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Abstract. ΠMTL is a schematic extension of the monoidal t-norm based

logic (MTL) by the characteristic axioms of product logic. In this paper we

prove that ΠMTL satisfies the standard completeness theorem. From the
algebraic point of view, we show that the class of ΠMTL-algebras (bounded

commutative cancellative residuated l-monoids) in the real unit interval [0, 1]
generates the variety of all ΠMTL-algebras.

1. Introduction

In [3], Esteva and Godo introduced a monoidal t-norm based logic (MTL for
short). MTL was obtained from Hájek’s basic logic (BL) [6] by omitting the axiom
of divisibility. Without this axiom continuity of the t-norm representing the truth
function for the conjunction is not ensured. The algebraic counterpart of MTL
(algebras of truth values) are bounded commutative residuated l-monoids satisfying
the pre-linearity axiom. Further the authors of [3] showed that MTL is a reasonable
fuzzy logic satisfying the completeness theorem.

Recently, the question of standard completeness of MTL and its extensions has
been deeply studied. Jenei and Montagna showed that MTL satisfies the standard
completeness theorem (see [9]). This means that MTL can be really considered
the logic of left-continuous t-norms. Further in [4], the authors studied the stan-
dard completeness of several schematic extensions of MTL. They succeeded in
proving the standard completeness theorem for IMTL and SMTL, where IMTL is
an extension of MTL by the axiom of double negation (¬¬ϕ ⇒ ϕ) and SMTL is
an extension of MTL by the axiom ensuring that the negation is Gödel negation
(ϕ ∧ ¬ϕ ⇒ 0). They also tried to prove the standard completeness for ΠMTL
which is an axiomatic extension of MTL where the conjunction is interpreted by
a left-continuous cancellative t-norm. They showed that ΠMTL is complete with
respect to all ΠMTL-chains whose underlying sets are rational numbers from the
unit interval, i.e., [0, 1]∩Q. However, they did not succeed to extend this result to
the whole unit interval [0, 1].

In this paper we are going to present how to overcome this problem and we show
that ΠMTL is standard complete, i.e., a formula ϕ is provable in ΠMTL iff ϕ is a
tautology in all ΠMTL-algebras in the real interval [0, 1].

Throughout the text, N denotes the set of natural numbers with ordinary order
including also 0, i.e., N = {0, 1, 2, . . .}, and ω∗ denotes the set of natural numbers
without 0 endowed with the reverse order (1 > 2 > 3 . . .).

2. Preliminaries

Since ΠMTL is a schematic extension of MTL, we firstly introduce MTL. The
language of MTL contains a set of propositional variables, a conjunction &, an
implication ⇒, the minimum conjunction ∧, and the truth constant 0. Derived
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connectives are defined as follows:

ϕ ∨ ψ is ((ϕ⇒ ψ)⇒ ψ) ∧ ((ψ ⇒ ϕ)⇒ ϕ) ,
¬ϕ is ϕ⇒ 0̄ ,

ϕ ≡ ψ is (ϕ⇒ ψ)&(ψ ⇒ ϕ) ,
1 is ¬0 .

In [3], the authors introduced a Hilbert style calculus for MTL with the following
axiomatization:

(A1) (ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ)) ,
(A2) ϕ&ψ ⇒ ϕ ,
(A3) ϕ&ψ ⇒ ψ&ϕ ,
(A4) (ϕ ∧ ψ)⇒ ϕ ,
(A5) (ϕ ∧ ψ)⇒ (ψ ∧ ϕ) ,
(A6) (ϕ&(ϕ⇒ ψ))⇒ (ϕ ∧ ψ) ,
(A7a) (ϕ⇒ (ψ ⇒ χ))⇒ (ϕ&ψ ⇒ χ) ,
(A7b) (ϕ&ψ ⇒ χ)⇒ (ϕ⇒ (ψ ⇒ χ)) ,
(A8) ((ϕ⇒ ψ)⇒ χ)⇒ (((ψ ⇒ ϕ)⇒ χ)⇒ χ) ,
(A9) 0̄⇒ ϕ .

The deduction rule of MTL is modus ponens.
The corresponding algebras of truth values are so-called MTL-algebras. MTL-algebras

form a subvariety of residuated l-monoids. A lattice-ordered monoid (or l-monoid)
is a monoid which is at the same time a lattice and satisfies the isotonicity condi-
tion: a ≤ b implies a∗ c ≤ b∗ c and c∗a ≤ c∗ b (for details on residuated l-monoids,
see [1, 5, 8]).

DEFINITION 2.1. An MTL-algebra is a bounded commutative residuated
l-monoid (L, ∗,→,u,t,0,1), where (L, ∗,u,t,0,1) is a bounded commutative l-monoid,
(∗,→) is a residuated pair, i.e., x ∗ y ≤ z iff x ≤ y → z, and the pre-linearity equa-
tion is satisfied:

(x→ y) t (y → x) = 1 .

