STANDARD COMPLETENESS THEOREM FOR ПMTL

ROSTISLAV HORČÍK

Abstract

MMTL is a schematic extension of the monoidal t-norm based logic (MTL) by the characteristic axioms of product logic. In this paper we prove that ПMTL satisfies the standard completeness theorem. From the algebraic point of view, we show that the class of ПMTL-algebras (bounded commutative cancellative residuated l-monoids) in the real unit interval $[0,1]$ generates the variety of all ПМТL-algebras.

1. Introduction

In [3], Esteva and Godo introduced a monoidal t-norm based logic (MTL for short). MTL was obtained from Hájek's basic logic (BL) [6] by omitting the axiom of divisibility. Without this axiom continuity of the t-norm representing the truth function for the conjunction is not ensured. The algebraic counterpart of MTL (algebras of truth values) are bounded commutative residuated l-monoids satisfying the pre-linearity axiom. Further the authors of [3] showed that MTL is a reasonable fuzzy logic satisfying the completeness theorem.

Recently, the question of standard completeness of MTL and its extensions has been deeply studied. Jenei and Montagna showed that MTL satisfies the standard completeness theorem (see [9]). This means that MTL can be really considered the logic of left-continuous t-norms. Further in [4], the authors studied the standard completeness of several schematic extensions of MTL. They succeeded in proving the standard completeness theorem for IMTL and SMTL, where IMTL is an extension of MTL by the axiom of double negation $(\neg \neg \varphi \Rightarrow \varphi)$ and SMTL is an extension of MTL by the axiom ensuring that the negation is Gödel negation $(\varphi \wedge \neg \varphi \Rightarrow \overline{0})$. They also tried to prove the standard completeness for ПMTL which is an axiomatic extension of MTL where the conjunction is interpreted by a left-continuous cancellative t-norm. They showed that חMTL is complete with respect to all Π MTL-chains whose underlying sets are rational numbers from the unit interval, i.e., $[0,1] \cap \mathbb{Q}$. However, they did not succeed to extend this result to the whole unit interval $[0,1]$.

In this paper we are going to present how to overcome this problem and we show that ПMTL is standard complete, i.e., a formula φ is provable in ПMTL iff φ is a tautology in all חMTL-algebras in the real interval $[0,1]$.

Throughout the text, \mathbb{N} denotes the set of natural numbers with ordinary order including also 0 , i.e., $\mathbb{N}=\{0,1,2, \ldots\}$, and ω^{*} denotes the set of natural numbers without 0 endowed with the reverse order $(1>2>3 \ldots)$.

2. Preliminaries

Since ПMTL is a schematic extension of MTL, we firstly introduce MTL. The language of MTL contains a set of propositional variables, a conjunction \&, an implication \Rightarrow, the minimum conjunction \wedge, and the truth constant $\overline{0}$. Derived

The work was supported by the Grant Agency of the Czech Republic under projects GACR 201/02/1540, 401/03/H047, and by Net CEEPUS SK-042.
connectives are defined as follows:

$$
\begin{array}{ll}
\varphi \vee \psi & \text { is } \quad((\varphi \Rightarrow \psi) \Rightarrow \psi) \wedge((\psi \Rightarrow \varphi) \Rightarrow \varphi) \\
\neg \varphi & \text { is } \quad \varphi \Rightarrow \overline{0} \\
\varphi \equiv \psi & \text { is } \quad(\varphi \Rightarrow \psi) \&(\psi \Rightarrow \varphi) \\
\overline{1} & \text { is } \neg \overline{0}
\end{array}
$$

In [3], the authors introduced a Hilbert style calculus for MTL with the following axiomatization:
(A1) $\quad(\varphi \Rightarrow \psi) \Rightarrow((\psi \Rightarrow \chi) \Rightarrow(\varphi \Rightarrow \chi))$,
(A2) $\quad \varphi \& \psi \Rightarrow \varphi$,
(A3) $\quad \varphi \& \psi \Rightarrow \psi \& \varphi$,
(A4) $\quad(\varphi \wedge \psi) \Rightarrow \varphi$,
(A5) $\quad(\varphi \wedge \psi) \Rightarrow(\psi \wedge \varphi)$,
(A6) $\quad(\varphi \&(\varphi \Rightarrow \psi)) \Rightarrow(\varphi \wedge \psi)$,
(A7a) $\quad(\varphi \Rightarrow(\psi \Rightarrow \chi)) \Rightarrow(\varphi \& \psi \Rightarrow \chi)$,
(A7b) $\quad(\varphi \& \psi \Rightarrow \chi) \Rightarrow(\varphi \Rightarrow(\psi \Rightarrow \chi))$,
(A8) $\quad((\varphi \Rightarrow \psi) \Rightarrow \chi) \Rightarrow(((\psi \Rightarrow \varphi) \Rightarrow \chi) \Rightarrow \chi)$,
(A9) $\overline{0} \Rightarrow \varphi$.
The deduction rule of MTL is modus ponens.
The corresponding algebras of truth values are so-called MTL-algebras. MTL-algebras form a subvariety of residuated l-monoids. A lattice-ordered monoid (or l-monoid) is a monoid which is at the same time a lattice and satisfies the isotonicity condition: $a \leq b$ implies $a * c \leq b * c$ and $c * a \leq c * b$ (for details on residuated l-monoids, see $[1,5,8])$.

DEFINITION 2.1. An MTL-algebra is a bounded commutative residuated l-monoid $(L, *, \rightarrow, \sqcap, \sqcup, \mathbf{0}, \mathbf{1})$, where $(L, *, \sqcap, \sqcup, \mathbf{0}, \mathbf{1})$ is a bounded commutative l-monoid, $(*, \rightarrow)$ is a residuated pair, i.e., $x * y \leq z$ iff $x \leq y \rightarrow z$, and the pre-linearity equation is satisfied:

$$
(x \rightarrow y) \sqcup(y \rightarrow x)=\mathbf{1} .
$$

Throughout the text, we will also use without mentioning the alternative signature for an MTL-algebra using the lattice order \leq instead of \sqcap, \sqcup. The symbol a^{n} stands for $a * \cdots * a$ (n-times).

In this paper we deal with the extension of MTL by product axioms ensuring that the conjunction is strict and cancellative. This extension was introduced by Hájek in [7].

