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Abstract

It is well-known that Hájek’s basic fuzzy logic (BL),  Lukasiewicz logic, and product
logic are not strongly standard complete. On the other hand Esteva and Godo’s
monoidal t-norm based logic (MTL) and its involutive extension IMTL are strongly
standard complete. In this paper we show that ΠMTL (an extension of MTL by
the axioms characteristic of product logic) does not enjoy the strong standard com-
pleteness theorem like BL,  Lukasiewicz, and product logic.
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1 Introduction

It is well-known that Hájek’s basic fuzzy logic (BL) is not strongly standard
complete, i.e. there is a theory T and a formula ϕ such that in each standard
algebra L we have e(ϕ) = 1 for any L-model e of T but T 6` ϕ. The same
result holds also for  Lukasiewicz logic and product logic which are schematic
extensions of BL (see [5]). On the other hand, the monoidal t-norm based logic
(MTL), which arises from BL by omitting the divisibility axiom, enjoys the
strong standard completeness theorem. Moreover, the same is valid also for
involutive monoidal t-norm based logic (IMTL) which is an extension of MTL
by the law of involution (i.e. the axiom schema characteristic of  Lukasiewicz

Email address: horcik@math.feld.cvut.cz (Rostislav Horč́ık).
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logic). Thus it is natural to ask whether ΠMTL (an extension of MTL obtained
by adding the axiom schemata characteristic of product logic) satisfies this
theorem as well. In this paper we are going to show that although ΠMTL
belongs to the group of fuzzy logics without divisibility, it is not strongly
standard complete like BL,  Lukasiewicz, and product logic.

2 Preliminaries

This section recalls the basic definitions and results on MTL and its schematic
extensions which we will need in the sequel. The language of MTL consists of
a countable set of propositional variables, a strong conjunction &, a minimum
conjunction ∧, an implication ⇒, and a truth constant 0. Derived connectives
are defined as follows:

ϕ ∨ ψ is ((ϕ⇒ ψ) ⇒ ψ) ∧ ((ψ ⇒ ϕ) ⇒ ϕ) ,

¬ϕ is ϕ⇒ 0̄ ,

ϕ ≡ ψ is (ϕ⇒ ψ)&(ψ ⇒ ϕ) ,

1 is ¬0 .

In [2], the authors introduced a Hilbert style calculus for MTL with an ax-
iomatization similar to BL. They introduced new axioms for the minimum
conjunction ∧ and changed the divisibility axiom to a weaker form (A6). The
following are the axioms of MTL:

(A1) (ϕ⇒ ψ) ⇒ ((ψ ⇒ χ) ⇒ (ϕ⇒ χ)) ,

(A2) ϕ&ψ ⇒ ϕ ,

(A3) ϕ&ψ ⇒ ψ&ϕ ,

(A4) (ϕ ∧ ψ) ⇒ ϕ ,

(A5) (ϕ ∧ ψ) ⇒ (ψ ∧ ϕ) ,

(A6) (ϕ&(ϕ⇒ ψ)) ⇒ (ϕ ∧ ψ) ,

(A7a) (ϕ⇒ (ψ ⇒ χ)) ⇒ (ϕ&ψ ⇒ χ) ,

(A7b) (ϕ&ψ ⇒ χ) ⇒ (ϕ⇒ (ψ ⇒ χ)) ,

(A8) ((ϕ⇒ ψ) ⇒ χ) ⇒ (((ψ ⇒ ϕ) ⇒ χ) ⇒ χ) ,

(A9) 0̄ ⇒ ϕ .
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The deduction rule of MTL is modus ponens. The notion of a proof is defined
in the usual way. Let T be a theory over MTL and ϕ be a formula. Then we
write T ` ϕ if ϕ is provable in the system MTL.

MTL has several important axiomatic extensions. Some of them were men-
tioned in the introduction. BL is an extension of MTL by the following axiom
schema:

(Div) (ϕ ∧ ψ) ⇒ (ϕ&(ϕ⇒ ψ)) .

 Lukasiewicz logic can be obtained by adding the law of involution to BL, i.e.

(Inv) ¬¬ϕ⇒ ϕ .