Throughout the text, we will also use without mentioning the alternative signa-
ture for an MTL-algebra using the lattice order ≤ instead of u,t. The symbol an

stands for a ∗ · · · ∗ a (n-times).

In this paper we deal with the extension of MTL by product axioms ensuring
that the conjunction is strict and cancellative. This extension was introduced by
Hájek in [7].

DEFINITION 2.2. A ΠMTL logic is a schematic extension of MTL by the following
axioms:

(Π1) ¬¬ψ ⇒ [((ϕ&ψ)⇒ (χ&ψ))⇒ (ϕ⇒ χ)] ,
(Π2) ϕ ∧ ¬ϕ⇒ 0 .

The corresponding algebras of truth values (ΠMTL-algebras) form a subvariety
of MTL-algebras.

DEFINITION 2.3. A ΠMTL-algebra L = (L, ∗,→,u,t,0,1) is MTL-algebra sat-
isfying the identities corresponding to the axioms (Π1) and (Π2):

(1) [(z → 0)→ 0]→ [(x ∗ z → y ∗ z)→ (x→ y)] = 1 ,
(2) x u (x→ 0) = 0 .

A linearly ordered ΠMTL-algebra is called a ΠMTL-chain.
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Having defined the algebras of truth values, we can define an evaluation assigning
to each formula a truth value.

DEFINITION 2.4. Let L = (L, ∗,→,u,t,0,1) be a ΠMTL-algebra. An L-eval-
uation is a map e from the set of ΠMTL formulas into L such that for every pair
ϕ, ψ of formulas the following conditions hold:

(1) e(ϕ&ψ) = e(ϕ) ∗ e(ψ),
(2) e(ϕ⇒ ψ) = e(ϕ)→ e(ψ),
(3) e(ϕ ∧ ψ) = e(ϕ) u e(ψ),
(4) e(0) = 0.

In order to study the structure of ΠMTL-chains, we have to work with congru-
ences. Therefore we recall here the notion of a filter because of its connection to
the congruence lattice (see [3]).

DEFINITION 2.5. Let L = (L, ∗,→,≤,0,1) be a ΠMTL-algebra. A filter F in L
is a subset of L satisfying:

(1) if x, y ∈ F , then x ∗ y ∈ F ,
(2) if x ∈ F , x ≤ y, then y ∈ F .

LEMMA 2.6. For any filter F in a ΠMTL-algebra L, let us define the following
equivalence relation in L:

x ∼F y iff x→ y ∈ F and y → x ∈ F .

Then ∼F is a congruence and the quotient L/F is a ΠMTL-algebra.

We will denote the equivalence class containing an element x ∈ L with respect
to a filter F by [x]F = {a ∈ L | a ∼F x}. Observe also that if L is a ΠMTL-chain
then only one of the implications in the definition of ∼F is important because for
all x, y either x ≤ y or y ≤ x, thus either x→ y = 1 or y → x = 1.

As it will be seen in the next section, the filters in ΠMTL-chains are also related
to so-called Archimedean classes (see [5]).

DEFINITION 2.7. Let L be a ΠMTL-chain, a, b be elements of L, and ∼ be an
equivalence on L defined as follows:

a ∼ b iff there exists an n ∈ N such that an ≤ b ≤ a or bn ≤ a ≤ b.
Then for any a ∈ L the equivalence class [a]∼ is called Archimedean class.

Archimedean classes correspond to the subsets of L where the elements behave
like in an Archimedean l-monoid, i.e., for any pair of elements x, y ∈ [a]∼, such
that x ≤ y, there is an n ∈ N such that yn ≤ x.

Further, we recall several results that will be useful in the sequel. In [7, Lemma
4], Hájek proved the following result:

PROPOSITION 2.8. An MTL-chain L is a ΠMTL-chain if and only if it is can-
cellative, i.e. for any x, y, z ∈ L, z 6= 0, if x ∗ z = y ∗ z then x = y.

Observe that by cancellativity we obtain for a, b, c > 0 that a < b implies
a ∗ c < b ∗ c, in particular a2 < a and a ∗ b < a for b < 1.

The following important result states that ΠMTL-chains possess a special sig-
nificance among ΠMTL-algebras (cf. [3]).

THEOREM 2.9 (Subdirect Representation Theorem). Each ΠMTL-algebra is iso-
morphic to a subdirect product of ΠMTL-chains.

Finally, it was shown in [3] that ΠMTL logic is a reasonable logic which satisfies
the completeness theorem.
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THEOREM 2.10 (Completeness Theorem). ΠMTL is sound and complete with
respect to the class of ΠMTL-chains. In other words, ΠMTL ` ϕ if and only if
e(ϕ) = 1 for every ΠMTL-chain L and every L-evaluation e.