DEFINITION 2.2. A ПMTL logic is a schematic extension of MTL by the following axioms:
(П1) $\neg \neg \psi \Rightarrow[((\underline{\varphi} \& \psi) \Rightarrow(\chi \& \psi)) \Rightarrow(\varphi \Rightarrow \chi)]$,
(П2) $\varphi \wedge \neg \varphi \Rightarrow \overline{0}$.
The corresponding algebras of truth values (ПMTL-algebras) form a subvariety of MTL-algebras.
DEFINITION 2.3. A ПMTL-algebra $\mathbf{L}=(L, *, \rightarrow, \sqcap, \sqcup, \mathbf{0}, \mathbf{1})$ is MTL-algebra satisfying the identities corresponding to the axioms (П1) and (П2):
(1) $[(z \rightarrow \mathbf{0}) \rightarrow \mathbf{0}] \rightarrow[(x * z \rightarrow y * z) \rightarrow(x \rightarrow y)]=\mathbf{1}$,
(2) $x \sqcap(x \rightarrow \mathbf{0})=\mathbf{0}$.

A linearly ordered ПMTL-algebra is called a ПMTL-chain.

Having defined the algebras of truth values, we can define an evaluation assigning to each formula a truth value.

DEFINITION 2.4. Let $\mathbf{L}=(L, *, \rightarrow, \sqcap, \sqcup, \mathbf{0}, \mathbf{1})$ be a ПMTL-algebra. An \mathbf{L}-evaluation is a map e from the set of ПMTL formulas into \mathbf{L} such that for every pair φ, ψ of formulas the following conditions hold:
(1) $e(\varphi \& \psi)=e(\varphi) * e(\psi)$,
(2) $e(\varphi \Rightarrow \psi)=e(\varphi) \rightarrow e(\psi)$,
(3) $e(\varphi \wedge \psi)=e(\varphi) \sqcap e(\psi)$,
(4) $e(\overline{0})=\mathbf{0}$.

In order to study the structure of ПMTL-chains, we have to work with congruences. Therefore we recall here the notion of a filter because of its connection to the congruence lattice (see [3]).

DEFINITION 2.5. Let $\mathbf{L}=(L, *, \rightarrow, \leq, \mathbf{0}, \mathbf{1})$ be a ПMTL-algebra. A filter F in \mathbf{L} is a subset of L satisfying:
(1) if $x, y \in F$, then $x * y \in F$,
(2) if $x \in F, x \leq y$, then $y \in F$.

LEMMA 2.6. For any filter F in a ПMTL-algebra \mathbf{L}, let us define the following equivalence relation in L :

$$
x \sim_{F} y \text { iff } x \rightarrow y \in F \text { and } y \rightarrow x \in F
$$

Then \sim_{F} is a congruence and the quotient \mathbf{L} / F is a ПMTL-algebra.
We will denote the equivalence class containing an element $x \in L$ with respect to a filter F by $[x]_{F}=\left\{a \in L \mid a \sim_{F} x\right\}$. Observe also that if \mathbf{L} is a MMTL-chain then only one of the implications in the definition of \sim_{F} is important because for all x, y either $x \leq y$ or $y \leq x$, thus either $x \rightarrow y=\mathbf{1}$ or $y \rightarrow x=\mathbf{1}$.

As it will be seen in the next section, the filters in ПMTL-chains are also related to so-called Archimedean classes (see [5]).

DEFINITION 2.7. Let \mathbf{L} be a ПMTL-chain, a, b be elements of L, and $\sim b e$ an equivalence on L defined as follows:
$a \sim b$ iff there exists an $n \in \mathbb{N}$ such that $a^{n} \leq b \leq a$ or $b^{n} \leq a \leq b$.
Then for any $a \in L$ the equivalence class $[a]_{\sim}$ is called Archimedean class.
Archimedean classes correspond to the subsets of L where the elements behave like in an Archimedean l-monoid, i.e., for any pair of elements $x, y \in[a]_{\sim}$, such that $x \leq y$, there is an $n \in \mathbb{N}$ such that $y^{n} \leq x$.

Further, we recall several results that will be useful in the sequel. In [7, Lemma 4], Hájek proved the following result:
PROPOSITION 2.8. An MTL-chain \mathbf{L} is a ПMTL-chain if and only if it is cancellative, i.e. for any $x, y, z \in L, z \neq \mathbf{0}$, if $x * z=y * z$ then $x=y$.

Observe that by cancellativity we obtain for $a, b, c>\mathbf{0}$ that $a<b$ implies $a * c<b * c$, in particular $a^{2}<a$ and $a * b<a$ for $b<\mathbf{1}$.

The following important result states that ПMTL-chains possess a special significance among HMTL-algebras (cf. [3]).

THEOREM 2.9 (Subdirect Representation Theorem). Each ПMTL-algebra is isomorphic to a subdirect product of ПMTL-chains.

Finally, it was shown in [3] that ПMTL logic is a reasonable logic which satisfies the completeness theorem.

THEOREM 2.10 (Completeness Theorem). חMTL is sound and complete with respect to the class of ПMTL-chains. In other words, ПMTL $\vdash \varphi$ if and only if $e(\varphi)=\mathbf{1}$ for every ПMTL-chain \mathbf{L} and every \mathbf{L}-evaluation e.

The main result of this paper is a strengthening of the latter theorem. We will show that ПMTL is complete with respect to a smaller class of algebras. Instead of all ПMTL-chains, we will prove that it is sufficient to consider only חMTL-chains in the real unit interval $[0,1]$ with finitely many Archimedean classes. In other words, we will prove the following result:
The main result: A formula φ is provable in ПMTL if and only if φ is a tautology in all HMTL-chains in $[0,1]$ with finitely many Archimedean classes.

Notice that one direction of this statement already follows from Theorem 2.10. The second is difficult and we will prove it in the next section.

REMARK 2.11. From the algebraic point of view, we can rephrase the main result in the sense that ПMTL-chains in the real unit interval $[0,1]$ with finitely many Archimedean classes generate the variety of ПMTL-algebras.

3. Proof of the main result

The proof has several steps. We will start with a formula φ which is not valid in a ПMTL-chain \mathbf{L}. Then we construct a new ПMTL-chain \mathbf{S} such that φ is not valid in \mathbf{S}, too, and \mathbf{S} has a more transparent structure. Then we will prove that \mathbf{S} is order-isomorphic to the lexicographic product $\left(\omega^{*}\right)^{n}$. The next step is to extend \mathbf{S} to a continuum. Finally, we will show that this extension of \mathbf{S} is order-isomorphic to $[0,1]$.

