
WORD PROBLEM FOR KNOTTED RESIDUATED LATTICES

ROSTISLAV HORČÍK

Abstract. In this paper we prove that almost all varieties RLn
m of residuated lattices

satisfying xm ≤ xn have undecidable word problem. Namely, we show it for 1 ≤ m < n and
2 ≤ n < m. Consequently, also the varieties RLn

m ∩ RLm
n for 2 ≤ m,n have undecidable

word problem. Finally, the same is proved also for varieties of distributive residuated lattices
satisfying xm ≤ xn for 1 ≤ m < n.

1. Introduction

The identity xm = xn received a lot of attention in semigroup theory. Having a variety
V of semigroups defined by this identity, one can pose many questions concerning properties
of V . For example the question whether V is locally finite is just the bounded Burnside
problem for semigroups. Another bunch of interesting questions arises from various decision
problems for V ; for instance the word problem, decidability of its equational or universal
theory. The literate on these topics is quite extensive. An overview of known results can be
found in [5, 12, 4, 17].

In this paper we are interested in analogous questions replacing semigroups by residuated
lattices which are lattice-ordered monoids whose monoid operation is residuated. Formally,
a residuated lattice A = 〈A,∧,∨, ·, \, /, 1〉 is an algebraic structure such that 〈A,∧,∨〉 is a
lattice, 〈A, ·, 1〉 is a monoid and for all a, b, c ∈ A we have

(1) a · b ≤ c iff b ≤ a\c iff a ≤ c/b .

It is easy to see that the monoid operation has to be monotone in each argument by (1).
It is well known that the class of all residuated lattices forms a variety RL. For details on
residuated lattices see [8].

We are interested in subvarieties of RL satisfying xm = xn. Since residuated lattices are
ordered algebras, it makes sense to split the identity xm = xn into two inequalities xm ≤ xn

and xn ≤ xm and study particular inequalities separately. The class of residuated lattices
satisfying xm ≤ xn still forms a variety (which we denote RLn

m) because xm ≤ xn is equivalent
to xm ∨ xn = xn. The inequalities xm ≤ xn correspond to so-called knotted rules introduced
in [10] dealing with proof theory of substructural logics for which residuated lattices are
roughly speaking the same as Boolean algebras for classical logic.

Concerning decision problems for varieties RLn
m, it was proved in [18] that if we restrict to

the variety CRL of commutative residuated lattices (i.e., residuated lattices with commutative
monoid operation) then the universal theory is decidable. More precisely, the universal theory
of RLn

m ∩ CRL is decidable for m ≥ 1, n ≥ 0 and m 6= n (the remaining cases for m = 0 are
trivial). The proof is done by establishing the finite embeddability property (FEP); for the
definition of FEP and its relation to decision problems see [6, 1, 2]. In this we paper we are
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going to show that in noncommutative case most of the varieties RLn
m and RLn

m∩RLm
n have

undecidable word problem (Theorem 5.2).
In order to prove this we construct a semi-Thue system 〈Σ, R〉 simulating a Minsky machine

on square-free words (Section 4). This construction is inspired by the technique used in
(see [12, Section 7.2.5]). Then in Section 5 we construct from 〈Σ, R〉 a residuated lattice via a
residuated frame (for details on residuated frames see [7]). This construction is new partially
resembling the construction on phase spaces due to Lafont [13].

Further we prove that some of the varieties of distributive residuated lattices satisfying
xm ≤ xn have undecidable word problem as well (Theorem 5.5). Our proof can be also used
in order to answer negatively the open question [2, Problem 4.5] asking whether the class of
join-semilattice-ordered residuated semigroups satisfying xn = xn+1 possesses the FEP for
n ≥ 2. Since we can show that this class has undecidable word problem, it cannot have the
FEP as the FEP would imply decidability of its universal theory.

Throughout the paper we are going to use the following notation and terminology. The
set of natural numbers is denoted N = {0, 1, 2, . . .}. Let n,m ∈ N and n < m. Then
[n,m] = {k ∈ N | n ≤ k ≤ m}. Given a set X, x ∈ X and an equivalence ∼ on X, the
equivalence class of x with respect to ∼ is denoted [x]∼. A preorder on a set P is a reflexive
and transitive relation � ⊆ P × P . If � is also antisymmetric then 〈P,�〉 is called a poset.
Let Σ be a finite set called alphabet. The set of all finite sequences (words) of elements from
Σ is denoted Σ∗. In fact, Σ∗ together with concatenation and the empty word ε forms the
free monoid generated by Σ. Given a word w ∈ Σ∗, the reversely written w is denoted w; e.g.,
abcb = bcba. We say that a word w ∈ Σ∗ contains a square if w = uxxv for some u, x, v ∈ Σ∗.
A word w ∈ Σ∗ is called square-free if it does not contain a square.

2. Preliminaries

We start by recalling several notions which we will need at the sequel. First, we briefly
review the word problem for a variety of algebras. Let L be an algebraic language, i.e.,
containing no relational symbol. Given a set X, one can build the set of terms T (X) from X
using the operations from L. The set T (X) forms the absolutely free algebra T(X) for the
language L generated by X. A quasi-identity is a formula of the form

(2) t1 = s1 & . . . & tn = sn =⇒ t0 = s0 ,

where t0, s0, . . . , tn, sn ∈ T (X) are terms. Identities are special quasi-identities having empty
premise. Let K be a class of algebras for the language L. We say that (2) holds in K if
for every algebra A ∈ K and every homomorphism ϕ : T (X) → A we have ϕ(t0) = ϕ(s0)
provided that ϕ(ti) = ϕ(si) for all i = 1, . . . , n.