The main result of this paper is a strengthening of the latter theorem. We will
show that ΠMTL is complete with respect to a smaller class of algebras. Instead of
all ΠMTL-chains, we will prove that it is sufficient to consider only ΠMTL-chains
in the real unit interval [0, 1] with finitely many Archimedean classes. In other
words, we will prove the following result:

The main result: A formula ϕ is provable in ΠMTL if and only if ϕ is a tautology
in all ΠMTL-chains in [0, 1] with finitely many Archimedean classes.

Notice that one direction of this statement already follows from Theorem 2.10. The
second is difficult and we will prove it in the next section.

REMARK 2.11. From the algebraic point of view, we can rephrase the main result
in the sense that ΠMTL-chains in the real unit interval [0, 1] with finitely many
Archimedean classes generate the variety of ΠMTL-algebras.

3. Proof of the main result

The proof has several steps. We will start with a formula ϕ which is not valid in
a ΠMTL-chain L. Then we construct a new ΠMTL-chain S such that ϕ is not valid
in S, too, and S has a more transparent structure. Then we will prove that S is
order-isomorphic to the lexicographic product (ω∗)n. The next step is to extend S
to a continuum. Finally, we will show that this extension of S is order-isomorphic
to [0, 1].

We know from Theorem 2.10 that whenever ΠMTL 6` ϕ then there exists a
ΠMTL-chain L = (L, ∗L,→L,≤,0,1) and an L-evaluation eL such that eL(ϕ) < 1.
Let us denote the set of all subformulas of ϕ by B. Since B is finite, we can assume
that B = {ψ1, . . . , ψn}. Let us define ai = eL(ψi), 1 ≤ i ≤ n, and the following set:

(1) G = {ai ∈ L | 1 ≤ i ≤ n} .

Let S be the submonoid of L generated by G, i.e. S = (S, ∗,≤,0,1), where

S = {ak1
1 ∗L · · · ∗L akn

n | ai ∈ G, ki ∈ N, 1 ≤ i ≤ n} ∪ {0,1} ,

and ∗ denotes the restriction of ∗L to S.

LEMMA 3.1. Each subset M ⊆ S has a maximum.

Proof. The proof of this lemma is based on Dickson’s lemma stating that each
subset of (N, <)n has only finitely many minimal elements (the proof of Dickson’s

lemma in a little bit different form can be found in [2]). To each element ak1
1 ∗L

· · · ∗L akn
n ∈M we can assign an n-tuple (k1, . . . , kn) ∈ Nn. Thus we have a subset

H ⊆ Nn such that (k1, . . . , kn) ∈ H implies ak1
1 ∗L · · · ∗L akn

n ∈ M . Moreover,

if (k1, . . . , kn) < (t1, . . . , tn), we obtain ak1
1 ∗L · · · ∗L akn

n > at11 ∗L · · · ∗L atnn by
cancellativity. Since H has only finitely many minimal elements, one of them must
correspond to the maximum of M . � �

Due to Lemma 3.1, we can introduce a residuum on S as follows:

a→ b = max{z ∈ S | a ∗ z ≤ b} .

THEOREM 3.2. The enriched submonoid S = (S, ∗,→,≤,0,1) is a
ΠMTL-chain and there exists an S-evaluation eS such that eS(ϕ) = eL(ϕ).
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Proof. Firstly, we know that S is a cancellative linearly ordered monoid. Since S is
a chain, the pre-linearity axiom is obviously satisfied. Thus the only thing which we
have to check is whether (∗,→) form a residuated pair, i.e. a ∗ b ≤ c iff a ≤ b→ c.
But this easily follows from the definition of →. Hence S is a ΠMTL-chain.

Secondly, let us define an evaluation eS(v) = eL(v) for each propositional variable
v appearing in ϕ and eS(v) arbitrary otherwise. Then we show by induction on
the complexity of ϕ that eS(ψi) = eL(ψi) for all subformulas ψi of ϕ, in particular
eS(ϕ) = eL(ϕ). The first step is obvious by the definition of eS. Now suppose that
ψk = ψi&ψj . Then eS(ψk) = eS(ψi) ∗ eS(ψj) = eL(ψi) ∗ eL(ψj) = ai ∗L aj = ak =
eL(ψk) (similarly for ψk = ψi ∧ ψj). Finally, suppose that ψk = (ψi ⇒ ψj). Then
eS(ψk) = ai → aj = max{z ∈ S | ai ∗ z ≤ aj}. Let ak = ai →L aj (ak ∈ S because
ψi ⇒ ψj is a subformula of ϕ). Then ai∗ak ≤ aj . Thus ak ≤ ai → aj . Now suppose
that there is an element z′ ∈ S such that z′ > ak and ai ∗ z′ ≤ aj . Since z′ ∈ L, we
get z′ ≤ ai →L aj = ak, a contradiction. Hence ai → aj = ak = eL(ψk). � �

Note that S need not be a sub-ΠMTL-chain of L since S arises only from a
submonoid of L. However, the existence of the evaluation eS such that eS(ϕ) < 1
is sufficient for us.