We know from Theorem 2.10 that whenever ПMTL $\forall \varphi$ then there exists a Π MTL-chain $\mathbf{L}=\left(L, *_{L}, \rightarrow_{L}, \leq, \mathbf{0}, \mathbf{1}\right)$ and an \mathbf{L}-evaluation $e_{\mathbf{L}}$ such that $e_{\mathbf{L}}(\varphi)<\mathbf{1}$. Let us denote the set of all subformulas of φ by B. Since B is finite, we can assume that $B=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$. Let us define $a_{i}=e_{\mathbf{L}}\left(\psi_{i}\right), 1 \leq i \leq n$, and the following set:

$$
\begin{equation*}
G=\left\{a_{i} \in L \mid 1 \leq i \leq n\right\} \tag{1}
\end{equation*}
$$

Let \mathbf{S} be the submonoid of \mathbf{L} generated by G, i.e. $\mathbf{S}=(S, *, \leq, \mathbf{0}, \mathbf{1})$, where

$$
S=\left\{a_{1}^{k_{1}} *_{L} \cdots *_{L} a_{n}^{k_{n}} \mid a_{i} \in G, k_{i} \in \mathbb{N}, 1 \leq i \leq n\right\} \cup\{\mathbf{0}, \mathbf{1}\}
$$

and $*$ denotes the restriction of $*_{L}$ to S.
LEMMA 3.1. Each subset $M \subseteq S$ has a maximum.
Proof. The proof of this lemma is based on Dickson's lemma stating that each subset of $(\mathbb{N},<)^{n}$ has only finitely many minimal elements (the proof of Dickson's lemma in a little bit different form can be found in [2]). To each element $a_{1}^{k_{1}} *_{L}$ $\cdots *_{L} a_{n}^{k_{n}} \in M$ we can assign an n-tuple $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$. Thus we have a subset $H \subseteq \mathbb{N}^{n}$ such that $\left(k_{1}, \ldots, k_{n}\right) \in H$ implies $a_{1}^{k_{1}} *_{L} \cdots *_{L} a_{n}^{k_{n}} \in M$. Moreover, if $\left(k_{1}, \ldots, k_{n}\right)<\left(t_{1}, \ldots, t_{n}\right)$, we obtain $a_{1}^{k_{1}} *_{L} \cdots *_{L} a_{n}^{k_{n}}>a_{1}^{t_{1}} *_{L} \cdots *_{L} a_{n}^{t_{n}}$ by cancellativity. Since H has only finitely many minimal elements, one of them must correspond to the maximum of M.

Due to Lemma 3.1, we can introduce a residuum on \mathbf{S} as follows:

$$
a \rightarrow b=\max \{z \in S \mid a * z \leq b\}
$$

THEOREM 3.2. The enriched submonoid $\mathbf{S}=(S, *, \rightarrow, \leq, \mathbf{0}, \mathbf{1})$ is a ПMTL-chain and there exists an \mathbf{S}-evaluation $e_{\mathbf{S}}$ such that $e_{\mathbf{S}}(\varphi)=e_{\mathbf{L}}(\varphi)$.

Proof. Firstly, we know that \mathbf{S} is a cancellative linearly ordered monoid. Since \mathbf{S} is a chain, the pre-linearity axiom is obviously satisfied. Thus the only thing which we have to check is whether $(*, \rightarrow)$ form a residuated pair, i.e. $a * b \leq c$ iff $a \leq b \rightarrow c$. But this easily follows from the definition of \rightarrow. Hence \mathbf{S} is a ПMTL-chain.

Secondly, let us define an evaluation $e_{\mathbf{S}}(v)=e_{\mathbf{L}}(v)$ for each propositional variable v appearing in φ and $e_{\mathbf{S}}(v)$ arbitrary otherwise. Then we show by induction on the complexity of φ that $e_{\mathbf{S}}\left(\psi_{i}\right)=e_{\mathbf{L}}\left(\psi_{i}\right)$ for all subformulas ψ_{i} of φ, in particular $e_{\mathbf{S}}(\varphi)=e_{\mathbf{L}}(\varphi)$. The first step is obvious by the definition of $e_{\mathbf{S}}$. Now suppose that $\psi_{k}=\psi_{i} \& \psi_{j}$. Then $e_{\mathbf{S}}\left(\psi_{k}\right)=e_{\mathbf{S}}\left(\psi_{i}\right) * e_{\mathbf{S}}\left(\psi_{j}\right)=e_{\mathbf{L}}\left(\psi_{i}\right) * e_{\mathbf{L}}\left(\psi_{j}\right)=a_{i} *_{L} a_{j}=a_{k}=$ $e_{\mathbf{L}}\left(\psi_{k}\right)$ (similarly for $\left.\psi_{k}=\psi_{i} \wedge \psi_{j}\right)$. Finally, suppose that $\psi_{k}=\left(\psi_{i} \Rightarrow \psi_{j}\right)$. Then $e_{\mathbf{S}}\left(\psi_{k}\right)=a_{i} \rightarrow a_{j}=\max \left\{z \in S \mid a_{i} * z \leq a_{j}\right\}$. Let $a_{k}=a_{i} \rightarrow_{L} a_{j}\left(a_{k} \in S\right.$ because $\psi_{i} \Rightarrow \psi_{j}$ is a subformula of φ). Then $a_{i} * a_{k} \leq a_{j}$. Thus $a_{k} \leq a_{i} \rightarrow a_{j}$. Now suppose that there is an element $z^{\prime} \in S$ such that $z^{\prime}>a_{k}$ and $a_{i} * z^{\prime} \leq a_{j}$. Since $z^{\prime} \in L$, we get $z^{\prime} \leq a_{i} \rightarrow_{L} a_{j}=a_{k}$, a contradiction. Hence $a_{i} \rightarrow a_{j}=a_{k}=e_{\mathbf{L}}\left(\psi_{k}\right)$.

Note that \mathbf{S} need not be a sub-ПMTL-chain of \mathbf{L} since \mathbf{S} arises only from a submonoid of \mathbf{L}. However, the existence of the evaluation $e_{\mathbf{S}}$ such that $e_{\mathbf{S}}(\varphi)<\mathbf{1}$ is sufficient for us.

The second step of the proof is a detailed investigation of the structure of \mathbf{S}. We start with the properties of Archimedean classes of \mathbf{S} and then we show their relation to filters.

LEMMA 3.3. Let $b \in S$. Then the Archimedean classes of $\mathbf{S},[a]_{\sim}, a \in S$, have the following properties:
(1) $[a]_{\sim}$ is closed under $*$.
(2) $[a]_{\sim}$ is a left-open and right-closed interval for $a \neq \mathbf{0}, \mathbf{1}$.
(3) $[a * b]_{\sim}=[\min \{a, b\}]_{\sim}$.
(4) There are only finitely many Archimedean classes.