Finally, product logic is an extension of BL by the following schemata:

(Π1) ϕ ∧ ¬ϕ⇒ 0 ,

(Π2) ¬¬χ⇒ ((ϕ&χ⇒ ψ&χ) ⇒ (ϕ⇒ ψ)) .

It is quite natural to ask what happens if we add (Inv) respectively (Π1) and
(Π2) to MTL. It was shown in [2] that the extension of MTL by (Inv), so-called
IMTL, is a strictly weaker logic than  Lukasiewicz logic. The analogous result
was proved in [6] also for the extension of MTL by (Π1) and (Π2), so-called
ΠMTL.

The semantical part of MTL is based on the notion of an MTL-algebra which
is a special kind of a residuated lattice. A commutative residuated lattice L =
(L, ∗,→,∧,∨,1) is an algebraic structure, where (L, ∗,1) is a commutative
monoid, (L,∧,∨) is a lattice, and (∗,→) form a residuated pair, i.e. x ∗ y ≤
z iff x ≤ y → z . The operation → is called a residuum. If follows from
the definition that → is antitone in the first argument and monotone in the
second one. When we refer to a commutative residuated lattice, we will omit
the word commutative since we will deal here only with the commutative case.
The symbol an stands for a ∗ · · · ∗ a (n times). In the absence of parenthesis,
∗ is performed first, followed by →, and finally ∨ and ∧.

A residuated lattice L is said to be integral if 1 is the top element of L. In
this case we have that x ≤ y iff x→ y = 1. If a residuated lattice possesses a
bottom element 0, then we have 0 ∗ x = 0.

Definition 1 An MTL-algebra is a structure (L, ∗,→,∧,∨,0,1) where the
following conditions are satisfied:

(1) (L, ∗,→,∧,∨,1) is an integral residuated lattice,
(2) (L,∧,∨,0,1) is a bounded lattice,
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(3) (x→ y) ∨ (y → x) = 1 for all x, y ∈ L.

A totally ordered MTL-algebra is called an MTL-chain.

Throughout the text we will use without mentioning also the alternative signa-
ture of an MTL-algebra where the lattice operations ∧ and ∨ are substituted
by the corresponding order ≤.

Let L be an extension of MTL by given axiom schemata. The algebras of
truth values for L (so-called L-algebras) are defined as MTL-algebras sat-
isfying the indentities corresponding to the given axiom schemata. For the
above-mentioned extensions of MTL the corresponding algebras of truth val-
ues are called BL-algebras, MV-algebras, product algebras, IMTL-algebras,
and ΠMTL-algebras respectively. Since this paper deals mainly with ΠMTL-
algebras, we recall the precise definition of a ΠMTL-algebra.

Definition 2 A ΠMTL-algebra L = (L, ∗,→,∧,∨,0,1) is an MTL-algebra
satisfying the following identities:

(1) ¬¬z → ((x ∗ z → y ∗ z) → (x→ y)) = 1 ,
(2) x ∧ ¬x = 0 ,

where ¬x = x→ 0. A totally ordered ΠMTL-algebra is called a ΠMTL-chain.

An MTL-chain (ΠMTL-chain resp.) whose lattice reduct is the real interval
[0, 1] with the usual order is referred to as a standard MTL-chain (ΠMTL-
chain resp.).

The notion of an evaluation of formulas is defined in the usual way. Given a
theory T over MTL and an MTL-algebra L, we say that an evaluation e is
an L-model of T if e(ψ) = 1 for all ψ ∈ T . Let ϕ be a formula. Then we
write T |=L ϕ if e(ϕ) = 1 for each L-model e of T . In [2] Esteva and Godo
proved that any axiomatic extension L of MTL is complete w.r.t. the class of
all L-chains.

Theorem 3 (Strong completeness) Let L be an axiomatic extension of
MTL, T be a theory over L, and ϕ be a formula. Then T ` ϕ iff T |=L ϕ
for each L-chain L.

The latter theorem shows that any schematic extension of MTL enjoys strong
completeness w.r.t. the general algebraic semantics. Nevertheless, the intended
set of truth values for a fuzzy logic is the real unit interval [0, 1]. Thus fuzzy
logicians usually ask whether a given fuzzy logic is complete w.r.t. the class
of algebras whose lattice reduct is [0, 1] (so-called standard completeness). It
took quite long time until this kind of completeness was proved for the basic
schematic extensions of MTL. The next theorem summarizes these results for
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the logics mentioned above (for details see [10,3,7,8,1,5]).

