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Abstract. ΠMTL-algebras were introduced as an algebraic counterpart of the cancellative
extension of monoidal t-norm based logic. It was shown that they form a variety generated

by ΠMTL-chains on the real interval [0, 1]. In this paper the structure of these generators is

investigated. The results illuminate the structure of cancellative integral commutative residu-
ated chains, because every such algebra belongs to the quasivariety generated by the zero-free

subreducts on (0, 1] of all ΠMTL-chains on [0, 1].

It turns out that for many logical calculi (e.g. fuzzy logics or substructural logics) the corre-
sponding algebras of truth values form a residuated lattice, i.e., a lattice ordered monoid endowed
with a residuum. Such algebras were first introduced by Ward and Dilworth in [23] as a gener-
alization of ideal lattices of rings. Recently, the structure of residuated lattices was studied in
the following papers [2, 5, 13, 20]. In this paper, we will concentrate on commutative cancellative
residuated lattices because of the reasons which follow.

In [7], Esteva and Godo introduced so-called monoidal t-norm based logic (MTL). This logic
is algebraizable in the sense of Blok and Pigozzi (see [4]) and its equivalent algebraic semantics
is the class of MTL-algebras. MTL-algebras form a variety generated by bounded, commutative,
integral residuated chains. Properties of this variety and some of its subvarieties were investigated
in [8, 12, 14, 16]. One of the subvarieties is the class of ΠMTL-algebras introduced by Hájek in [12]
and studied in [8, 14]. It was shown in [14] that this variety is generated by the members whose
lattice reduct is the lattice ([0, 1],min,max) on the real unit interval [0, 1]. Such members are
called standard ΠMTL-chains. Thus, more knowledge of their structure is desirable, and this is
the topic of the present paper. It can be shown that each standard ΠMTL-chain is isomorphic to
the ordinal sum of the two-element Boolean algebra 2 and a commutative, cancellative, integral
residuated lattice on (0, 1]. Thus if we want to characterize the structure of standard ΠMTL-
chains, it is sufficient to investigate the structure of commutative, cancellative, integral residuated
lattices on (0, 1].

The second reason is that the monoidal operation of a standard ΠMTL-chain is a left-continuous
cancellative t-norm (for the definition of a t-norm see [21]). While the class of continuous t-norms
is completely characterized, we have only a few results about the class of left-continuous t-norms
(see [18]). So far mainly construction methods for left-continuous t-norms were published e.g.
[17, 19]. In this paper, we partially contribute to this characterization task. As we give an
algebraic characterization of the standard ΠMTL-chains, we also shed some light on the structure
of cancellative left-continuous t-norms.

We mainly focus on the structure of standard subdirectly irreducible ΠMTL-chains since they
are the generators of the variety of ΠMTL-algebras. However, we will also deal with the general
ΠMTL-chains. Let L be a standard subdirectly irreducible ΠMTL-chain and C the corresponding
commutative, cancellative, integral residuated chain on (0, 1] such that the ordinal sum of 2 and
C is isomorphic to L. We show in Section 5 that it is possible to embed the `-monoidal reduct
of C into a totally ordered Abelian group GC by forming fractions in the same way in which the
integers are constructed from the natural numbers. Then we use Hahn’s Embedding Theorem
(see [9, 10]) and embed GC into the full Hahn group V(Γ(GC)). We prove that C is isomorphic
to a certain kind of residuated submonoid of V(Γ(GC)), and that each residuated submonoid
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of V(Γ(GC)) of this particular kind is isomorphic to a subdirectly irreducible, commutative,
cancellative, integral residuated chain on (0, 1]. In this way we obtain a characterization of the
structure up to isomorphism. In particular, in Section 7 we introduce the discussed class of
residuated submonoids of V(Γ(GC)) and in Section 8 we prove that each subdirectly irreducible,
commutative, cancellative, integral residuated chain on (0, 1] belongs to this class. Finally, in
Section 9 we summarize our results on chains which are not subdirectly irreducible.