Proof. (1) Suppose that $x, y \in[a]_{\sim}$ and $x \leq y$. Then $x^{2} \leq x * y \leq x$, thus $x * y$ belongs to $[a]_{\sim}$.
(2) The right-closedness of $[a]_{\sim}$ is obvious because each subset of S has a maximum by Lemma 3.1. The left-openness follows from the fact that $x \in[a]_{\sim}$ implies $x^{2} \in[a]_{\sim}$ and $x^{2}<x$ from cancellativity. Finally, we have to show that there is no gap in $[a]_{\sim}$. Suppose that $x, y \in[a]_{\sim}, z \notin[a]_{\sim}$, and $x<z<y$. Then there is an n such that $y^{n} \leq x<z<y$. Thus $z \in[a]_{\sim}$, a contradiction.
(3) Without any loss of generality suppose that $a \leq b$. Then $a^{2} \leq a * b \leq a$. Thus $a * b \in[a]_{\sim}=[\min \{a, b\}]_{\sim}$.
(4) Since \mathbf{S} is finitely generated using only $*$ and because of (3), there must be only finitely many Archimedean classes in \mathbf{S}.

Note that there are always at least two Archimedean classes, $\{\mathbf{0}\}$ and $\{\mathbf{1}\}$, and S / \sim is linearly ordered because of Lemma 3.3(2), i.e., $[a]_{\sim}<[b]_{\sim}$ iff $a \notin[b]_{\sim}$ and $a<b$. Let us denote Archimedean classes by $C_{i}, i=0, \ldots, m+1$, in such a way that $C_{0}=\{\mathbf{0}\}, C_{m+1}=\{\mathbf{1}\}$, and $C_{j}<C_{k}$ for $j<k$. Archimedean classes are important due to their relation to filters.
LEMMA 3.4. Let $\left\{C_{0}=\{\mathbf{0}\}, \ldots, C_{i}, \ldots, C_{m+1}=\{\mathbf{1}\}\right\}$ be the set of Archimedean classes of $\mathbf{S}, 0 \leq i \leq m+1$, and

$$
F_{i}=\bigcup_{i \leq j} C_{j}
$$

Then the set $\left\{F_{0}=S, \ldots, F_{i}, \ldots, F_{m+1}=\{\mathbf{1}\}\right\}$ is the set of all filters of \mathbf{S}.

Proof. Firstly, given an index i, we have to show that F_{i} is a filter of \mathbf{S}. The set F_{i} is closed under $*$ because of Lemma 3.3(1),(3). The fact that F_{i} is also a lattice-filter is obvious because S / \sim is linearly ordered.

Secondly, let F be a filter of \mathbf{S} and $a \in F$. Then $a \in C_{i}$ for some $0 \leq i \leq m+1$. We show that $C_{i} \subseteq F$. Let $b \in C_{i}$. Obviously, if $b \geq a$ then $b \in F$. Suppose that $b<a$. Then there is an $n \in \mathbb{N}$ such that $a^{n} \leq b$. Since $a^{n} \in F$, it follows that $b \in F$. Thus F must be a union of Archimedean classes. Now, let us take the minimal i such that $C_{i} \cap F \neq \emptyset$. Since $C_{i}<C_{j}$ for any $i<j$, it follows that $C_{j} \subseteq F$. Thus $F=\bigcup_{i \leq j} C_{j}$.

From now on we will denote by F_{i} the filter corresponding to C_{i}. Observe that $F_{0}=S, F_{1}=S \backslash\{\mathbf{0}\}$, and $F_{m+1}=\{\mathbf{1}\}$. Further note that each $[x]_{F_{i}}$ has a maximum by Lemma 3.1. We denote this maximum by $m_{x}^{F_{i}}$.

LEMMA 3.5. Let $x \in S, x>\mathbf{0}$, and F_{i} be a non-trivial filter, i.e., $0<i<m+1$. Then the equivalence class $[x]_{F_{i}}$ is a left-open and right-closed interval.

Proof. We show that $[x]_{F_{i}}$ is an interval. Suppose that $a, b \in[x]_{F_{i}}$ and $a \leq c \leq b$ for some $c \in S$. Then $b \rightarrow c \geq b \rightarrow a \in F_{i}$. Hence $c \in[x]_{F_{i}}$. Moreover, as the equivalence class $[x]_{F_{i}}$ has a maximum $m_{x}^{F_{i}},[x]_{F_{i}}$ is right-closed.

Finally, we will show that there is no minimum. Suppose that $z \in[x]_{F_{i}}$ and $z \neq m_{x}^{F_{i}}$. There must be such z. Since $F_{i} \neq\{\mathbf{1}\}$, there is an $s \in F_{i}$ such that $s<\mathbf{1}$. Let $z=m_{x}^{F_{i}} * s \neq m_{x}^{F_{i}}$, then $m_{x}^{F_{i}} \rightarrow z=s$ and $z \in[x]_{F_{i}}$. Now take the element $m_{x}^{F_{i}} \rightarrow z \in F_{i}$. Since F_{i} is closed under $*,\left(m_{x}^{F_{i}} \rightarrow z\right)^{2} \in F_{i}$ and $m_{x}^{F_{i}} *\left(m_{x}^{F_{i}} \rightarrow\right.$ $z)^{2} \in[x]_{F_{i}}$ because $m_{x}^{F_{i}} \rightarrow\left[m_{x}^{F_{i}} *\left(m_{x}^{F_{i}} \rightarrow z\right)^{2}\right]=\left(m_{x}^{F_{i}} \rightarrow z\right)^{2}$. Now from the fact that $m_{x}^{F_{i}} *\left(m_{x}^{F_{i}} \rightarrow z\right) \leq z$, it follows that $m_{x}^{F_{i}} *\left(m_{x}^{F_{i}} \rightarrow z\right)^{2}<z$.
LEMMA 3.6. Let F_{i}, F_{j} be filters in \mathbf{S} and $i<j$. Then S / F_{j} is a refinement of S / F_{i}, i.e., $[y]_{F_{j}} \subseteq[x]_{F_{i}}$ for any $y \in[x]_{F_{i}}$.

Proof. Since $F_{j} \subseteq F_{i}$, it follows that the congruences corresponding to F_{j}, F_{i} fulfill $\sim_{F_{j}} \subseteq \sim_{F_{i}}$.