A presentation for L is a pair 〈X,E〉 where X is a set of generators and E a set of identities
over T (X). If both X and E are finite, we call the presentation 〈X,E〉 finite. We denote the
conjunction of identities in E by &E. Consider a variety V of algebras for the language L.
Then V has undecidable word problem if there exists a finite presentation 〈X,E〉 such that
there is no algorithm deciding whether the quasi-identity

(3) &E =⇒ t = s

holds in V having t, s ∈ T (X) as input. More precisely, the set of pairs 〈t, s〉 ∈ T (X)2 such
that (3) holds in V is undecidable. This definition is equivalent to the usual one saying that
V has undecidable word problem if there is a finitely presented algebra A ∈ V generated by
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a set X such that the following set is undecidable (see e.g. [8, Section 4.4]):

{〈t, s〉 ∈ T (X)2 | t = s holds in A} .

Note that if V has undecidable word problem then it has undecidable quasi-equational hence
also universal theory.

In order to show that the word problem for a variety of algebras is undecidable, one needs
an undecidable problem to start with. We will use the halting problem for a Minsky machine.
A Minsky machine M is a deterministic two-counter machine given by a finite number of
states [0,M ] = {0, 1, . . . ,M}, 0 is the final state, and a map

τ : [1,M ] → {+} × {1, 2} × [0,M ] ∪ {−} × {1, 2} × [0,M ]× [0,M ] ,

describing the behavior of M by assigning to a non-final state an instruction for the machine.
A triple 〈i, n,m〉 ∈ [0,M ] × N

2 is called a configuration of M where i is a state and n,m
represent respectively the content of the first and the second counter. The set of all configu-
rations of M is denoted Conf(M). Given a configuration 〈i, n,m〉 of M, the map τ defines
the next configuration in the computation of M as follows:

• 〈j, n+ 1,m〉 if τ(i) = 〈+, 1, j〉 (increment the first counter),
• 〈j, n− 1,m〉 if τ(i) = 〈−, 1, j, k〉 and n > 0 (decrement the first counter),
• 〈k, n,m〉 if τ(i) = 〈−, 1, j, k〉 and n = 0 (test if the first counter is zero),
• 〈j, n,m+ 1〉 if τ(i) = 〈+, 2, j〉 (increment the second counter),
• 〈j, n,m− 1〉 if τ(i) = 〈−, 2, j, k〉 and m > 0 (decrement the second counter),
• 〈k, n,m〉 if τ(i) = 〈−, 2, j, k〉 and m = 0 (test if the second counter is zero).

The machine M stops when i = 0 (note that τ is defined only for i > 0). A configuration
〈i, n,m〉 is said to be accepted by M if, starting from 〈i, n,m〉, M eventually stops its
computation with empty counters (i.e., it stops at the configuration 〈0, 0, 0〉). The set of
configurations accepted by M is denoted AConf(M).

THEOREM 2.1 ([14, 16]). There is a Minsky machine M whose set AConf(M) of accepted

configurations is undecidable.

Finally, we review the notion of residuated frame and show how it is related to residuated
lattices. Recall that a residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 where 〈A,∧,∨〉
is a lattice, 〈A, ·, 1〉 is a monoid and for all a, b, c ∈ A we have

a · b ≤ c iff b ≤ a\c iff a ≤ c/b .

An important example of a residuated lattice is the powerset monoid.

EXAMPLE 2.2 (see e.g. [11, 8]). Let M = 〈M, ·, 1〉 be a monoid. The powerset monoid is the

residuated lattice P(M) = 〈P(M),∩,∪, ·, \, /, {1}〉 defined on the powerset of M , where for

A,B,C ⊆ M the operations are defined as follows:

A ·B = {a · b ∈ M | a ∈ A, b ∈ B} ,

A\C = {b ∈ M | A · {b} ⊆ C} ,

C/B = {a ∈ M | {a} ·B ⊆ C} .

Moreover, the monoid M embeds into P(M) via x 7→ {x}.

Other examples of residuated lattices can be obtained from the powerset monoid P(M)
by considering a suitable closure operator on the poset 〈P(M),⊆〉. Recall that a closure
operator on a poset P = 〈P,≤〉 is a map γ : P → P such that for all x, y ∈ P we have
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x ≤ γ(x), γ(γ(x)) = γ(x) and x ≤ y implies γ(x) ≤ γ(y). The subposet 〈γ[P ],≤〉 is denoted
Pγ = 〈Pγ ,≤〉 and its elements are called γ-closed.

Let S be a set. Recall that every closure operator on the powerset 〈P(S),⊆〉 is induced by
a binary relation N ⊆ S × T for some set T (see e.g. [8]). Having such relation N ⊆ S × T ,
one can introduce the following two maps which define a Galois connection between 〈P(S),⊆〉
and 〈P(T ),⊆〉:

X⊲ = {b ∈ T | (∀x ∈ X)(x N b)} ,

Y ⊳ = {a ∈ S | (∀y ∈ Y )(a N y)} .

The maps ⊳ and ⊲ are the polarities of this Galois connection having the following well-known
properties.

LEMMA 2.3 (see e.g. [8]). Let N ⊆ S × T . Then we have

(1) X ⊆ Y implies Y ⊲ ⊆ X⊲ for X,Y ⊆ S.
(2) X ⊆ Y implies Y ⊳ ⊆ X⊳ for X,Y ⊆ T .
(3) ∅⊳ = S and ∅⊲ = T .
(4) ⊲⊳⊲ = ⊲ and ⊳⊲⊳ = ⊳.

(5) The map γN : P(S) → P(S) defined by γN (X) = X⊲⊳ is a closure operator on

〈P(S),⊆〉.

We will refer to the closure operator γN as the closure operator induced by the relation N .
Let x ∈ S. To shorten the notation, we will write γN{x} instead of γ({x}).