The second step of the proof is a detailed investigation of the structure of S.
We start with the properties of Archimedean classes of S and then we show their
relation to filters.

LEMMA 3.3. Let b ∈ S. Then the Archimedean classes of S, [a]∼, a ∈ S, have the
following properties:

(1) [a]∼ is closed under ∗.
(2) [a]∼ is a left-open and right-closed interval for a 6= 0,1.
(3) [a ∗ b]∼ = [min{a, b}]∼.
(4) There are only finitely many Archimedean classes.

Proof. (1) Suppose that x, y ∈ [a]∼ and x ≤ y. Then x2 ≤ x ∗ y ≤ x, thus x ∗ y
belongs to [a]∼.

(2) The right-closedness of [a]∼ is obvious because each subset of S has a max-
imum by Lemma 3.1. The left-openness follows from the fact that x ∈ [a]∼
implies x2 ∈ [a]∼ and x2 < x from cancellativity. Finally, we have to
show that there is no gap in [a]∼. Suppose that x, y ∈ [a]∼, z 6∈ [a]∼, and
x < z < y. Then there is an n such that yn ≤ x < z < y. Thus z ∈ [a]∼, a
contradiction.

(3) Without any loss of generality suppose that a ≤ b. Then a2 ≤ a ∗ b ≤ a.
Thus a ∗ b ∈ [a]∼ = [min{a, b}]∼.

(4) Since S is finitely generated using only ∗ and because of (3), there must be
only finitely many Archimedean classes in S. �

�

Note that there are always at least two Archimedean classes, {0} and {1}, and
S/∼ is linearly ordered because of Lemma 3.3(2), i.e., [a]∼ < [b]∼ iff a 6∈ [b]∼ and
a < b. Let us denote Archimedean classes by Ci, i = 0, . . . ,m + 1, in such a way
that C0 = {0}, Cm+1 = {1}, and Cj < Ck for j < k. Archimedean classes are
important due to their relation to filters.

LEMMA 3.4. Let {C0 = {0}, . . . , Ci, . . . , Cm+1 = {1}} be the set of Archimedean
classes of S, 0 ≤ i ≤ m+ 1, and

Fi =
⋃
i≤j

Cj .

Then the set {F0 = S, . . . , Fi, . . . , Fm+1 = {1}} is the set of all filters of S.
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Proof. Firstly, given an index i, we have to show that Fi is a filter of S. The set Fi is
closed under ∗ because of Lemma 3.3(1),(3). The fact that Fi is also a lattice-filter
is obvious because S/∼ is linearly ordered.

Secondly, let F be a filter of S and a ∈ F . Then a ∈ Ci for some 0 ≤ i ≤ m+ 1.
We show that Ci ⊆ F . Let b ∈ Ci. Obviously, if b ≥ a then b ∈ F . Suppose that
b < a. Then there is an n ∈ N such that an ≤ b. Since an ∈ F , it follows that b ∈ F .
Thus F must be a union of Archimedean classes. Now, let us take the minimal i
such that Ci ∩ F 6= ∅. Since Ci < Cj for any i < j, it follows that Cj ⊆ F . Thus
F =

⋃
i≤j Cj . � �

From now on we will denote by Fi the filter corresponding to Ci. Observe that
F0 = S, F1 = S \ {0}, and Fm+1 = {1}. Further note that each [x]Fi

has a
maximum by Lemma 3.1. We denote this maximum by mFi

x .

LEMMA 3.5. Let x ∈ S, x > 0, and Fi be a non-trivial filter, i.e.,
0 < i < m + 1. Then the equivalence class [x]Fi

is a left-open and right-closed
interval.

Proof. We show that [x]Fi
is an interval. Suppose that a, b ∈ [x]Fi

and a ≤ c ≤ b
for some c ∈ S. Then b → c ≥ b → a ∈ Fi. Hence c ∈ [x]Fi . Moreover, as the
equivalence class [x]Fi has a maximum mFi

x , [x]Fi is right-closed.
Finally, we will show that there is no minimum. Suppose that z ∈ [x]Fi

and
z 6= mFi

x . There must be such z. Since Fi 6= {1}, there is an s ∈ Fi such that s < 1.
Let z = mFi

x ∗ s 6= mFi
x , then mFi

x → z = s and z ∈ [x]Fi
. Now take the element

mFi
x → z ∈ Fi. Since Fi is closed under ∗, (mFi

x → z)2 ∈ Fi and mFi
x ∗ (mFi

x →
z)2 ∈ [x]Fi because mFi

x → [mFi
x ∗ (mFi

x → z)2] = (mFi
x → z)2. Now from the fact

that mFi
x ∗ (mFi

x → z) ≤ z, it follows that mFi
x ∗ (mFi

x → z)2 < z. � �

LEMMA 3.6. Let Fi, Fj be filters in S and i < j. Then S/Fj is a refinement of
S/Fi, i.e., [y]Fj

⊆ [x]Fi
for any y ∈ [x]Fi

.