We are going to introduce the vector notation of the elements of \mathbf{S}. Let G be the set of generators of \mathbf{S} defined in Equation (1), $G_{i}=C_{i} \cap G$, and \mathbf{S}_{i} be the submonoid of \mathbf{S} generated by G_{i}, i.e.,

$$
S_{i}=\left\{g_{1}^{k_{1}} * \cdots * g_{r}^{k_{r}} \mid g_{j} \in G_{i}, k_{j} \in \mathbb{N}, j=1, \ldots, r\right\} \cup\{\mathbf{0}, \mathbf{1}\}
$$

Observe that $S_{i} \backslash\{\mathbf{0}, \mathbf{1}\} \subseteq C_{i}$ and $S_{i} \backslash\{\mathbf{0}\} \subseteq F_{i}$.
LEMMA 3.7. Let $i \in\{1, \ldots, m\}$. Then $S_{i} \backslash\{\mathbf{0}\}$ is order-isomorphic to ω^{*}.
Proof. Since $S_{i} \backslash\{\mathbf{0}, \mathbf{1}\} \subseteq C_{i}, \mathbf{S}_{i} \backslash\{\mathbf{0}\}$ is Archimedean, i.e.,

$$
\left(\forall x \in S_{i} \backslash\{\mathbf{0}\}\right)\left(\forall g \in G_{i}\right)(\exists k \in \mathbb{N}): g^{k} \leq x
$$

Thus there is a $k \in \mathbb{N}$ such that $g_{1}^{k} * \cdots * g_{r}^{k} \leq x$. Hence $M_{x}=\left\{z \in S_{i} \mid z \geq x\right\}$ is finite and the desired order-isomorphism assigns to x the cardinality of M_{x}.
COROLLARY 3.8. Let $H \subseteq S_{i}$ and H be infinite. Then for any $x \in S_{i} \backslash\{\mathbf{0}\}$ there is an element $w \in H$ such that $w \leq x$.

Due to commutativity and associativity, each element $x \in S$ can be expressed in the form:

$$
x=p_{1} * p_{2} * \cdots * p_{m}, \quad p_{i} \in S_{i} .
$$

Thus we can assign to each element x a vector $\bar{x}=\left(p_{1}, \ldots, p_{m}\right)$ and find a function h such that $x=h(\bar{x})=p_{1} * \cdots * p_{m}$. Note that $\mathbf{1}=h(\mathbf{1}, \ldots, \mathbf{1})$ and $\mathbf{0}=h\left(p_{1}, \ldots, p_{m}\right)$, if $p_{i}=\mathbf{0}$ for at least one $i \in\{1, \ldots, m\}$. The projection to the i-th coordinate is
denoted by π_{i}. Observe that if $p_{i}<1$ and $p_{j}>0$ for $j=i, \ldots, m$, then the element represented by $\left(\mathbf{1}, \ldots, \mathbf{1}, p_{i}, \ldots, p_{m}\right)$ belongs to C_{i} and F_{i}. To each subset $M \subseteq S$ there exists a set of vectors \bar{M} such that $h(\bar{M})=M$ and $|M| \leq|\bar{M}|$.

Let us denote by $\left\langle G_{1}, \ldots, G_{k}\right\rangle$ the universe of the submonoid of \mathbf{S} generated by $\bigcup_{1 \leq j \leq k} G_{j}$.
LEMMA 3.9. Let $x \in S, x>\mathbf{0}, i>1$, and F_{i} be a filter. Then $m_{x}^{F_{i}} \in\left\langle G_{1}, \ldots, G_{i-1}\right\rangle$, i.e., $m_{x}^{F_{i}}=p_{1} * p_{2} * \cdots * p_{i-1}=h\left(p_{1}, \ldots, p_{i-1}, \mathbf{1}, \ldots, \mathbf{1}\right)$ for some $p_{j} \in S_{j}$, $j=1, \ldots, i-1$.
Proof. If $i=m+1$, then $\left\langle G_{1}, \ldots, G_{m}\right\rangle=S$ and obviously $m_{x}^{F_{m+1}} \in S$. Thus assume that $i<m+1$. If $x \in F_{i}$ then $m_{x}^{F_{i}}=\mathbf{1}$ and $\mathbf{1} \in\left\langle G_{1}, \ldots, G_{i-1}\right\rangle$. Finally, suppose that $x \notin F_{i}$ and $m_{x}^{F_{i}}=p_{1} * p_{2} * \cdots * p_{i-1} * z, z<\mathbf{1}, z \in F_{i}$. Then $p_{1} * p_{2} * \cdots * p_{i-1} \rightarrow m_{x}^{F_{i}}=z$. Thus $p_{1} * p_{2} * \cdots * p_{i-1} \in[x]_{F_{i}}$, a contradiction with the condition that $m_{x}^{F_{i}}$ is maximal.

LEMMA 3.10. Let $x \in S, x>\mathbf{0}, i>0$, and F_{i} be a filter. Then the set $M=$ $[x]_{F_{i}} \cap\left\langle G_{1}, \ldots, G_{i-1}\right\rangle$ is finite.

Proof. Firstly, if $i=1$ then $\left\langle G_{1}, \ldots, G_{i-1}\right\rangle$ is a subuniverse generated by the empty set, i.e., $\left\langle G_{1}, \ldots, G_{i-1}\right\rangle=\{\mathbf{0}, \mathbf{1}\}$. Since $[x]_{F_{1}}=[\mathbf{1}]_{F_{1}}=F_{1}$, the intersection $[x]_{F_{i}} \cap$ $\left\langle G_{1}, \ldots, G_{i-1}\right\rangle=\{\mathbf{1}\}$.

Secondly, let $i>1$. Note that the elements from \bar{M} are of the form $\left(p_{1}, \ldots, p_{i-1}, \mathbf{1}, \ldots, \mathbf{1}\right)$ for some $p_{j} \in S_{j}, j=1, \ldots, i-1$. Suppose that M is infinite. Then \bar{M} is also infinite and there exists a minimal $k, k \leq i-1$, such that $\pi_{k}(\bar{M})$ is infinite and $\pi_{j}(\bar{M})$ is finite for all $j<k$. Thus there must be a subset $\bar{H} \subseteq \bar{M}$ such that $\pi_{k}(\bar{H})$ is infinite and $\pi_{j}(\bar{H})=\left\{q_{j}\right\}$ for all $j<k$ and some $q_{j} \in S_{j}$.