Assume that we have a closure operator γ on a residuated lattice A = 〈A,∧,∨, ·, \, /, 1〉.
If γ satisfies γ(γ(x) · γ(y)) = γ(x · y) for all x, y ∈ A then γ is called nucleus. In this
case one can define a residuated lattice on γ-closed elements. The resulting algebra Aγ =
〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉, where x∨γ y = γ(x∨y) and x·γ y = γ(x·y), is a residuated lattice (see
e.g. [8]). Note that γ : A → Aγ is a monoid homomorphism since γ(x · y) = γ(γ(x) · γ(y)) =
γ(x) ·γ γ(y).

Given a monoid M, we can construct the powerset monoid P(M). Further, any binary
N ⊆ M × T induces a closure operator γN on 〈P(M),⊆〉. The following definition captures
the cases when γN is nucleus.

DEFINITION 2.4 ([7]). A residuated frame is a two-sorted structure W = 〈M, T,N〉 where

M = 〈M, ·, 1〉 is a monoid, T is a set and N ⊆ M × T is a nuclear relation, i.e., there exist

operations  : M × T → T and � : T ×M → T such that

x · y N z iff y N xz iff x N z�y .

Having a residuated frame W = 〈M, T,N〉, the induced closure operator γN is in fact a
nucleus on the powerset monoid P(M) (see [7]). Thus one can define the complex algebra
W

+ of the residuated frame W by letting W
+ to be the residuated lattice P(M)γN .

LEMMA 2.5. The map ϕ : M → W+ defined by ϕ(x) = γN{x} is a monoid homomorphism.

Proof. Note that ϕ is a composition of the map x 7→ {x} and γN . Since both these maps are
monoid homomorphisms, the claim follows. �

3. Pomonoids and semi-Thue systems

In this section we review semi-Thue systems (also known as string rewriting systems) (see
e.g. [3]) and their relation to partially ordered monoids. Semi-Thue systems will serve us
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as an intermediate structure for reducing the halting problem for Minsky machines into the
word problem for residuated lattices.

A partially ordered monoid (pomonoid for short) is a structure A = 〈A, ·, 1,≤〉 such that
〈A, ·, 1〉 is a monoid and for all a, b, u, v ∈ A we have a ≤ b implies uav ≤ ubv. Note that
any monoid can be viewed as a pomonoid ordered discretely. In particular the free finitely
generated monoid Σ∗ is also a pomonoid.

Let A be a monoid and � a preorder on A. We say that � is compatible if for all
a, b, u, v ∈ A we have a � b implies uav � ubv. Having a compatible preorder �, one can
define a monoid congruence ∼ on A as follows:

x ∼ y iff x � y and y � x .

A congruence of a pomonoid A = 〈A, ·, 1,≤〉 is a compatible preorder � containing ≤. Then

we can define the quotient pomonoid as A/� = 〈Â/∼,�/∼〉, where Â = 〈A, ·, 1〉 is the
monoid reduct of A and [x]∼ �/∼ [y]∼ iff x � y.

Pomonoid homomorphisms are order-preserving monoid homomorphisms. Given pomonoids
A, B, a pomonoid homomorphism ϕ : A → B induces the following pomonoid congruence ≤ϕ

on A:

x ≤ϕ y iff ϕ(x) ≤ ϕ(y) .

Let Σ be an alphabet and u0, . . . , un, v0, . . . , vn ∈ Σ∗. A quasi-inequality is a formula of
the following form:

(4) u1 ≤ v1 & . . . & un ≤ vn =⇒ u0 ≤ v0 .

The quasi-inequality (4) holds in a pomonoidA if for every pomonoid homomorphism ϕ : Σ∗ →
A we have ϕ(u0) ≤ ϕ(v0) whenever ϕ(ui) ≤ ϕ(vi) for all i = 1, . . . , n.

Next we are going to define semi-Thue systems which one can view as finite pomonoid
presentations. Given an alphabet Σ, a semi-Thue system is a tuple 〈Σ, R〉, where R ⊆ Σ∗×Σ∗

is a finite binary relation on Σ∗. The elements 〈x, y〉 ∈ R are called rules and are usually
denoted x → y. A single-step reduction relation →R ⊆ Σ∗ × Σ∗ is defined as follows:

s →R t iff there are u, v ∈ Σ∗ and x → y ∈ R such that s = uxv and t = uyv.

If we want to stress that r = x → y is the element of R witnessing s →R t then we also write

s
r
→R t. If x → y is a rule then y → x is called its inverse.
A reduction relation →∗

R is the reflexive transitive closure of →R. In fact →∗
R is the least

compatible preorder on the free monoid Σ∗ containing R. Thus Σ∗/→∗
R is a pomonoid.

LEMMA 3.1. Let 〈Σ, R〉 be a semi-Thue system and u, v ∈ Σ∗. Assume that R = {u1 →
v1, . . . , un → vn} and consider the following quasi-inequality

(5) u1 ≤ v1 & . . . & un ≤ vn =⇒ u ≤ v .

Then (5) holds in every pomonoid if, and only if, u→∗
Rv.

Proof. Assume that u→∗
Rv. Let A = 〈A, ·, 1,≤〉 be a pomonoid and ϕ : Σ∗ → A a pomonoid

homomorphism such that ϕ(ui) ≤ ϕ(vi) for all i = 1, . . . , n. This means that ui ≤ϕ vi for
every rule from R, i.e., R ⊆ ≤ϕ. Since →∗

R is the least compatible preorder containing R, we
have →∗

R ⊆ ≤ϕ. Consequently, u→∗
Rv implies ϕ(u) ≤ ϕ(v). Conversely, if (5) holds in every

pomonoid then it holds in Σ∗/→∗
R. Consequently, we have u→∗

Rv. �
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4. An undecidable Semi-Thue system

Let M be a Minsky machine such that the set AConf(M) of accepted configurations is
undecidable (cf. Theorem 2.1). Now we are going to simulate M by a semi-Thue system
〈Σ, R〉 in such a way that the acceptance of a configuration is translated into the accessibility
of a fixed word. In order to do this, we need to encode any configuration into a word over
the alphabet Σ and the instruction map τ needs to be encoded into the set of rules R. Our
coding is based on the idea from [12, Section 7.2.5]

One of the simplest ways how to encode a configuration 〈i, n,m〉 into a word is Aanqia
mB ∈

Σ∗ for Σ = {a, q0, . . . , qM , A,B}. Then the instructions are expressed by rules as follows:

• if τ(i) = 〈+, 1, j〉 then we add qi → aqj ,
• if τ(i) = 〈−, 1, j, k〉 then we add aqi → qj and Aqi → Aqk.
• if τ(i) = 〈+, 2, j〉 then we add qi → qja,
• if τ(i) = 〈−, 2, j, k〉 then we add qia → qj and qiB → qkB.