Proof. Since Fj ⊆ Fi, it follows that the congruences corresponding to Fj , Fi fulfill
∼Fj

⊆ ∼Fi
. � �

We are going to introduce the vector notation of the elements of S. Let G be
the set of generators of S defined in Equation (1), Gi = Ci ∩ G, and Si be the
submonoid of S generated by Gi, i.e.,

Si = {gk1
1 ∗ · · · ∗ gkr

r | gj ∈ Gi, kj ∈ N, j = 1, . . . , r} ∪ {0,1} .
Observe that Si \ {0,1} ⊆ Ci and Si \ {0} ⊆ Fi.

LEMMA 3.7. Let i ∈ {1, . . . ,m}. Then Si \ {0} is order-isomorphic to ω∗.

Proof. Since Si \ {0,1} ⊆ Ci, Si \ {0} is Archimedean, i.e.,

(∀x ∈ Si \ {0})(∀g ∈ Gi)(∃k ∈ N) : gk ≤ x .
Thus there is a k ∈ N such that gk1 ∗ · · · ∗ gkr ≤ x. Hence Mx = {z ∈ Si | z ≥ x} is
finite and the desired order-isomorphism assigns to x the cardinality of Mx. � �

COROLLARY 3.8. Let H ⊆ Si and H be infinite. Then for any x ∈ Si \ {0} there
is an element w ∈ H such that w ≤ x.

Due to commutativity and associativity, each element x ∈ S can be expressed in
the form:

x = p1 ∗ p2 ∗ · · · ∗ pm , pi ∈ Si .

Thus we can assign to each element x a vector x̄ = (p1, . . . , pm) and find a function h
such that x = h(x̄) = p1∗· · ·∗pm. Note that 1 = h(1, . . . ,1) and 0 = h(p1, . . . , pm),
if pi = 0 for at least one i ∈ {1, . . . ,m}. The projection to the i-th coordinate is
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denoted by πi. Observe that if pi < 1 and pj > 0 for j = i, . . . ,m, then the element
represented by (1, . . . ,1, pi, . . . , pm) belongs to Ci and Fi. To each subset M ⊆ S
there exists a set of vectors M̄ such that h(M̄) = M and |M | ≤ |M̄ |.

Let us denote by 〈G1, . . . , Gk〉 the universe of the submonoid of S generated by⋃
1≤j≤kGj .

LEMMA 3.9. Let x ∈ S, x > 0, i > 1, and Fi be a filter. Then mFi
x ∈ 〈G1, . . . , Gi−1〉,

i.e., mFi
x = p1 ∗ p2 ∗ · · · ∗ pi−1 = h(p1, . . . , pi−1,1, . . . ,1) for some pj ∈ Sj,

j = 1, . . . , i− 1.

Proof. If i = m + 1, then 〈G1, . . . , Gm〉 = S and obviously m
Fm+1
x ∈ S. Thus

assume that i < m + 1. If x ∈ Fi then mFi
x = 1 and 1 ∈ 〈G1, . . . , Gi−1〉. Finally,

suppose that x 6∈ Fi and mFi
x = p1 ∗ p2 ∗ · · · ∗ pi−1 ∗ z, z < 1, z ∈ Fi. Then

p1 ∗ p2 ∗ · · · ∗ pi−1 → mFi
x = z. Thus p1 ∗ p2 ∗ · · · ∗ pi−1 ∈ [x]Fi , a contradiction with

the condition that mFi
x is maximal. � �

LEMMA 3.10. Let x ∈ S, x > 0, i > 0, and Fi be a filter. Then the set M =
[x]Fi

∩ 〈G1, . . . , Gi−1〉 is finite.

Proof. Firstly, if i = 1 then 〈G1, . . . , Gi−1〉 is a subuniverse generated by the empty
set, i.e., 〈G1, . . . , Gi−1〉 = {0,1}. Since [x]F1

= [1]F1
= F1, the intersection [x]Fi

∩
〈G1, . . . , Gi−1〉 = {1}.