Let us take an element $p_{k} \in \pi_{k}(\bar{H})$ and $p_{k}<\mathbf{1}$. Since $\pi_{k}(\bar{H}) \subseteq S_{k}$ is infinite, there must be an element $w \in \pi_{k}(\bar{H})$ such that $w \leq p_{k}^{2}$ by Corollary 3.8 and the fact that $p_{k}^{2} \in S_{k}$.

Now let us take two vectors $\bar{a}, \bar{b} \in \bar{H}$ such that $\pi_{k}(\bar{a})=p_{k}$ and $\pi_{k}(\bar{b})=w$. Then $h(\bar{a}) \rightarrow h(\bar{b})=a \rightarrow b \in F_{i}$ because $a, b \in[x]_{F_{i}}$. Let us denote $q=q_{1} * \cdots * q_{k-1}$, $z_{a}=\pi_{k+1}(\bar{a}) * \cdots * \pi_{i-1}(\bar{a})$, and $z_{b}=\pi_{k+1}(\bar{b}) * \cdots * \pi_{i-1}(\bar{b})$. Then $a \rightarrow b=$ $q * p_{k} * z_{a} \rightarrow q * w * z_{b}=p_{k} * z_{a} \rightarrow w * z_{b} \leq p_{k} * z_{a} \rightarrow p_{k}^{2} * z_{b}=z_{a} \rightarrow p_{k} * z_{b}$. Thus $z_{a} \rightarrow p_{k} * z_{b} \in F_{i}$. From $z_{a} \rightarrow p_{k} * z_{b} \in F_{i}$ and $z_{a} \in F_{k+1}$ it follows that $p_{k} * z_{b} \in F_{i}$, a contradiction with the fact that $p_{k} * z_{b} \in C_{k}$.

LEMMA 3.11. Let $x \in S, x>\mathbf{0}, i>0, F_{i}$ be a filter, $a, b \in[x]_{F_{i}}$, and $a \leq b$. Then there exists an element $w \in S_{i}$ such that $b * w \leq a$ and $b * w \in[x]_{F_{i}}$.

Proof. Firstly, if $a=b$, then take $w=1$. Secondly, if $a<b$, let $z=b \rightarrow a$. Then $z<\mathbf{1}, z \in F_{i}$, and $b * z \leq a$. We can write $z=h\left(\mathbf{1}, \ldots, \mathbf{1}, p_{i}, \ldots, p_{m}\right)$ for some $p_{j} \in S_{j}, j=i, \ldots, m$. There are two cases. In the first case, let $p_{i}<\mathbf{1}$. Then $p_{i}<p_{i+1} * \cdots * p_{m}$ because $p_{i} \in C_{i}$ and $p_{i+1} * \cdots * p_{m} \in C_{i+1}$ by Lemma 3.3(3). Let us take $w=p_{i}^{2}<z$. Then $b * w \leq b * z \leq a$ and $w \in S_{i}$. Moreover, as $b \rightarrow b * w=w \in S_{i} \subseteq F_{i}, b * w$ belongs to $[x]_{F_{i}}$. In the second case, let $p_{i}=\mathbf{1}$. Then we can take any element $w \in S_{i}, \mathbf{0}<w<\mathbf{1}$. Since $w<z$ and $b * w \in[x]_{F_{i}}$, the proof is done.

Using Lemmas 3.9, 3.10, and 3.11, we are going to prove the crucial structural lemma. This lemma describes the behaviour of the equivalence classes w.r.t. F_{i+1} which are subsets of one equivalence class w.r.t. F_{i}. Since S / F_{i+1} is a refinement of S / F_{i} by Lemma 3.6 , such subsets form the set $\left\{[y]_{F_{i+1}} \mid y \in[x]_{F_{i}}\right\}$.

LEMMA 3.12. Let $x \in S, x>\mathbf{0}, 0<i<m+1$, and F_{i} be a filter. Then the set $\left\{[y]_{F_{i+1}} \mid y \in[x]_{F_{i}}\right\}$ is order-isomorphic to ω^{*}.

Proof. Let $M=[x]_{F_{i}} \cap\left\langle G_{1}, \ldots, G_{i-1}\right\rangle$. We will show that each element $z \in[x]_{F_{i}}$ can be expressed in the form $z=b * s$ for some $b \in M$ and some $s \in F_{i}$. Firstly, if $i=1$, then $M=\{\mathbf{1}\}$. Since $z>\mathbf{0}, z \in F_{1}$ and $z=\mathbf{1} * z$. Secondly, assume that $i>1$. Then $z=p_{1} * \cdots * p_{i-1} * p_{i} * \cdots * p_{m}$ and we can write $z=p_{1} * \cdots * p_{i-1} * s$ for $s=p_{i} * \cdots * p_{m} \in F_{i}$. Further, $p_{1} * \cdots * p_{i-1} \in[x]_{F_{i}}$ because $p_{1} * \cdots * p_{i-1} \rightarrow z=s$. Since $p_{1} * \cdots * p_{i-1} \in\left\langle G_{1}, \ldots, G_{i-1}\right\rangle, p_{1} * \cdots * p_{i-1} \in M$.

Thus for each maximum $m_{y}^{F_{i+1}} \in[x]_{F_{i}}$, we can write $m_{y}^{F_{i+1}}=b * s$ for some $b \in M$ and some $s \in F_{i}$. Since $m_{y}^{F_{i+1}} \in\left\langle G_{1}, \ldots, G_{i}\right\rangle$ by Lemma 3.9, it follows that s must belong to S_{i}.

By Lemma 3.11 we can find for each $m_{y}^{F_{i+1}} \in[x]_{F_{i}}$ and for each $b \in M$, an element $w \in S_{i}$ such that $b * w \leq m_{y}^{F_{i+1}}$ and $b * w \in[x]_{F_{i}}$. Since $S_{i} \backslash\{\mathbf{0}\}$ is order-isomorphic to ω^{*} by Lemma 3.7 and M is finite by Lemma 3.10, we get that the set

$$
H=\left\{b * s \mid s \in S_{i}, b \in M, b * s \geq m_{y}^{F_{i+1}}\right\}
$$

is finite. Since $\left\{m_{u}^{F_{i+1}} \mid m_{u}^{F_{i+1}} \geq m_{y}^{F_{i+1}}, u \in[x]_{F_{i}}\right\} \subseteq H$, the desired order-isomorphism \# can be defined as follows:

$$
\#[y]_{F_{i+1}}=\left|\left\{m_{u}^{F_{i+1}} \mid m_{u}^{F_{i+1}} \geq m_{y}^{F_{i+1}}, u \in[x]_{F_{i}}\right\}\right| .
$$

It is obvious that $\#[y]_{F_{i+1}} \leq|H|$. In other words, the natural number $\#[y]_{F_{i+1}}$ represents the position of $[y]_{F_{i+1}}$ within $[x]_{F_{i}}$.