Theorem 4 (Standard completeness) Let L be one of the following logics:
MTL, IMTL, ΠMTL, BL,  Lukasiewicz logic, product logic. Further, let ϕ be
a formula over L. Then ` ϕ iff |=L ϕ for each standard L-chain L.

Notice that the previous theorem gives us the standard completeness only for
empty theory. It is quite natural to ask whether this result can be generalized
also for arbitrary theories. The answer is only partially positive. The following
theorem presents results from [10,3].

Theorem 5 (Strong standard completeness) Let L be either MTL or
IMTL, T be a theory over L, and ϕ be a formula. Then T ` ϕ iff T |=L ϕ for
each standard L-chain L.

In the case of BL,  Lukasiewicz logic, and product logic we have to add a
finiteness assumption for the theory unlike MTL and IMTL. The necessity
of the finiteness assumption for  Lukasiewicz and product logic was proved
in [5]. For BL the result is well known but seems to be proved nowhere. It
can be proved by reductio ad absurdum by showing that the strong standard
completeness of BL implies the strong standard completeness for  Lukasiewicz
logic.

Theorem 6 Let L be one of the following logics: BL,  Lukasiewicz logic, prod-
uct logic. Further, let T be a finite theory over L, and ϕ be a formula. Then
T ` ϕ iff T |=L ϕ for each standard L-chain L.

We proved in [7] that the latter theorem holds also for ΠMTL but it has not
been known so far whether it can be generalized for infinite theories. In this
paper we are going to show that the finiteness assumption cannot be dropped
in the following theorem.

Theorem 7 Let T be a finite theory over ΠMTL and ϕ be a formula. Then
T ` ϕ iff T |=L ϕ for each standard ΠMTL-chain L.

3 Filters and congruences

Before we prove the main result, we will recall some useful facts about MTL-
algebras and ΠMTL-algebras. It is well-known that the congruence lattice
Con(L) of an MTL-algebra L is isomorphic to the collection of so-called filters.

Definition 8 Let L = (L, ∗,→,≤,0,1) be an MTL-algebra. A filter F in L
is a subset of L satisfying:
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(1) 1 ∈ F ,
(2) if x, y ∈ F , then x ∗ y ∈ F ,
(3) if x ∈ F and x ≤ y, then y ∈ F .

Let us denote the collection of all filters of an MTL-algebra L by F(L). Let
F ∈ F(L) and θ ∈ Con(L). The isomorphism between Con(L) and F(L) is
described as follows.

F 7→ θF = {〈a, b〉 | a→ b ∈ F and b→ a ∈ F} and θ 7→ [1]θ .

We will denote the equivalence class containing an element x ∈ L with respect
to a filter F by [x]F = {a ∈ L | a θF x} = {a ∈ L | a→ x ∈ F and x→ a ∈ F}.
Clearly, [1]F = F . It is not difficult to see that the equivalence classes are
convex. Indeed, let x < y < z such that z ∈ [x]F . Then z → y ≥ z → x ∈ F .
Thus z → y ∈ F . Consequently y ∈ [x]F since y → z = 1.

A useful notion for MTL-chains is also the notion of an Archimedean class
(see [4]).

Definition 9 Let L be an MTL-chain, a, b ∈ L, and ∼ be an equivalence on
L defined as follows:

a ∼ b iff there exists n ∈ N such that an ≤ b ≤ a or bn ≤ a ≤ b.

Then for any a ∈ L the equivalence class [a]∼ is called an Archimedean class.

In [6] Hájek proved that ΠMTL-chains are exactly those MTL-chains which
are cancellative.

Lemma 10 An MTL-chain L is a ΠMTL-chain if and only if for any x, y, z ∈
L, z 6= 0, we have x ∗ z = y ∗ z implies x = y.