Secondly, let i > 1. Note that the elements from M̄ are of the form (p1, . . . , pi−1,1, . . . ,1)
for some pj ∈ Sj , j = 1, . . . , i − 1. Suppose that M is infinite. Then M̄ is also
infinite and there exists a minimal k, k ≤ i − 1, such that πk(M̄) is infinite and
πj(M̄) is finite for all j < k. Thus there must be a subset H̄ ⊆ M̄ such that πk(H̄)
is infinite and πj(H̄) = {qj} for all j < k and some qj ∈ Sj .

Let us take an element pk ∈ πk(H̄) and pk < 1. Since πk(H̄) ⊆ Sk is infinite,
there must be an element w ∈ πk(H̄) such that w ≤ p2

k by Corollary 3.8 and the
fact that p2

k ∈ Sk.
Now let us take two vectors ā, b̄ ∈ H̄ such that πk(ā) = pk and πk(b̄) = w. Then

h(ā) → h(b̄) = a → b ∈ Fi because a, b ∈ [x]Fi
. Let us denote q = q1 ∗ · · · ∗ qk−1,

za = πk+1(ā) ∗ · · · ∗ πi−1(ā), and zb = πk+1(b̄) ∗ · · · ∗ πi−1(b̄). Then a → b =
q ∗ pk ∗ za → q ∗w ∗ zb = pk ∗ za → w ∗ zb ≤ pk ∗ za → p2

k ∗ zb = za → pk ∗ zb. Thus
za → pk ∗zb ∈ Fi. From za → pk ∗zb ∈ Fi and za ∈ Fk+1 it follows that pk ∗zb ∈ Fi,
a contradiction with the fact that pk ∗ zb ∈ Ck. � �

LEMMA 3.11. Let x ∈ S, x > 0, i > 0, Fi be a filter, a, b ∈ [x]Fi , and a ≤ b. Then
there exists an element w ∈ Si such that b ∗ w ≤ a and b ∗ w ∈ [x]Fi

.

Proof. Firstly, if a = b, then take w = 1. Secondly, if a < b, let z = b → a. Then
z < 1, z ∈ Fi, and b ∗ z ≤ a. We can write z = h(1, . . . ,1, pi, . . . , pm) for some
pj ∈ Sj , j = i, . . . ,m. There are two cases. In the first case, let pi < 1. Then
pi < pi+1 ∗ · · · ∗ pm because pi ∈ Ci and pi+1 ∗ · · · ∗ pm ∈ Ci+1 by Lemma 3.3(3).
Let us take w = p2

i < z. Then b ∗ w ≤ b ∗ z ≤ a and w ∈ Si. Moreover, as
b → b ∗ w = w ∈ Si ⊆ Fi, b ∗ w belongs to [x]Fi . In the second case, let pi = 1.
Then we can take any element w ∈ Si, 0 < w < 1. Since w < z and b ∗ w ∈ [x]Fi ,
the proof is done. � �

Using Lemmas 3.9, 3.10, and 3.11, we are going to prove the crucial structural
lemma. This lemma describes the behaviour of the equivalence classes w.r.t. Fi+1

which are subsets of one equivalence class w.r.t. Fi. Since S/Fi+1 is a refinement
of S/Fi by Lemma 3.6, such subsets form the set {[y]Fi+1

| y ∈ [x]Fi
}.

LEMMA 3.12. Let x ∈ S, x > 0, 0 < i < m + 1, and Fi be a filter. Then the set
{[y]Fi+1

| y ∈ [x]Fi
} is order-isomorphic to ω∗.
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Proof. Let M = [x]Fi
∩ 〈G1, . . . , Gi−1〉. We will show that each element z ∈ [x]Fi

can be expressed in the form z = b ∗ s for some b ∈M and some s ∈ Fi. Firstly, if
i = 1, then M = {1}. Since z > 0, z ∈ F1 and z = 1 ∗ z. Secondly, assume that
i > 1. Then z = p1 ∗· · ·∗pi−1 ∗pi ∗· · ·∗pm and we can write z = p1 ∗· · ·∗pi−1 ∗s for
s = pi ∗ · · · ∗ pm ∈ Fi. Further, p1 ∗ · · · ∗ pi−1 ∈ [x]Fi because p1 ∗ · · · ∗ pi−1 → z = s.
Since p1 ∗ · · · ∗ pi−1 ∈ 〈G1, . . . , Gi−1〉, p1 ∗ · · · ∗ pi−1 ∈M .

Thus for each maximum m
Fi+1
y ∈ [x]Fi

, we can write m
Fi+1
y = b ∗ s for some

b ∈M and some s ∈ Fi. Since m
Fi+1
y ∈ 〈G1, . . . , Gi〉 by Lemma 3.9, it follows that

s must belong to Si.