Now we define a mapping $t: S \backslash\{\mathbf{0}\} \rightarrow\left(\omega^{*}\right)^{m}$ as follows:

$$
t(x)=\left(\#[x]_{F_{2}}, \#[x]_{F_{3}}, \ldots, \#[x]_{F_{m+1}}\right) .
$$

THEOREM 3.13. The mapping $t: S \backslash\{\mathbf{0}\} \rightarrow\left(\omega^{*}\right)^{m}$ is an order-isomorphism, where $\left(\omega^{*}\right)^{m}$ denotes the lexicographic product of m copies of ω^{*}.

Proof. Firstly, we have to show that t is one-to-one. Consider two different elements $x, y \in S \backslash\{\mathbf{0}\}$. Then there exists a minimal i such that $[x]_{F_{i}} \neq[y]_{F_{i}}$. Thus $\#[x]_{F_{i}} \neq \#[y]_{F_{i}}$ and $t(x) \neq t(y)$.

Secondly, we have to show that the function t is onto. Consider an m-tuple $\left(n_{2}, n_{3}, \ldots, n_{m+1}\right)$. By Lemma 3.12 we know that equivalence classes $[y]_{F_{2}}$ which are subsets of $[x]_{F_{1}}=[\mathbf{1}]_{F_{1}}=S \backslash\{\mathbf{0}\}$ are order-isomorphic to ω^{*}. Thus we can find an equivalence class $\left[x_{2}\right]_{F_{2}}$ such that $\#\left[x_{2}\right]_{F_{2}}=n_{2}$. Then again by Lemma 3.12 we can find an equivalence class $\left[x_{3}\right]_{F_{3}} \subseteq\left[x_{2}\right]_{F_{2}}$ such that $\#\left[x_{3}\right]_{F_{3}}=n_{3}$. Repeating this procedure we finally find $\left[x_{m+1}\right]_{F_{m+1}}$ such that $\#\left[x_{m+1}\right]_{F_{m+1}}=n_{m+1}$. Since $F_{m+1}=\{\mathbf{1}\}$ is the trivial filter, $\left[x_{m+1}\right]_{F_{m+1}}=\left\{x_{m+1}\right\}$ and $t\left(x_{m+1}\right)=$ $\left(n_{2}, n_{3}, \ldots, n_{m+1}\right)$ because $\left[x_{2}\right]_{F_{2}} \supseteq\left[x_{3}\right]_{F_{3}} \supseteq \cdots \supseteq\left[x_{m+1}\right]_{F_{m+1}}=\left\{x_{m+1}\right\}$.

Finally, we prove that t is an order-isomorphism. Consider two elements such that $x<y$. Then there exists a minimal i such that $[x]_{F_{i}}<[y]_{F_{i}}$. Thus $\#[x]_{F_{j}}=$ $\#[y]_{F_{j}}$ for all $j=2, \ldots, i-1$, and $\#[x]_{F_{i}}<\#[y]_{F_{i}}$. Thus $t(x)<t(y)$.

Now we have the חMTL-chain \mathbf{S} which is order-isomorphic to the lexicographic product $\left(\omega^{*}\right)^{m}$ and the evaluation $e_{\mathbf{S}}$ such that $e_{\mathbf{S}}(\varphi)<\mathbf{1}$. The next step is to build a new Π MTL-chain \mathbf{S}^{\prime} order-isomorphic to $[0,1]$ in which \mathbf{S} can be embedded. The new universe is defined as follows:

$$
\left.\left.S^{\prime}=\{(s, r) \mid s \in S \backslash\{\mathbf{0}\}, r \in] 0,1\right]\right\} \cup\{(\mathbf{0}, 1)\} .
$$

This construction is the same as in [9], except for the fact that we use reals as second components in the definition of S^{\prime} instead of rationals.

The order \leq^{\prime} on S^{\prime} is lexicographic, i.e., $\left(s_{1}, r_{1}\right) \leq^{\prime}\left(s_{2}, r_{2}\right)$ iff $s_{1} \leq s_{2}$ or $s_{1}=s_{2}$ and $r_{1} \leq r_{2}$. The operations are defined by the following formulas:

$$
\begin{aligned}
(a, x) *^{\prime}(b, y) & =(a * b, x y) \\
(a, x) \rightarrow^{\prime}(b, y) & =\left\{\begin{array}{l}
(a \rightarrow b, 1) \quad \text { if } a *(a \rightarrow b)<b \\
(a \rightarrow b, \min \{1, y / x\}) \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

It is easy to check that $\mathbf{S}^{\prime}=\left(S^{\prime}, *^{\prime}, \rightarrow^{\prime}, \leq^{\prime},(\mathbf{0}, 1),(\mathbf{1}, 1)\right)$ is a Π MTL-chain.
Finally, the mapping $\Psi: S \rightarrow S^{\prime}$ defined by $\Psi(x)=(x, 1)$ is a MMTL-homomorphism since it satisfies the following equalities:

$$
\Psi(x * y)=(x * y, 1)=(x, 1) *^{\prime}(y, 1)=\Psi(x) *^{\prime} \Psi(y)
$$

and

$$
\Psi(x \rightarrow y)=(x \rightarrow y, 1)=(x, 1) \rightarrow^{\prime}(y, 1)=\Psi(x) \rightarrow^{\prime} \Psi(y)
$$

Moreover, Ψ obviously preserves the order, i.e., $x \leq y$ implies $\Psi(x) \leq^{\prime} \Psi(y)$.
The remaining step is to find an order-isomorphism $\Phi: S^{\prime} \rightarrow[0,1]$. Let us define the mapping Φ as follows:

$$
\begin{aligned}
& \Phi(\mathbf{0}, 1)=0 \\
& \Phi(a, x)=\frac{1}{2^{k_{1}}}+\frac{1}{2^{k_{1}+k_{2}}}+\cdots+\frac{1}{2^{k_{1}+\cdots+k_{m-1}}}+\frac{1+x}{2^{k_{1}+\cdots+k_{m}}}
\end{aligned}
$$

where $\left(k_{1}, k_{2}, \ldots, k_{m}\right)=t(a)$.
THEOREM 3.14. The mapping Φ is an order-isomorphism between S^{\prime} and the real unit interval $[0,1]$.