Throughout the text we use the following notation. The set of non-positive reals (resp. integers)
will be denoted by R− (resp. Z−). Further, i.w.o. stands for inversely well ordered, i.e., each
non-empty subset has a maximum. We will also use without comment the alternative signature
for a lattice using the lattice order ≤ instead of ∧,∨. Let L be an algebra, L its universe, and
G ⊆ L. Then the subalgebra generated by G will be denoted by Sg(G). The congruence lattice
of L will be denoted by Con L and the minimum and the maximum congruence will be denoted
by ∆,∇ respectively. Given a monoid (M, ∗,1) and a ∈ M , the symbol an stands for a ∗ · · · ∗ a
(n-times). For n = 0 we define an = 1.

1. Preliminaries

A commutative residuated lattice (CRL) L = (L, ∗,→,∧,∨,1) is an algebraic structure, where
(L, ∗,1) is a commutative monoid, (L,∧,∨) is a lattice, and (∗,→) forms a residuated pair, i.e.,

x ∗ y ≤ z iff x ≤ y → z .

The operation → is called a residuum. It follows from the definition that ∗ is order-preserving,
i.e., a ≤ b implies a ∗ c ≤ b ∗ c. The residuum is decreasing in the first argument and increasing in
the second one. Further, the inequality a ∗ x ≤ b has a greatest solution for x (namely a→ b). In
particular, the residuum is uniquely determined by ∗ and ≤. It is well known that the class CRL
of all commutative residuated lattices forms a variety (see e.g. [20]).

The existence of the residuum has the following consequence which will be useful for us later.

Proposition 1.1 ([20]). Let L ∈ CRL. The operation ∗ preserves all existing joins in each
argument, i.e., if

∨
X and

∨
Y exist for X,Y ⊆ L then

∨
x∈X,y∈Y x ∗ y exists and(∨

X
)
∗
(∨

Y
)

=
∨

x∈X,y∈Y
x ∗ y .

Now we introduce several well-known subvarieties of residuated lattices.

• A CRL L is said to be integral if 1 is the top element of L. In this case we have that x ≤ y
implies x→ y = 1. The class ICRL of integral CRLs is easily seen to be a variety defined
by x ≤ 1.

• A CRL L is said to be cancellative if for any x, y, z ∈ L, x ∗ z = y ∗ z implies x = y. It
was shown in [2] that the class CanCRL of cancellative CRLs forms a variety defined by
x = y → (y ∗ x).

• Finally, a totally ordered CRL is referred to as a commutative residuated chain (CRC).
A residuated lattice is called representable if it is a subdirect product of CRCs. This is
equivalent to the demand that it satisfies 1 ≤ (x→ y) ∨ (y → x) (see [13]; the additional
axiom provided there turns out to be redundant), whence the representable CRLs also
form a variety.

The class of all cancellative integral CRCs will be denoted by CanICRC and the variety generated
by this class by CanICRLC (i.e., the variety of representable cancellative integral CRLs). The
superscript C refers to the fact that this variety is generated by chains.

Definition 1.2. An algebra L = (L, ∗,→,∧,∨,0,1) is called an MTL-algebra if it satisfies the
following conditions:

(1) (L, ∗,→,∧,∨,1) is a representable integral CRL and
(2) (L,∧,∨,0,1) is a bounded lattice.

A totally ordered MTL-algebra is called an MTL-chain.
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Observe that if a CRL L possesses a bottom element 0 then we have a ∗ 0 = 0 for any a ∈ L.
MTL-algebras were introduced by Esteva and Godo in [7] as the algebras of truth values for

the monoidal t-norm based logic (MTL for short). In this paper we deal with a subvariety of
MTL-algebras introduced by Hájek in [12].