However this encoding is not suitable if we want to deal with inequalities xr ≤ xs, r, s ∈ N,
because the numbers stored in counters are encoded by powers an, am. In order to overcome
this difficulty, we will encode numbers in counters by square-free words.

For this purpose we need a way how to construct square-free words. Let h : Σ∗ → Σ∗ be a
monoid endomorphism. Then h is called square-free if h(x) is square-free for all square-free
words x ∈ Σ∗. Recall that every square-free endomorphism is injective.

EXAMPLE 4.1 ([15]). Let Σ = {a, b, c} and let h : Σ∗ → Σ∗ be the monoid endomorphism

defined as follows:

h(a) = abc ,

h(b) = ac ,

h(c) = b .

Then h is square-free.

Using the square-free monoid endomorphism h from Example 4.1, one can produce longer
and longer square-free words by considering the words hk(a) for k ∈ N where h0(a) = a and
hk+1(a) = h(hk(a)). This suggests that we can encode a number n ∈ N stored in a counter by
the square-free word hn(a). Note that since the first letter of h(a) is again a, it is easy to see
that for every n > 0 we have hn(a) = h(a)w for some w ∈ Σ∗. This property is needed in order
to recognize whether the counter is nonempty. We will also need a square-free endomorphism
g : Σ∗ → Σ∗ with the dual property, namely gn(a) = ug(a) for n > 0 and some u ∈ Σ∗. One

can define g(x) = h(x). Then g is again a square-free monoid endomorphism. Moreover, we
have

gn(a) = hn(a) = hn(a) = h(a)w = wh(a) = wg(a) .

Now we are ready to describe the complete encoding of M into a semi-Thue system 〈Σ, R〉.
We have symbols ΣQ = {q0, . . . , qm} encoding the states of M. Further, we have auxiliary
symbols

ΣAux = {A,B,B+, B−, C, C+, C−, D} .

Finally, we have symbols ΣS = {a, b, c} for building square-free words. Thus our alphabet is
Σ = ΣQ ∪ ΣAux ∪ ΣS .
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The instructions τ are captured by the set R consisting of the following rules for every
i ∈ [1,M ] depending on τ(i):

(r+1
i ) Bqi → B+qj if τ(i) = 〈+, 1, j〉 ,

(r+2
i ) qiC → qjC

+ if τ(i) = 〈+, 2, j〉 ,

(r−1
i ) g(a)Bqi → g(a)B−qj , AaBqi → AaBqk if τ(i) = 〈−, 1, j, k〉 ,

(r−2
i ) qiCh(a) → qjC

−h(a), qiCaD → qkCaD if τ(i) = 〈−, 2, j, k〉 ,

Further R contains the following auxiliary rules for every d ∈ ΣS :

(r1aux) AB+ → AB, AB− → AB, dB+ → B+g(d), Bd → dB, g(d)B− → B−d ,

(r2aux) C+D → CD, C−D → CD, C+d → h(d)C+, dC → Cd, C−h(d) → dC− .

A configuration 〈i, n,m〉 is going to be represented by the word Agn(a)BqiChm(a)D. Nev-
ertheless, since one step of the computation of M is going to be simulated by several rewriting
steps, there are several words which correspond to the configuration 〈i, n,m〉. For instance,
the incrementation of the first counter is simulated as follows. Assume that we have a config-
uration 〈i, n,m〉 and τ(i) = 〈+, 1, j〉. Let us denote gn(a) = d1 . . . dk and gn+1(a) = e1 . . . el
for some d1, . . . , dk, e1, . . . , el ∈ ΣS . Thus gn+1(a) = g(d1 . . . dk) = g(d1) . . . g(dk). Using
consecutively the rules (r+1

i ), (r1aux), we have

Agn(a)BqiChm(a)D →R Agn(a)B+qjChm(a)D = Ad1 . . . dkB
+qjChm(a)D

→R Ad1 . . . B
+g(dk)qjChm(a)D

→∗
R AB+g(d1 . . . dk)qjChm(a)D

→R ABg(d1 . . . dk)qjChm(a)D = ABe1 . . . elqjChm(a)D

→R Ae1B . . . elqjChm(a)D

→∗
R Ae1 . . . elBqjChm(a)D = Agn+1(a)BqjChm(a)D .

In order to make the correspondence between configurations and words precise, we will
define a map φ assigning to every configuration of M a set of words over Σ. The map
φ : Conf(M) → P(Σ∗) will assign to every configuration 〈i, n,m〉 a set of words φ(i, n,m) in
such a way that 〈i, n,m〉 6= 〈j, n′,m′〉 implies φ(i, n,m) ∩ φ(j, n′,m′) = ∅.

Let n ∈ N. We start with a definition of the set Bn ⊆ Σ∗ containing words representing
the fact that the number stored in the first counter is n.

B0
n = {AuBv ∈ Σ∗ | uv = gn(a), u, v ∈ Σ∗

S} ,

B+
n =

{

{AuB+g(v) ∈ Σ∗ | uv = gn−1(a), u, v ∈ Σ∗
S} if n > 0 ,

∅ if n = 0 ,

B−
n = {Ag(u)B−v ∈ Σ∗ | uv = gn(a), u, v ∈ Σ∗

S} ,

Bn = B0
n ∪B+

n ∪B−
n .