Proof. Since the elements of S^{\prime} are lexicographically ordered and so are the elements of S, it is easy to see that Φ is an order-isomorphism.

Finally, we define the operations in $[0,1]$ as usual:

$$
a \odot b=\Phi\left(\Phi^{-1}(a) *^{\prime} \Phi^{-1}(b)\right), \quad a \rightarrow_{\odot} b=\Phi\left(\Phi^{-1}(a) \rightarrow^{\prime} \Phi^{-1}(b)\right)
$$

Then $[\mathbf{0}, \mathbf{1}]=\left([0,1], \odot, \rightarrow_{\odot}, \leq, 0,1\right)$ is a Π MTL-chain and $[\mathbf{0}, \mathbf{1}] \not \models \varphi$, i.e., $\Phi\left(\Psi\left(e_{\mathbf{S}}(\varphi)\right)\right)<$ 1. Thus the proof of the standard completeness theorem is done.

THEOREM 3.15 (Standard Completeness Theorem). A formula φ is provable in ПMTL if and only if φ is a tautology in all חMTL-chains in $[0,1]$ with finitely many Archimedean classes.

4. Finite Strong Standard Completeness

In the previous section we proved that provable formulas are valid in $[0,1]$ and vice versa. Nevertheless from the logical point of view, it is desirable to extend Theorem 3.15 also for theories. Before that we have to extend also Theorem 2.10 to its strong version.

We recall here several needful notions. Let T be a theory over חMTL. Then T is called complete if either $T \vdash \varphi \rightarrow \psi$ or $T \vdash \psi \rightarrow \varphi$ for any pair of formulas φ, ψ. Further, let \mathbf{L} be a $\Pi M T L-a l g e b r a$. Then an \mathbf{L}-evaluation e such that for each formula $\varphi \in T, e(\varphi)=\mathbf{1}$, is called \mathbf{L}-model of T.
LEMMA 4.1. For each theory T over Π MTL such that $T \nvdash \varphi$, there is a complete supertheory $T^{\prime} \supseteq T$ such that $T^{\prime} \nvdash \varphi$.
Proof. This can be done in the same way as the proof of [6, Lemma 2.4.2] because MMTL has the same deduction theorem as BL and all needed formulas are provable in ПMTL (see [3, Section 2.1]).

Although the authors of [3] did not state the following theorem, it follows easily from the facts in their paper.

THEOREM 4.2 (Strong Completeness Theorem). Let T be a theory over MMTL and φ be a formula. Then $T \vdash \varphi$ if and only if for each Π MTL-chain \mathbf{L} and each \mathbf{L}-model e of $T, e(\varphi)=\mathbf{1}$.

Proof. The first direction follows easily from soundness and the definition of \mathbf{L}-model. The second one is proved by the classical construction of Lindenbaum-Tarski algebra of a complete supertheory $T^{\prime} \supseteq T$ such that $T^{\prime} \nvdash \varphi$. The existence of T^{\prime} follows from Lemma 4.1 and [3, Lemma 1] shows that the construction of Lindenbaum-Tarski algebra is correct.

THEOREM 4.3 (Finite Strong Standard Completeness). Let T be a finite theory over ПMTL and φ be a formula. Then $T \vdash \varphi$ if and only if for each ПMTL-chain \mathbf{L} in $[0,1]$ with finitely many Archimedean classes and each \mathbf{L}-model e of $T, e(\varphi)=\mathbf{1}$.

Proof. We will prove only the non-trivial direction. Suppose that $T \nvdash \varphi$. Then Theorem 4.2 gives us a ПMTL-chain \mathbf{L} and an \mathbf{L}-model e of T such that $e(\varphi)<\mathbf{1}$. We will proceed similarly as in Section 3. Let us define the following set:

$$
M=\{\psi \mid \psi \text { is a subformula of } \tau, \tau \in T \cup\{\varphi\}\}
$$

Then we construct a submonoid \mathbf{S} of \mathbf{L} generated by the set:

$$
G=\left\{a \in L \mid a_{i}=e(\psi), \psi \in M\right\}
$$

Since \mathbf{S} is finitely generated as in Section 3, we can define a residuum and show that \mathbf{S} is a Π MTL-chain. Further, if we define $e_{\mathbf{S}}(v)=e(v)$ for each propositional variable v, we obtain an \mathbf{S}-evaluation such that $e_{\mathbf{S}}(\psi)=e(\psi)$ for all $\psi \in M$. This can be proved by a straightforward modification of the proof of Theorem 3.2. Moreover, since $e_{\mathbf{S}}(\tau)=e(\tau)=\mathbf{1}$ for all $\tau \in T, e_{\mathbf{S}}$ is an \mathbf{S}-model of T.

Finally, \mathbf{S} can be embedded into a חMTL-chain in $[0,1]$ with finitely many Archimedean classes in the same way as in the proof of Theorem 3.15. Thus there exists an embedding $\Phi: \mathbf{S} \rightarrow[\mathbf{0}, \mathbf{1}]$ such that $\Phi\left(e_{\mathbf{S}}(\varphi)\right)<1$ and $\Phi\left(e_{\mathbf{S}}(\tau)\right)=1$ for all $\tau \in T$.

References

[1] G. Birkhoff: Lattice Theory. Amer. Math. Soc. Colloquium Publications (3rd edition), 1995.
[2] D. Cox, J. Little, D. O'Shea: Ideals, Varieties, and Algorithms. Springer (2nd edition), 1996.
[3] F. Esteva, L. Godo: Monoidal t-norm Based Logic: Towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124(3):271-288, 2001.
[4] F. Esteva, J. Gispert, L. Godo, F. Montagna: On the Standard Completeness of some Axiomatic Extensions of the Monoidal T-norm Logic. Studia Logica 71(2):199-226, 2002.
[5] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963.
[6] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
[7] P. Hájek: Observations on the Monoidal T-norm Logic. Fuzzy Sets and Systems 132(1):107-112, 2002.
[8] U. Höhle: Commutative, Residuated l-monoids. In Non-Classical Logics and Their Applications to Fuzzy Subsets, U. Höhle, E.P. Klement (eds.), Kluwer Academic Publisher, Dordrecht, pp. 53-106, 1995.
[9] S. Jenei, F. Montagna: A Proof of Standard Completeness for Esteva and Godo's Logic MTL. Studia Logica 70(2):183-192, 2002.

Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6, Czech Republic.