Definition 1.3. A ΠMTL-algebra L = (L, ∗,→,∧,∨,0,1) is an MTL-algebra satisfying the fol-
lowing identities:

(1) ¬¬z → [(x ∗ z → y ∗ z)→ (x→ y)] = 1 ,
(2) x ∧ ¬x = 0 ,

where ¬x = x→ 0. A totally ordered ΠMTL-algebra is called a ΠMTL-chain. The variety of all
ΠMTL-algebras will be denoted by PMT L.

Since zero-free reducts of ΠMTL-algebras are integral representable CRLs, the variety PMT L
is generated by the class of all ΠMTL-chains.

Theorem 1.4 (Subdirect Representation Theorem). Each ΠMTL-algebra is isomorphic to a sub-
direct product of ΠMTL-chains.

Thanks to the previous theorem, it is sufficient to investigate the structure of ΠMTL-chains, if
we want to understand the structure of ΠMTL-algebras. In [12] the following result was proved.

Lemma 1.5. An MTL-chain L is a ΠMTL-chain if and only if for any x, y, z ∈ L, z 6= 0, we
have x ∗ z = y ∗ z implies x = y.

Observe that by Lemma 1.5 we obtain for a, b, c ∈ L, c 6= 0, that a < b implies a ∗ c < b ∗ c, in
particular a2 < a and a ∗ b < a for a 6= 0,1 and b < 1. Furthermore, we get a ∗ c→ b ∗ c = a→ b.
Moreover, due to Lemma 1.5 it can be shown that there is a connection between cancellative
integral CRCs and ΠMTL-chains. First, we need the notion of an ordinal sum. This notion was
introduced in [1] for BL-chains and it was generalized to the case of MTL-chains in [22] (where
integral CRCs are called totally ordered semihoops).

Definition 1.6. Let 〈I,≤〉 be a totally ordered set. Let {Ai | i ∈ I} be a family of integral CRCs
sharing the same top element, say 1, and such that for i 6= j, Ai ∩Aj = {1}. Then

⊕
i∈I Ai (the

ordinal sum of the family) is the integral CRC whose universe is
⋃
i∈I Ai and whose operations

are:

x ∗ y =


x ∗Ai y if x, y ∈ Ai,
y if x ∈ Ai and y ∈ Aj \ {1} with i > j,

x if x ∈ Ai \ {1} and y ∈ Aj with i < j.

x→ y =


x→Ai y if x, y ∈ Ai,
y if x ∈ Ai and y ∈ Aj with i > j,

1 if x ∈ Ai \ {1} and y ∈ Aj with i < j.

For every i ∈ I, Ai is called a component of the ordinal sum.
If in addition I has a minimum, say i0, and Ai0 is bounded, then the ordinal sum

⊕
i∈I Ai

forms an MTL-chain.

The following proposition describing ΠMTL-chains by means of an ordinal sum was proved
in [22, Proposition 26].

Proposition 1.7. Let L be a nontrivial ΠMTL-chain and 2 the two-element boolean algebra.
Then L ∼= 2⊕C where C is the zero-free subreduct of L whose domain is L \ {0}.

Proposition 1.8. Let K be the class of zero-free subreducts of ΠMTL-chains L whose domain is
L \ {0}. Then K = CanICRC.
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Proof. Let C be a zero-free subreduct of a ΠMTL-chain L such that C = L\{0}. Since x∗z = y∗z
implies x = y for any x, y, z ∈ L\{0} by Lemma 1.5 and 1 is the top element, C forms an integral
cancellative CRC.

Conversely, let C be an integral cancellative CRC and 2 the two-element boolean algebra. Then
it can be easily verified that L = 2⊕C is a ΠMTL-chain and C is its zero-free subreduct whose
domain is L \ {0}. �

It follows from Propositions 1.7 and 1.8, that each ΠMTL-chain L is isomorphic to 2 ⊕C for
some integral cancellative CRC C. Thus it is sufficient to investigate the structure of integral
cancellative CRCs if we want to characterize the structure of ΠMTL-chains.