Note that the sets Bn’s are pair-wise disjoint. Indeed, suppose that w ∈ Bn ∩Bm. Due to
the auxiliary symbols B,B+, B−, we have precisely one of the following cases: w ∈ B0

n ∩B0
m,

w ∈ B+
n ∩B+

m, w ∈ B−
n ∩B−

m. Let us discuss the second case; the other cases are similar. Since
w ∈ B+

n ∩ B+
m, we have n,m > 0 and w = Au1B

+g(v1) = Au2B
+g(v2) for u1v1 = gn−1(a)
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and u2v2 = gm−1(a). Consequently, u1 = u2 and g(v1) = g(v2). Since g is injective, we have
v1 = v2. Thus g

n−1(a) = gm−1(a). Using injectivity of g again, we obtain n = m.
Further, it is obvious that Bn’s contain only square-free words because uv and g(uv) =

g(u)g(v) are square-free and thus u, v, g(u), g(v) are square-free as well since square-free words
are closed under taking subwords.

We also have analogous definitions also for the second counter representing a value n ∈ N:

C0
n = {uCvD ∈ Σ∗ | uv = hn(a), u, v ∈ Σ∗

S} ,

C+
n =

{

{h(u)C+vD ∈ Σ∗ | uv = hn−1(a), u, v ∈ Σ∗
S} if n > 0 ,

∅ if n = 0 ,

C−
n = {uC−h(v)D ∈ Σ∗ | uv = hn(a), u, v ∈ Σ∗

S} ,

Cn = C0
n ∪ C+

n ∪ C−
n .

Similarly as for Bn’s, the sets Cn’s are pair-wise disjoint containing only square-free words.
Now we can define the map φ : Conf(M) → P(Σ∗) assigning to a configuration of M its

corresponding set of words from Σ∗ as follows:

φ(i, n,m) = {uqiv ∈ Σ∗ | u ∈ Bn, v ∈ Cm} .

It is straightforward to check that sets φ(i, n,m) and φ(j, n′,m′) are disjoint if 〈i, n,m〉 6=
〈j, n′,m′〉 using the fact that Bn’s and Cm’s are pair-wise disjoint.

Then we define the set of canonical words Can as words which correspond to a configura-
tion, namely

Can =
⋃

〈i,n,m〉∈Conf(M)

φ(i, n,m) .

Note that every canonical word w belongs to a unique φ(i, n,m), i.e., it corresponds precisely
to one configuration. It is also easy to see that canonical words are square-free since Bn’s and
Cm’s consist of square-free words.

LEMMA 4.2. The set of canonical words Can contains only square-free words.

The set of canonical words corresponding to the accepted configurations AConf(M) is
denoted ACan, i.e.,

ACan =
⋃

〈m,i,n〉∈AConf(M)

φ(m, i, n) .

In the rest of this section we are going to prove that the set ACan is precisely the set of
words which can be rewritten to AaBq0CaD (i.e., the word corresponding to the configuration
〈0, 0, 0〉).

We first analyze some parts of the preordered set 〈Σ∗,→∗
R〉. Let n ∈ N, i ∈ [0,M ] and

qi ∈ ΣQ. Then Bnqi denotes the set {uqi ∈ Σ∗ | u ∈ Bn}. The set qiCm for m ∈ N is defined
analogously. Observe that Bnqi is closed under applications of the auxiliary rules (r1aux).
Moreover, (r1aux) are the only rules in R which can be applied to Bnqi in such a way the result
is still in Bnqi. The set qiCm and the auxiliary rules (r2aux) satisfies an analogous claim. In
fact, by inspection of the rules in R, it is easy to realize how the preorder →∗

R behaves on
Bnqi and qiCm. Namely, the tuples 〈Bnqi,→

∗
R〉 and 〈qiCm,→∗

R〉 form posets whose Hasse
diagrams are depicted respectively in Figure 1 and 2.

The posets Bnqi’s and qiCm’s are further connected by →∗
R according to the instruction

map τ . Depending on τ(i), we have four cases:
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Agn−1(a)B+qi = Ad1 . . . dkB
+qi

Ad1 . . . dk−1B
+g(dk)qi

Ad1B
+g(d2 . . . dk)qi

AB+gn(a)qi

Agn+1(a)B−qi = Ag(e1 . . . el)B
−qi

Ag(e1 . . . el−1)B
−elqi

Ag(e1)B
−e2 . . . elqi

AB−gn(a)qi

ABgn(a)qi = ABe1 . . . elqi

Ae1Be2 . . . elqi

Ae1 . . . el−1Belqi

Agn(a)Bqi

Ag(a)B−qi

AB−aqi

ABaqi

AaBqi

B+
n qi

B−

n qi

B0
nqi

B−

0 qi

B0
0qi

Figure 1. Hasse diagram of 〈Bnqi,→
∗
R〉 for n > 0 left and for n = 0

right. We assume that gn−1(a) = d1 . . . dk and gn(a) = e1 . . . el for some
d1, . . . , dk, e1, . . . , el ∈ ΣS .

qiC
+hm−1(a)D

qih
m(a)C+D

qiC
−hm+1(a)D

qih
m(a)C−D

qih
m(a)CD

qiChm(a)D

qiC
−h(a)D

qiaC
−D

qiaCD

qiCaD

qiC
+
m

qiC
−

m

qiC
0
m

qiC
−

0

qiC
0
0

Figure 2. Hasse diagram of 〈qiCm,→∗
R〉 for m > 0 left and for m = 0 right.

(1) if τ(i) = 〈+, 1, j〉 then the maximum Agn(a)Bqi of Bnqi is connected to Agn(a)B+qj ∈
Bn+1qj (see Figures 3 and 4).

