then Bσ =
⋃
i∈NBi (see

Figure 3).

Lemma 5.2. The set Bσ is the image of a conucleus.

Proof. We will check that Bσ is a submonoid of B. Let 〈−u, x〉, 〈−v, y〉 ∈ Bσ. Then 〈−u, x〉 ∈ Bu
and 〈−v, y〉 ∈ Bv. Thus x ≤ gu and y ≤ gv. Consequently, x ∗A y ≤ gu ∗A gv ≤ gu ∧A gv. If
u = v = 0 then gu = gv = 1A and 〈−u, x〉 · 〈−v, y〉 = 〈0, x ∗A y〉 ∈ B0. Suppose that u ≥ 1 or
v ≥ 1. Without any loss of generality we can assume u ≥ 1. Then gu ∗A gv ≤ gu ≤ gu+v because
the sequence 〈g1, g2, . . .〉 is non-decreasing. Thus 〈−u, x〉 · 〈−v, y〉 = 〈−u− v, x ∗A y〉 ∈ Bu+v.

Next, let us check that Bσ is the image of an interior operator. Let 〈−u, x〉 6∈ Bσ. Then
〈−u, x〉 6∈ Bu, i.e., x > gu. Clearly max{a ∈ Bσ | a ≤lex 〈−u, x〉} = 〈−u, gu〉. �

Thus Bσ is an ICRC. Observe that B0 forms a subalgebra of Bσ isomorphic to A. Recall that
n is the number of generators of A and consider the truncated algebra [Bσ]〈−2(n+1),1A〉. Let C be
the subalgebra of [Bσ]〈−2(n+1),1A〉 generated by the element g = 〈−1, g1〉. In order to show that
A can be embedded into C, we have to prove that B0 ⊆ C.

Lemma 5.3. The ICRC C contains all 〈0, x〉 for x ∈ A, i.e., B0 ⊆ C.
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〈0, 1A〉

〈−1, 1A〉

〈−1, g1〉
〈−2, 1A〉

〈−2, g2〉

〈−3, 1A〉
〈−3, g3〉

〈−4, 1A〉

A

A

A

A

B0

B1

B2

B3

Figure 3. The structure of B and Bσ.

Proof. First, we have g2(n+1) = 〈−2(n+ 1), 1A〉 ∈ C. Further, for all 0 ≤ u ≤ 2(n+ 1) we have

g2(n+1)−u →σ g
2(n+1) =

σ
(
〈−2(n+ 1) + u, g

2(n+1)−u
1 〉 → 〈−2(n+ 1), 1A〉

)
=

σ(−u, 1A) = 〈−u, gu〉 ,

since g
2(n+1)−u
1 →A 1A = 1A and 〈−u, gu〉 = max Bu. Thus 〈−u, gu〉 ∈ C.

Let 0 ≤ k ≤ n. Then n < n + 1 + k < 2(n + 1). Thus gn+1+k = gn+1 = 1A and
〈−n− 1− k, 1A〉, 〈−n− 1, 1A〉 ∈ C. Consequently, we have

〈−n− 1− k, 1A〉 →σ 〈−n− 1, 1A〉 ◦〈−2(n+1),1A〉 〈−k, gk〉 =

σ
(
〈−n− 1− k, 1A〉 → 〈−n− 1− k, gk〉

)
= 〈0, gk〉 .

Thus 〈0, gk〉 ∈ C for each gk ∈ G. Since A is generated by G, B0 is generated by {〈0, gk〉 | gk ∈ G}.
Consequently, B0 ⊆ C. �

Clearly A can be embedded into C via mapping x 7→ 〈0, x〉. Moreover, if A is finite then C is
finite as well. Since the variety of representable ICRLs has the finite embeddability property [2]
(i.e., it is generated by finite members as a quasi-variety), we get the following theorem.

Theorem 5.4. The variety of representable ICRLs is generated as a quasi-variety by 1-generated
finite members.
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