In order to study the structure of ΠMTL-chains, we have to work with congruences. Let L be
a CRL. A subalgebra S of L is called convex if for all x, y ∈ S and z ∈ L we have: x ≤ z ≤ y
implies z ∈ S. It is easy to see that the class of all convex subalgebras ordered by set-inclusion
forms a lattice.

Theorem 1.9 ([13]). Let L be a CRL. Then Con L is isomorphic to the lattice of all convex
subalgebras of L. The isomorphism is established via the assignments θ 7→ Fθ and F 7→ θF , where

Fθ = {a ∈ L | 〈a,1〉 ∈ θ} ,

and

θF = {〈a, b〉 ∈ L× L | (a→ b) ∧ 1 ∈ F and (b→ a) ∧ 1 ∈ F} .

In the case when a bottom element 0 is in the signature (in particular if L is an MTL-algebra)
then Fθ need not be a subalgebra. Nevertheless, it is a subalgebra of the zero-free reduct of L.
Thus we will call Fθ in this case a filter. We will use the same terminology also for integral CRLs.
In other words:

When L is an integral CRL or an MTL-algebra, then the filters of L are just the
upward closed submonoids of (L, ∗,≤,1).

Let L be an MTL-algebra or integral CRL. Then the collection of all filters of L will be denoted
by FL. Let F ∈ FL. Then we write simply L/F instead of L/θF . The equivalence class containing
an element x ∈ L with respect to a filter F will be denoted by [x]F = {a ∈ L | a θF x}. Observe also
that if L is totally ordered then only one of the terms in the definition of θF is important because
for all x, y either x ≤ y or y ≤ x, thus either (x→ y)∧1 = x→ y = 1 or (y → x)∧1 = y → x = 1.
Moreover, FL forms a chain in this case since filters are upward closed.

Lemma 1.10. Let L ∼= 2⊕C be a ΠMTL-chain. Then Con C ∼= Con L \ ∇. In particular, L is
subdirectly irreducible iff C is.

Definition 1.11. The structure M = (M, ∗,≤,1) is called an o-monoid if the following conditions
are satisfied:

(1) (M, ∗,1) is a commutative monoid,
(2) (M,≤,1) is a chain and 1 is its top element,
(3) x ≤ y implies x ∗ z ≤ y ∗ z for all x, y, z ∈M .

Clearly, for any integral CRC L = (L, ∗,→,≤,1) the structure (L, ∗,≤,1) is an o-monoid. Notice
that each o-monoid is also an `-monoid (i.e., a monoid whose universe is lattice ordered and the
monoidal operation distributes over the join) because its universe forms a chain.

As will be seen later on, the filters in integral CRCs are also related to so-called Archimedean
classes (see [9]).

Definition 1.12. Let M be an o-monoid, a, b elements of M , and ∼ an equivalence on M defined
as follows:

a ∼ b iff there exists an n ∈ N such that an ≤ b ≤ a or bn ≤ a ≤ b.
Then for any a ∈M the equivalence class [a]∼ is called an Archimedean class.
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Archimedean classes correspond to the subsets of M where the elements behave like in an
Archimedean o-monoid, i.e., for any pair of elements x, y ∈ [a]∼ there is an n ∈ N such that
yn ≤ x.

From Theorem 1.4 it follows that ΠMTL-chains generate the variety of ΠMTL-algebras. We
proved (see [14] for details) that it is sufficient to consider only ΠMTL-chains on the real unit in-
terval [0, 1]. A ΠMTL-chain is called standard if its underlying lattice is the chain ([0, 1],min,max)
on the real unit interval [0, 1]. The following theorem justifies the investigation of the structure of
standard ΠMTL-chains.

Theorem 1.13. Standard ΠMTL-chains with finitely many Archimedean classes generate the
variety of ΠMTL-algebras as a quasivariety.