(2) if τ(i) = 〈−, 1, j, k〉 then Agn(a)Bqi ∈ Bnqi is connected either to Agn(a)B−qj ∈
Bn−1qj if n > 0 (see Figure 3) or to AaBqk ∈ B0qk if n = 0 (see Figure 4).

(3) if τ(i) = 〈+, 2, j〉 then qiChm(a)D ∈ qiCm is connected to qjC
+hm(a)D ∈ qjCm+1.

(4) if τ(i) = 〈−, 2, j, k〉 then qiChm(a)D ∈ qiCm is connected either to qjC
−hm(a)D ∈

qjCm−1 if m > 0 or to qkCaD ∈ qkC0 if m = 0.

Now we can prove that every canonical word corresponding to an accepted configuration
can be rewritten to AaBq0CaD.

LEMMA 4.3. If w ∈ ACan then w→∗
RAaBq0CaD.
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Agn(a)Bqi

Agn(a)B−qj Agn(a)B+qj

g(a)Bqi → g(a)B−

qj
if τ(i) = 〈−, 1, j, k〉

Bqi →
B

+ qj

if τ(i
) = 〈+, 1, j〉

B+
n qi B−

n qi

B0
nqi

B+

n−1qj B−

n−1qj

B0
n−1qj

B+

n+1qj B−

n+1qj

B0
n+1qj

Figure 3. Connections between Bnqi, Bn−1qj and Bn+1qj for n > 0. If n = 1
then Bn−1qj collapses into a four-element chain.

AaBqi

AaBqk

AaB+qj

A
aB

q
i →

A
aB

q
k

if τ(i) =
〈−
, 1, j, k〉

Bqi →
B

+ qj

if τ(i
) = 〈+, 1, j〉

B−

0 qi

B0
0qi

B−

0 qk

B0
0qk

B+

1 qj B−

1 qj

B0
1qj

Figure 4. Connections between B0qi, B0qk and B1qj .

Proof. By definition of ACan, we have w ∈ φ(i, n,m) and 〈i, n,m〉 ∈ AConf(M). Since
w ∈ φ(i, n,m), we have w = uqiv for some u ∈ Bn and v ∈ Cm. According to the struc-
ture of 〈Bnqi,→

∗
R〉 and 〈qiCm,→∗

R〉 (see Figures 1 and 2), we have uqi→
∗
RAg

n(a)Bqi and
qiv→

∗
RqiChm(a)D. Thus w→∗

RAg
n(a)BqiChm(a)D.
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We will prove the lemma by induction on the length l of the computation. If l = 0 then
〈i, n,m〉 has to be 〈0, 0, 0〉. Thus the base case follows because →∗

R is reflexive, i.e., we have

AaBq0CaD→∗
RAaBq0CaD .

Suppose that l > 0, i.e., after l many steps of the computation 〈i, n,m〉 is transformed to
〈0, 0, 0〉. Then i > 0 and we have six possible cases depending on τ(i):

• If τ(i) = 〈+, 1, j〉 then 〈j, n+ 1,m〉 is accepted by a computation of length l−1. Thus
Agn+1(a)BqjChm(a)D ∈ ACan and by the induction hypotheses

Agn+1(a)BqjChm(a)D→∗
RAaBq0CaD .

Since τ(i) = 〈+, 1, j〉, the rule (r+1
i ) is in R. Then we can construct the following

reduction (see Figures 1, 3 and 4):

Agn(a)BqiChm(a)D
r+1

i→R Agn(a)B+qjChm(a)D→∗
RAg

n+1(a)BqjChm(a)D .

• If τ(i) = 〈−, 1, j, k〉 and n > 0 then 〈j, n− 1,m〉 is accepted by a computation of
length l − 1. Thus Agn−1(a)BqjChm(a)D ∈ ACan and by the induction hypotheses

Agn−1(a)BqjChm(a)D→∗
RAaBq0CaD .

Since τ(i) = 〈−, 1, j, k〉, the rules (r−1
i ) are in R. Since n > 0, we have gn(a) =

wg(a) for some w ∈ Σ∗
S Thus the rule g(a)Bqi → g(a)B−qj can be applied to

Agn(a)BqiChm(a)D. Then we can construct the following reduction (see Figures 1
and 3):

Agn(a)BqiChm(a)D
r−1

i→R Agn(a)B−qjChm(a)D→∗
RAg

n−1(a)BqjChm(a)D .

• If τ(i) = 〈−, 1, j, k〉 and n = 0 then 〈k, n,m〉 is accepted by a computation of length
l − 1. Thus AaBqkChm(a)D ∈ ACan and by the induction hypotheses

AaBqkChm(a)D→∗
RAaBq0CaD .

Since τ(i) = 〈−, 1, j, k〉, the rules (r−1
i ) are in R. Then we can construct the following

reduction (see Figure 4):

AaBqiChm(a)D
r−1

i→R AaBqkChm(a)D .

The proof for the instructions dealing with the second counter is analogous. �

Next we are going to show that the converse of Lemma 4.3 holds as well. We will show that
ACan is downward closed with respect to →∗

R, i.e., w ∈ ACan and u→∗
Rw implies u ∈ ACan.

This is sufficient for if u→∗
RAaBq0CaD then u ∈ ACan because AaBq0CaD ∈ ACan.

LEMMA 4.4. Let w ∈ ACan and w′ r
→R w by a rule r ∈ R. Then w′ ∈ ACan.

Proof. By definition of ACan we have w ∈ φ(j, n,m) for some 〈j, n,m〉 ∈ AConf(M), i.e.,
w = uqjv for some u ∈ Bn and v ∈ Cm. Depending on the rule r, we have several cases.