Let L be a ΠMTL-chain. Observe that by Lemma 10 we obtain for a, b, c ∈ L,
c 6= 0, that a < b implies a ∗ c < b ∗ c, in particular a2 < a for 0 < a < 1 and
a ∗ b < a for b < 1. Moreover, we get a ∗ c→ b ∗ c = a→ b for c 6= 0. Indeed,
as a ∗ (a→ b) ≤ b in any residuated lattice, we obtain a ∗ c ∗ (a→ b) ≤ b ∗ c.
Hence a→ b ≤ a ∗ c→ b ∗ c. Conversely, since a ∗ c ∗ (a ∗ c→ b ∗ c) ≤ b ∗ c, we
get a ∗ (a ∗ c→ b ∗ c) ≤ b by Lemma 10. Thus a ∗ c→ b ∗ c ≤ a→ b. Finally,
notice also that [0]F = {0} for all F ∈ F(L) − L since a → 0 = 0 for any
a > 0.

The next easy result characterizes principal filters, i.e. filters generated by a
single element. A principal filter F generated by b is denoted by F (b).

Lemma 11 Let L be an MTL-algebra and b ∈ L. Then the principal filter
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generated by b is of the form:

F (b) = {z ∈ L | (∃n ∈ N)(bn ≤ z)} .

4 Main result

In this section we are going to prove that ΠMTL is not strong standard com-
plete, i.e. we have to show that there is a theory T and a formula ϕ such that
T 6` ϕ but T |=L ϕ for each standard ΠMTL-chain L. From Theorem 7 it is
clear that the theory T must be infinite.

We start with several auxiliary propositions. The first of them shows that in
any complete ΠMTL-chain all the equivalence classes w.r.t. any filter possess
maxima. In particular, it applies to each standard ΠMTL-chain since [0, 1] is
a complete lattice.

Lemma 12 Let L = (L, ∗,→,≤,0,1) be a complete ΠMTL-chain, F be a
filter, and y ∈ L. Then [y]F has a maximum.

PROOF. Assume that F 6= {1} otherwise [y]F = {y}. Since L is a complete
lattice, the supremum of [y]F exists. Let z = sup [y]F . Suppose that z 6∈ [y]F .
Let p ∈ F − {1} (there must be such p because F is not trivial). Then by
cancellativity p ∗ z < z. Moreover p ∗ z ∈ [z]F since z → p ∗ z = p ∈ F . As the
equivalence classes are disjoint and convex, p ∗ z must be an upper bound of
[y]F . Thus z cannot be the supremum of [y]F (a contradiction). 2

The second lemma shows that if an equivalence class w.r.t. a principal filter
contains a maximum, then this maximum can be somehow described.

Lemma 13 Let L = (L, ∗,→,≤,0,1) be an MTL-chain and x, y ∈ L. If
max [y]F (x) exists then there is m ∈ N such that xm → y = max [y]F (x).

PROOF. Let us denote the maximum of [y]F (x) by z. Since z → y ∈ F (x),
there is m ∈ N such that xm ≤ z → y by Lemma 11. Since ∗ is commutative
we get z ≤ xm → y by residuation.

Further by residuation we have xm ≤ (xm → y) → y. Hence we get that
(xm → y) → y ∈ F (x) because xm ∈ F (x). Since xm → y ≥ y, we have y →
(xm → y) = 1 ∈ F (x). Thus (xm → y) ∈ [y]F (x). Consequently z = xm → y
because z is the maximum of [y]F . 2
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Finally, the last lemma characterizes the maxima of equivalence classes by
means of the residuum.

Lemma 14 Let L = (L, ∗,→,≤,0,1) be an MTL-chain. Then we have for
any x, y ∈ L:

(1) if x→ y = y then y = max [y]F (x),
(2) if F is a filter in L and y = max [y]F then x→ y = y for all x ∈ F .

PROOF.

(1) Let F (x) be the principal filter generated by the element x. Assume that
x→ y = y. Let z ∈ [y]F (x). We will show that z ≤ y, i.e. y = max [y]F (x).
Since z → y ∈ F (x), there exists n ∈ N such that xn ≤ z → y by
Lemma 11. By residuation we get z ≤ xn → y. Since we assume that
x→ y = y, we get after a final number of steps xn → y = xn−1 → (x→
y) = xn−1 → y = · · · = y. Consequently z ≤ y. Hence y = max [y]F (x).