The following corollary and its proof is due to James Raftery.

Corollary 1.14. The variety CanICRLC is generated as a quasivariety by the class of all cancella-
tive integral CRCs with finitely many Archimedean classes whose underlying lattice is ((0, 1],min,max).

Proof. Let Φ be a quasi-identity in the language {∗,→,∧,∨,1}. We need to show that Φ holds
in CanICRLC iff it holds in all cancellative integral CRCs of the form ((0, 1], ∗,→,min,max, 1)
with finitely many Archimedean classes. The implication from left to right is trivial. Conversely,
suppose that Φ fails in some algebra belonging to CanICRLC . Then since CanICRLC is a variety,
there is a subdirectly irreducible algebra A, still belonging to CanICRLC , such that Φ fails in A.
But a subdirectly irreducible representable CRL is a chain, so A is a chain. Let ~x = x1, . . . , xn be
the variables occurring in Φ and consider the formula

[(x1 ≈ x1 → (x1 ∗ x1)) & · · · & (xn ≈ xn → (xn ∗ xn))] =⇒ Φ .

Clearly, this formula is logically equivalent to a quasi-identity Φ, and Φ also fails in A (because
A is cancellative). Then 2 ⊕ A is a ΠMTL-chain. Since Φ fails in A, it also fails in 2 ⊕ A
(because A embeds in a zero-free subreduct of 2⊕A). Then Φ must fail in some standard ΠMTL-
chain B ∼= 2 ⊕ C with finitely many Archimedean classes by Theorem 1.13. Thus, there exist
~b = b1, . . . , bn ∈ B such that Φ[~b] is false in B. This means that bi = bi → (bi ∗ bi) for all i and

Φ[~b] is false in B. It follows that bi 6= 0 for all i (because 0 6= 1 = 0 → (0 ∗ 0)). So Φ[~b] is also
false in the zero-free subreduct C. The subreduct C belongs to CanICRC by Proposition 1.8, has
finitely many Archimedean classes, and since it does not satisfy Φ, the proof is complete. �

A ΠMTL-algebra L satisfying moreover the following identity:

x ∗ (x→ y) = x ∧ y ,
is called a product algebra. A product algebra is called standard if its lattice reduct is ([0, 1],min,max).
All standard product algebras are isomorphic to the algebra [0,1]Π = ([0, 1], ·,→Π,min,max, 0, 1),
where · is the ordinary product of reals and→Π is the corresponding residuum. By Propositions 1.7
and 1.8 we have [0,1]Π

∼= 2⊕ (0,1]Π where (0,1]Π is the corresponding integral cancellative CRC.
The algebra (0,1]Π is an example of an Archimedean integral cancellative CRC. Now we show
that there are also examples which are not Archimedean. First, we define a lexicographic product
of two integral cancellative CRCs.

Definition 1.15. Let A = (A, ∗A,→A,≤A,1A) and B = (B, ∗B ,→B ,≤B ,1B) be integral can-

cellative CRCs. Then the lexicographic product of A and B is the algebra A
→
×B = (A×B, ∗,→,≤

, 〈1A,1B〉) where ≤ is the lexicographic order, i.e., 〈a, b〉 ≤ 〈c, d〉 iff a <A c or [a = c and b ≤B d]
and the operations are defined as follows:

〈a, b〉 ∗ 〈c, d〉 = 〈a ∗A c, b ∗B d〉 ,

〈a, b〉 → 〈c, d〉 =

{
〈a→A c,1B〉 if a ∗ (a→A c) <A c ,

〈a→A c, b→B d〉 otherwise.
.