If r is a rule from (r1aux) then its inverse can be applied only to uqj producing again a word
from Bnqj (see Figure 1). Thus w′ ∈ φ(j, n,m) as well and so w′ ∈ ACan. Analogously, if r
is from (r2aux) then its inverse is applicable only to qjv producing again a word from qjCm.
Thus w′ ∈ φ(j, n,m) also in this case and so w′ ∈ ACan.
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If r is Bqi → B+qj for some i ∈ [1,M ] then n > 0, w = Agn−1(a)B+qjChm(a)D and
w′ = Agn−1(a)BqiChm(a)D (see Figures 3 and 4). Thus w′ ∈ φ(i, n− 1,m). Since r is in R,
we have τ(i) = 〈+, 1, j〉. Consequently, 〈i, n− 1,m〉 ∈ AConf(M) and so w′ ∈ ACan.

If r is g(a)Bqi → g(a)B−qj for some i ∈ [1,M ] then w = Agn+1(a)B−qjChm(a)D and
w′ = Agn+1(a)BqiChm(a)D (see Figure 3). Thus w′ ∈ φ(i, n + 1,m). Since r is in R, we
have τ(i) = 〈−, 1, j, k〉 for some k ∈ [0,M ]. Consequently, 〈i, n+ 1,m〉 ∈ AConf(M) and so
w′ ∈ ACan.

If r is AaBqi → AaBqj for some i ∈ [1,M ] then n = 0 and w = AaBqjChm(a)D and
w′ = AaBqiChm(a)D (see Figure 4). Thus w′ ∈ φ(i, 0,m). Since r is in R, we have τ(i) =
〈−, 1, k, j〉 for some k ∈ [0,M ]. Consequently, 〈i, 0,m〉 ∈ AConf(M) and so w′ ∈ ACan.

The proof for the rules (r+2
i ) and (r−2

i ) is analogous. �

From Lemma 4.4 we obtain immediately the following lemma.

LEMMA 4.5. Let w ∈ Σ∗. If w→∗
RAaBq0CaD then w ∈ ACan.

In what follows we will denote the word AaBq0CaD ∈ Σ∗ shortly by w0. Using Lemmas 4.3
and 4.5, it follows that

ACan = {u ∈ Σ∗ | u→∗
Rw0} .

Moreover, the set ACan is undecidable. Indeed, if it would be decidable then we would have
an algorithm how to decide whether 〈i, n,m〉 ∈ AConf(M) just by deciding whether

Agn(a)BqiChm(a)D→∗
Rw0

holds or not.

5. Main results

Consider the semi-Thue system 〈Σ, R〉 simulating the machine M with undecidable set
AConf(M) constructed in the previous section. In this section we are going to use 〈Σ, R〉 in
order to show that most of all varietiesRLn

m andRLn
m∩RLn

m have undecidable word problem.
For this purpose consider the finite presentation 〈Σ, E〉 for the language of residuated lattices
where

E = {x ∨ y = y | x → y ∈ R} .

Let z ∈ ACan. Then z→∗
Rw0 and the quasi-inequality

&
x→y∈R

x ≤ y =⇒ z ≤ w0

holds in every pomonoid by Lemma 3.1. Since residuated lattices are special pomonoids, the
following quasi-identity holds in every residuated lattice:

(6) &E =⇒ z ∨ w0 = w0 .

Conversely, given z ∈ Σ∗ such that z 6∈ ACan, we will construct a residuated lattice
where (6) does not hold. Define the following binary relation N ⊆ Σ∗ × (Σ∗ × Σ∗):

x N 〈u, v〉 iff uxv ∈ ACan (i.e., uxv→∗
Rw0) .

Then N is nuclear since for all x, y, u, v ∈ Σ∗ we have

xy N 〈u, v〉 iff y N 〈ux, v〉 iff x N 〈u, yv〉 iff uxyv ∈ ACan .

Consequently, W = 〈Σ∗,Σ∗ × Σ∗, N〉 forms a residuated frame and the complex algebra

W
+ = 〈W+,∩,∪, ·γN , \, /, γN{ε}〉 ,
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where W+ = P(Σ∗)γN , is a residuated lattice. Consider the set of residuated-lattice terms
T (Σ) and the homomorphism ϕ : T (Σ) → W+ defined by ϕ(a) = γN{a} for every a ∈ Σ.
Note that we have ϕ(x) = γN{x} for every word x ∈ Σ∗ by Lemma 2.5.

Assume that x → y ∈ R. Then {y}⊲ ⊆ {x}⊲. Indeed, let 〈u, v〉 ∈ {y}⊲. Then uyv ∈ ACan,
i.e., uyv→∗

Rw0. Moreover uxv →R uyv since x → y ∈ R. Thus uxv→∗
Rw0 which means that

〈u, v〉 ∈ {x}⊲. Consequently, by Lemma 2.3 we have

γN{x} = {x}⊲⊳ ⊆ {y}⊲⊳ = γN{y} .

Thus every identity in E is satisfied by ϕ. On the other hand, γN{z} 6⊆ γN{w0}. Indeed, first
we have z ∈ γN{z} since γN is a closure operator. Further, note that 〈ε, ε〉 ∈ {w0}

⊲ because
w0→

∗
Rw0. By Lemma 2.3 we have γN{w0} ⊆ {〈ε, ε〉}⊳. Since

{〈ε, ε〉}⊳ = {w ∈ Σ∗ | εwε ∈ ACan} = ACan ,

we obtain z 6∈ γN{w0}.
Since the set ACan is undecidable, we obtain the following theorem.

THEOREM 5.1. Any variety V of residuated lattices containing W
+ has undecidable word

problem.

Proof. If the word problem for V would be decidable, we would have an algorithm deciding
whether (6) holds in V or not. Then we could decide whether z ∈ ACan. Indeed, if (6) holds
in V then z ∈ ACan otherwise (6) would not hold in W

+ ∈ V . Conversely, if (6) does not
hold in V then z 6∈ ACan otherwise (6) would hold in RL ⊇ V . Thus we have reached a
contradiction. �

Now it suffices to realize for which m,n ∈ N we have W+ ∈ RLn
m. Let k ∈ N and X ∈ W+,

hence X = γN (X). Then Xk denotes the k-fold multiplication in the powerset monoid P(Σ∗),
i.e.,

Xk = {x1 . . . xk ∈ Σ∗ | x1, . . . , xk ∈ X} .