By Lemma 3.11 we can find for each m
Fi+1
y ∈ [x]Fi

and for each b ∈ M , an

element w ∈ Si such that b ∗ w ≤ m
Fi+1
y and b ∗ w ∈ [x]Fi

. Since Si \ {0} is
order-isomorphic to ω∗ by Lemma 3.7 and M is finite by Lemma 3.10, we get that
the set

H = {b ∗ s | s ∈ Si, b ∈M, b ∗ s ≥ mFi+1
y }

is finite. Since {mFi+1
u |mFi+1

u ≥ mFi+1
y , u ∈ [x]Fi

} ⊆ H, the desired order-isomorphism
# can be defined as follows:

#[y]Fi+1
= |{mFi+1

u | mFi+1
u ≥ mFi+1

y , u ∈ [x]Fi
}| .

It is obvious that #[y]Fi+1
≤ |H|. In other words, the natural number #[y]Fi+1

represents the position of [y]Fi+1 within [x]Fi . � �

Now we define a mapping t : S \ {0} → (ω∗)m as follows:

t(x) = (#[x]F2
,#[x]F3

, . . . ,#[x]Fm+1
) .

THEOREM 3.13. The mapping t : S \ {0} → (ω∗)m is an order-isomorphism,
where (ω∗)m denotes the lexicographic product of m copies of ω∗.

Proof. Firstly, we have to show that t is one-to-one. Consider two different elements
x, y ∈ S \ {0}. Then there exists a minimal i such that [x]Fi 6= [y]Fi . Thus
#[x]Fi

6= #[y]Fi
and t(x) 6= t(y).

Secondly, we have to show that the function t is onto. Consider an m-tuple
(n2, n3, . . . , nm+1). By Lemma 3.12 we know that equivalence classes [y]F2

which
are subsets of [x]F1

= [1]F1
= S \{0} are order-isomorphic to ω∗. Thus we can find

an equivalence class [x2]F2 such that #[x2]F2 = n2. Then again by Lemma 3.12
we can find an equivalence class [x3]F3 ⊆ [x2]F2 such that #[x3]F3 = n3. Repeat-
ing this procedure we finally find [xm+1]Fm+1

such that #[xm+1]Fm+1
= nm+1.

Since Fm+1 = {1} is the trivial filter, [xm+1]Fm+1
= {xm+1} and t(xm+1) =

(n2, n3, . . . , nm+1) because [x2]F2
⊇ [x3]F3

⊇ · · · ⊇ [xm+1]Fm+1
= {xm+1}.

Finally, we prove that t is an order-isomorphism. Consider two elements such
that x < y. Then there exists a minimal i such that [x]Fi < [y]Fi . Thus #[x]Fj =
#[y]Fj

for all j = 2, . . . , i− 1, and #[x]Fi
< #[y]Fi

. Thus t(x) < t(y). � �

Now we have the ΠMTL-chain S which is order-isomorphic to the lexicographic
product (ω∗)m and the evaluation eS such that eS(ϕ) < 1. The next step is to build
a new ΠMTL-chain S′ order-isomorphic to [0, 1] in which S can be embedded. The
new universe is defined as follows:

S′ = {(s, r) | s ∈ S \ {0}, r ∈ ]0, 1]} ∪ {(0, 1)} .

This construction is the same as in [9], except for the fact that we use reals as
second components in the definition of S′ instead of rationals.
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The order ≤′ on S′ is lexicographic, i.e., (s1, r1) ≤′ (s2, r2) iff s1 ≤ s2 or s1 = s2

and r1 ≤ r2. The operations are defined by the following formulas:

(a, x) ∗′ (b, y) = (a ∗ b, xy) ,

(a, x)→′ (b, y) =

{
(a→ b, 1) if a ∗ (a→ b) < b ,

(a→ b,min{1, y/x}) otherwise .

It is easy to check that S′ = (S′, ∗′,→′,≤′, (0, 1), (1, 1)) is a ΠMTL-chain.
Finally, the mapping Ψ : S → S′ defined by Ψ(x) = (x, 1) is a ΠMTL-ho-

momorphism since it satisfies the following equalities:

Ψ(x ∗ y) = (x ∗ y, 1) = (x, 1) ∗′ (y, 1) = Ψ(x) ∗′ Ψ(y) ,

and

Ψ(x→ y) = (x→ y, 1) = (x, 1)→′ (y, 1) = Ψ(x)→′ Ψ(y) .

Moreover, Ψ obviously preserves the order, i.e., x ≤ y implies Ψ(x) ≤′ Ψ(y).
The remaining step is to find an order-isomorphism Φ : S′ → [0, 1]. Let us define

the mapping Φ as follows:

Φ(0, 1) = 0 ,

Φ(a, x) =
1

2k1
+

1

2k1+k2
+ · · ·+ 1

2k1+···+km−1
+

1 + x

2k1+···+km
,

where (k1, k2, . . . , km) = t(a).

THEOREM 3.14. The mapping Φ is an order-isomorphism between S′ and the real
unit interval [0, 1].