Proposition 1.16. Let A = (A, ∗A,→A,≤A,1A) and B = (B, ∗B ,→B ,≤B ,1B) be integral can-

cellative CRCs. Then A
→
× B = (A×B, ∗,→,≤, 〈1A,1B〉) is an integral cancellative CRC.
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Proof. It is obvious that (A×B, ∗, 〈1A,1B〉) is a commutative cancellative monoid and (A×B,≤)
is a chain whose top element is 〈1A,1B〉. Thus it is sufficient to check that

〈a, b〉 ∗ 〈c, d〉 ≤ 〈x, y〉 iff 〈a, b〉 ≤ 〈c, d〉 → 〈x, y〉 .
Assume that 〈a, b〉 ∗ 〈c, d〉 ≤ 〈x, y〉. Since 〈a, b〉 ∗ 〈c, d〉 = 〈a ∗A c, b ∗B d〉, we have that either
a ∗A c <A x or [a ∗A c = x and b ∗B d ≤B y]. In any case we have a ≤A c →A x. Thus if
〈c, d〉 → 〈x, y〉 = 〈c →A x,1B〉 then obviously 〈a, b〉 ≤ 〈c, d〉 → 〈x, y〉. Assume that 〈c, d〉 →
〈x, y〉 = 〈c →A x, d →B y〉. Then c ∗A (c →A x) = x by the definition of →. Now, there are two
cases:

(1) Suppose that a ∗A c <A x. If a = c →A x then c ∗A a = c ∗A (c →A x) = x which is
a contradiction with our assumption. Thus a < c →A x which implies 〈a, b〉 ≤ 〈c →A

x, d→B y〉.
(2) Let a ∗A c = x and b ∗B d ≤B y. Then b ≤B d →B y. Thus we obtain 〈a, b〉 ≤ 〈c →A

x, d→B y〉.
Conversely, assume that 〈a, b〉 ≤ 〈c, d〉 → 〈x, y〉. Then a ≤A c →A x. If 〈c, d〉 → 〈x, y〉 =

〈c →A x,1B〉 then c ∗A (c →A x) <A x. Thus c ∗A a ≤ c ∗A (c →A x) <A x showing that
〈a, b〉 ∗ 〈c, d〉 = 〈a ∗A c, b ∗B d〉 ≤ 〈x, y〉. Now, suppose that 〈c, d〉 → 〈x, y〉 = 〈c →A x, d →B y〉.
Then c ∗A (c →A x) = x. If a <A c →A x then by cancellativity c ∗A a < c ∗A (c →A x) = x
showing that 〈a ∗A c, b ∗B d〉 ≤ 〈x, y〉. If a = c →A x then b ≤B d →B y. Consequently,
c ∗A a = c ∗A (c →A x) = x and b ∗B d ≤ y. Hence we have 〈a ∗A c, b ∗B d〉 ≤ 〈x, y〉 also in this
case. �

Example 1.17. Let R− = (R−,+,⇒,min,max, 0) be the cancellative integral CRC arising from
the negative cone of the additive group of reals, i.e., x ⇒ y = (y − x) ∧ 0. Similarly, let Z− =
(Z−,+,⇒,min,max, 0) be the cancellative integral CRC arising from the negative cone of the

additive group of integers. Then Z−
→
×R− is an integral cancellative CRC which is not Archimedean

since 〈−1, 0〉 < 〈0,−1〉n for all n ∈ N.

Abelian totally ordered groups

We also recall several facts about Abelian totally ordered groups (o-groups) useful in the sequel.
For details see [9, 10]. Since each o-group forms a cancellative CRC (if we set x→ y = y − x), its
congruence lattice is characterized by Theorem 1.9. Hence the congruences on an o-group G are
completely determined by the convex subalgebras. Let V be a convex subalgebra of G. Then the
corresponding quotient o-group will be denoted by G/V . The equivalence class of x ∈ G w.r.t. V
will be denoted by [x]V .

A convex subalgebra generated by an element g is said to be principal and we denote it by V g.
The principal convex subalgebras are characterized in the following lemma (see [10, Lemma 3.1.5]).

Lemma 1.18. If G is an o-group and g ∈ G, then

V g = {f ∈ G | |f | ≤ |g|n for some n ∈ N} ,
where |g| = g ∨ g−1.