For the k-fold multiplication in W
+ we have the following

X ·γN . . . ·γN X
︸ ︷︷ ︸

k−times

= γN (X) ·γN . . . ·γN γN (X)
︸ ︷︷ ︸

k−times

= γN (Xk) ,

because γN is a monoid homomorphism. Thus we are interested in natural numbers m,n ∈ N,
m 6= n, such that γN (Xm) ⊆ γN (Xn).

THEOREM 5.2. The word problem is undecidable for the following varieties of residuated

lattices:

(1) RLn
m for 1 ≤ m < n,

(2) RLn
m for 2 ≤ n < m,

(3) RLn
m ∩RLm

n for m 6= n and 2 ≤ m,n.

Proof. Let X ∈ W+. If X = ∅ then ∅ is γN -closed, i.e., γN (∅) = ∅. Then γN (Xk) = γN (∅) = ∅
for all k ∈ N. If X 6= ∅ then there is x ∈ X and xx ∈ X2. Consequently, (X2)⊲ = ∅ because
there is no 〈u, v〉 ∈ Σ∗ × Σ∗ such that uxxv ∈ ACan as ACan contains only square-free
words (see Lemma 4.2). Thus γN (X2) = Σ∗ by Lemma 2.3. Therefore γN (X) ⊆ γN (X2) and
γN (X3) ⊆ γN (X2), i.e., W+ ∈ RL2

1∩RL2
3. Since RL2

1 ⊆ RLn
m for 1 ≤ m < n, the first claim

follows. Similarly, the second claim holds as RL2
3 ⊆ RLn

m for 2 ≤ n < m. Consequently, the
last claim also holds. �
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Observe that the quasi-identity (6) does not use the full language of residuated lattices
but uses only · and ∨. Thus we can reformulate Theorem 5.1 as follows. Recall that an
idempotent semiring A = 〈A,∨, ·, 1〉 is an algebra such that 〈A,∨〉 is a semilattice, 〈A, ·, 1〉 is
a monoid and for all a, b, c ∈ A we have c(a ∨ b) = ca ∨ cb and (a ∨ b)c = ac ∨ bc. Note that
any idempotent semiring forms a pomonoid with respect to the semilattice order.

THEOREM 5.3. Any variety V of idempotent semirings containing the {∨, ·, 1}-reduct of W+

has undecidable word problem.

A residuated idempotent semiring is an algebra A = 〈A,∨, ·, \, /, 1〉 such that 〈A,∨, ·, 1〉
is an idempotent semiring and (1) holds for all a, b, c ∈ A. A particular application of
Theorems 5.3 and 5.2 is the following corollary.

COROLLARY 5.4. The variety Vn of residuated idempotent semirings satisfying xn = xn+1

for n ≥ 2 has undecidable word problem.

This result is closely related to the question posed in [2, Problem 4.5] asking whether the
variety of residuated join-semilattice-ordered semigroups (i.e., residuated idempotent semir-
ings without multiplicative unit) satisfying xn = xn+1 for n ≥ 2 has the finite embeddability
property (FEP). Here we prove that Vn for n ≥ 2 cannot have the FEP. Indeed, if Vn would
have the FEP then its universal theory would be decidable (see [2]) which is in contradiction
with Corollary 5.4. Although we do not answer precisely [2, Problem 4.5], our method used in
this paper can be easily modified so that it would give a negative answer to [2, Problem 4.5].
This is possible because we use the monoid unit 1 solely in virtue of W+ being a residuated
lattice and not only a residuated lattice-ordered semigroup.

Finally, we restrict our attention to distributive residuated lattices. Let DRL be the variety
of distributive residuated lattices, i.e., residuated lattices whose lattice reduct is distributive.
Recall that a subset S of a poset P = 〈P,≤〉 is called downset if x ≤ y and y ∈ S implies
x ∈ S. The collection of all downsets is denoted O(P). Let x ∈ P . The downset generated
by {x} is denoted ↓{x}.

THEOREM 5.5. The word problem is undecidable in DRL ∩RLn
m for 1 ≤ m < n.

Proof. First, observe that one can use meets instead of joins in (6) obtaining an equivalent
quasi-identity, namely

(7) &E′ =⇒ z = z ∧ w0 ,

where E′ = {x = x ∧ y | x → y ∈ R}.
Having the residuated latticeW+ belonging toRL2

1 by Theorem 5.2, consider the collection
of all downsets O(W+) which forms a distributive residuated lattice belonging to RL2

1 as
well (see [9, Section 3.8]). Moreover, the map x 7→ ↓{x} is a one-to-one map preserving all
operations except of ∨ (see [9, Section 3.8]). Thus if (7) does not hold in W

+ then it does
not hold also in O(W+) ∈ DRL ∩RL2

1. �

6. Conclusion

We proved that the varieties RLn
m have undecidable word problem for almost all m,n ∈

N such that m 6= n. Now we will discuss the remaining cases which are not covered by
Theorem 5.2.

(1) If m = 0 then all varieties RLn
m are trivial since 1 ≤ xn holds only in the trivial

residuated lattice.
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(2) If n = 0 then all varieties RLn
m have decidable universal theory since xm ≤ 1 implies

x ≤ 1. Consequently, RL0
m = RL0

1 which is the variety of integral residuated lattices
whose universal theory is known to be decidable (see [2, 7]).

(3) The only remaining cases are the varieties RL1
m for m > 1. It turns out that the

decidability of the word problem for these varieties is closely related to the bounded
Burnside problem for groups and we will deal with these cases in a subsequent paper.
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Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic. Email: horcik@cs.cas.cz