Proof. Since the elements of S′ are lexicographically ordered and so are the elements
of S, it is easy to see that Φ is an order-isomorphism. � �

Finally, we define the operations in [0, 1] as usual:

a� b = Φ(Φ−1(a) ∗′ Φ−1(b)) , a→� b = Φ(Φ−1(a)→′ Φ−1(b)) .

Then [0,1] = ([0, 1],�,→�,≤, 0, 1) is a ΠMTL-chain and [0,1] 6|= ϕ, i.e., Φ(Ψ(eS(ϕ))) <
1. Thus the proof of the standard completeness theorem is done. �

THEOREM 3.15 (Standard Completeness Theorem). A formula ϕ is provable in
ΠMTL if and only if ϕ is a tautology in all ΠMTL-chains in [0, 1] with finitely
many Archimedean classes.

4. Finite Strong Standard Completeness

In the previous section we proved that provable formulas are valid in [0, 1] and
vice versa. Nevertheless from the logical point of view, it is desirable to extend
Theorem 3.15 also for theories. Before that we have to extend also Theorem 2.10
to its strong version.

We recall here several needful notions. Let T be a theory over ΠMTL. Then
T is called complete if either T ` ϕ → ψ or T ` ψ → ϕ for any pair of formulas
ϕ,ψ. Further, let L be a ΠMTL-algebra. Then an L-evaluation e such that for
each formula ϕ ∈ T , e(ϕ) = 1, is called L-model of T .

LEMMA 4.1. For each theory T over ΠMTL such that T 6` ϕ, there is a complete
supertheory T ′ ⊇ T such that T ′ 6` ϕ.

Proof. This can be done in the same way as the proof of [6, Lemma 2.4.2] because
ΠMTL has the same deduction theorem as BL and all needed formulas are provable
in ΠMTL (see [3, Section 2.1]). � �
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Although the authors of [3] did not state the following theorem, it follows easily
from the facts in their paper.

THEOREM 4.2 (Strong Completeness Theorem). Let T be a theory over ΠMTL
and ϕ be a formula. Then T ` ϕ if and only if for each ΠMTL-chain L and each
L-model e of T , e(ϕ) = 1.

Proof. The first direction follows easily from soundness and the definition of L-model.
The second one is proved by the classical construction of Lindenbaum-Tarski algebra
of a complete supertheory T ′ ⊇ T such that T ′ 6` ϕ. The existence of T ′ follows from
Lemma 4.1 and [3, Lemma 1] shows that the construction of Lindenbaum-Tarski
algebra is correct. � �

THEOREM 4.3 (Finite Strong Standard Completeness). Let T be a finite theory
over ΠMTL and ϕ be a formula. Then T ` ϕ if and only if for each ΠMTL-chain L
in [0, 1] with finitely many Archimedean classes and each L-model e of T , e(ϕ) = 1.

Proof. We will prove only the non-trivial direction. Suppose that T 6` ϕ. Then
Theorem 4.2 gives us a ΠMTL-chain L and an L-model e of T such that e(ϕ) < 1.
We will proceed similarly as in Section 3. Let us define the following set:

M = {ψ | ψ is a subformula of τ, τ ∈ T ∪ {ϕ}} .
Then we construct a submonoid S of L generated by the set:

G = {a ∈ L | ai = e(ψ), ψ ∈M} .
Since S is finitely generated as in Section 3, we can define a residuum and show
that S is a ΠMTL-chain. Further, if we define eS(v) = e(v) for each propositional
variable v, we obtain an S-evaluation such that eS(ψ) = e(ψ) for all ψ ∈ M .
This can be proved by a straightforward modification of the proof of Theorem 3.2.
Moreover, since eS(τ) = e(τ) = 1 for all τ ∈ T , eS is an S-model of T .

Finally, S can be embedded into a ΠMTL-chain in [0, 1] with finitely many
Archimedean classes in the same way as in the proof of Theorem 3.15. Thus there
exists an embedding Φ : S → [0,1] such that Φ(eS(ϕ)) < 1 and Φ(eS(τ)) = 1 for
all τ ∈ T . � �

References

[1] G. Birkhoff: Lattice Theory. Amer. Math. Soc. Colloquium Publications (3rd edition), 1995.

[2] D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Algorithms. Springer (2nd edition), 1996.
[3] F. Esteva, L. Godo: Monoidal t-norm Based Logic: Towards a logic for left-continuous

t-norms. Fuzzy Sets and Systems 124(3):271–288, 2001.

[4] F. Esteva, J. Gispert, L. Godo, F. Montagna: On the Standard Completeness of some Ax-
iomatic Extensions of the Monoidal T-norm Logic. Studia Logica 71(2):199–226, 2002.

[5] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963.
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