(2) Let x ∈ F . Since x ≤ (x → y) → y and y → (x → y) = 1, we have
(x → y) ∈ [y]F . As y is the maximum of [y]F and x → y ≥ y, we get
x→ y = y. 2

Now we are ready to define the desired infinite theory and the formula men-
tioned at the beginning of this section. Let p, q, r be propositional variables
and

T ′ = {¬¬r, p⇒ q,¬p⇒ q} ∪ {(pn ⇒ r) ⇒ q | n ∈ N} .

Further, let M be the set of all formulas in the restricted language whose set
of propositional variables equals {p, r} and

T ′′ = {ϕ&(ϕ⇒ ψ) ≡ ϕ ∧ ψ | ϕ, ψ ∈M} .

This means that T ′′ consists of all instances of divisibility axiom (Div) for
formulas built from propositional variables p and r. Finally, let T = T ′ ∪ T ′′.

In the rest of this section we will prove the following claim from which follows
that T is the theory and q is the formula showing that ΠMTL is not strong
standard complete.

Claim 15 For each standard ΠMTL-chain L we have T |=L q, i.e. for each
each standard ΠMTL-chain L and each L-model e of T one has e(q) = 1. On
the other hand, T 6` q.
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We will prove the first part of the claim. Let L be any standard ΠMTL-chain
and e any L-model of T . Clearly, if e(p) = 1 or e(p) = 0 then p⇒ q or ¬p⇒ q
ensures e(q) = 1. Thus suppose that e(p) 6= 0, 1. Further, e(r) 6= 0 otherwise
we would have e(¬¬r) = 0 (i.e. e would not be an L-model of T ). Finally, if
pn ≤ r for some n ∈ N then e(pn ⇒ r) = 1 and (pn ⇒ r) ⇒ q ensures that
e(q) = 1. Hence it is sufficient to prove that there is always n ∈ N such that
pn ≤ r. In other words, we want to show that e(p) and e(r) belong to the same
Archimedean class provided that e(p) > e(r).

Suppose not, i.e. e(pn) > e(r) for all n ∈ N. Let x = e(p) and y = e(r). By
Lemma 12 a maximum of [y]F (x) exists and by Lemma 13 there is m ∈ N such
that xm → y = max [y]F (x). Hence we have x → (xm → y) = xm → y by
Lemma 14(2).

We have x ∗ (xm → y) = x ∗ (x → (xm → y)) = min{x, xm → y}. The last
equality follows from the divisibility axiom (Div) for formulas in p and r. Now,
since x→ (xm → y) = xm → y < 1, we must have min{x, xm → y} = xm → y.
On the other hand, x < 1 and xm → y > 0 imply x ∗ (xm → y) < (xm →
y) = min{x, xm → y}, and a contradiction is reached. Thus e(q) = 1 for each
L-model e of T and each standard ΠMTL-chain L.

Finally we will show that T 6` q. Since each proof is finite, it can use only
finitely many formulas from T . It follows from Theorem 3 that it is sufficient
to prove that for any finite sub-theory Tfin ⊆ T there is an L-model e of Tfin

such that e(q) < 1 for some ΠMTL-algebra L.

Let L be the standard product algebra [0, 1]Π and m ∈ N be the maximal
natural number such that (pm ⇒ r) ⇒ q ∈ Tfin. We evaluate the propositional
variables p, r, q as follows:

e(p) = e(q) =
1

2
, e(r) =

1

2m+1
.

Then we have e(¬¬r) = e(p ⇒ q) = e(¬p ⇒ q) = 1. Further, for all n ≤ m
we have

e(pn ⇒ r) =
1

2n
→ 1

2m+1
=

1

2m+1−n
≤ 1

2
= e(q) .

Thus e((pn ⇒ r) ⇒ q) = 1 for all possible n which may appear in Tfin. This
means that e is a [0, 1]Π-model of Tfin. Since e(q) = 1

2
< 1, we get T 6` q and

the next theorem follows.

Theorem 16 ΠMTL does not enjoy the strong standard completeness theo-
rem.
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Even since we have found the countermodel of Tfin for q in [0, 1]Π, we get the
following corollary.

Corollary 17 Any schematic extension between ΠMTL and product logic
cannot be strongly standard complete.

The latter corollary is not empty statement since we have shown in [9] that
there are infinitely many schematic extensions between ΠMTL and product
logic.
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