Let G be an o-group. Then the collection CSG of all convex subalgebras is a chain. Thus
any non-empty union of a system of convex subalgebras of G is again a convex subalgebra. For
each g ∈ G \ {1} the principal convex subalgebra V g has a predecessor, namely the largest convex
subalgebra not containing g, i.e., the union of all such convex subalgebras. This predecessor will
be denoted by Vg. Following the terminology from [10], Vg will be called value of g. The set of all
values of G will be denoted by Γ(G).

2. Filters and Archimedean classes

In this section we will prove several basic statements about general integral CRCs which will
be useful in the sequel.

Lemma 2.1. Let L be an integral CRC. Then any non-empty union of filters of L is again a
filter.
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Proof. Recall that FL forms a chain. A union of a non-empty chain of subalgebras of any algebra
is always a subalgebra, and a union of upward closed sets is upward closed. Since filters of an
integral CRL are just the upward closed subalgebras, a non-empty union of filters of L is again a
filter. �

The next trivial result characterizes the principal filters, i.e., the filters generated by a single
element. A principal filter F generated by b will be denoted by F b. The set of all principal filters
of an integral CRL L will be denoted by PL.

Lemma 2.2. Let L be an integral CRL, and b ∈ L. Then the principal filter F b is of the form:

F b = {z ∈ L | (∃n ∈ N)(bn ≤ z)} .

Let L be an integral CRC and F b ∈ PL. Then by Lemma 2.1 the union of all filters not
containing b is a filter. Clearly, it is the largest filter not containing b. Thus we obtain the
following lemma.

Lemma 2.3. Let L be an integral CRC and F ∈ PL a principal filter. Then F has a predecessor.

Following the notation from o-groups we will denote the predecessor of F b by Fb. Further, we
list several easy results about Archimedean classes.

Lemma 2.4. Let M = (M, ∗,≤,1) be an o-monoid and a, b ∈M . Then the Archimedean classes
of M have the following properties:

(1) [a]∼ is closed under ∗.
(2) [a]∼ is convex.
(3) [a ∗ b]∼ = [min{a, b}]∼.

Moreover, if M is cancellative, then [a]∼ has no minimum for a 6= 1.

Proof.

(1) Suppose that x, y ∈ [a]∼. Without any loss of generality suppose that x ≤ y. Then
x2 ≤ x ∗ y ≤ x, thus x ∗ y belongs to [a]∼.

(2) Suppose that x, y ∈ [a]∼, z ∈ M , and x < z < y. Then there is an n such that yn ≤ x <
z < y. Thus z ∈ [a]∼.

(3) Without any loss of generality suppose that a ≤ b. Then a2 ≤ a ∗ b ≤ a. Thus a ∗ b ∈
[a]∼ = [min{a, b}]∼.

If M is cancellative and x ∈ [a]∼ then x2 ∈ [a]∼. From cancellativity it follows x2 < x showing
that [a]∼ has no minimum. �

Note that even if M is cancellative then [a]∼ may contain a maximum. For instance the

integral cancellative CRC Z−
→
× R− from Example 1.17 has three Archimedean classes: {〈0, 0〉},

{〈0, x〉 ∈ Z− × R− | x < 0}, and {〈x, y〉 ∈ Z− × R− | x < 0, y ≤ 0}. The element 〈−1, 0〉 is the
maximum of the last one. On the other hand the second one has no maximum. Observe also that
M/∼ can be linearly ordered as follows: [a]∼ < [b]∼ iff a 6∈ [b]∼ and a < b.

As we mentioned in the previous section, the Archimedean classes are related to the filters.
This connection is described by the next proposition.

Proposition 2.5. Let L be an integral CRC and (CL,≤) the chain of all its Archimedean classes.
Then the chain CL is dually-isomorphic to the chain of all principal filters PL. Let C ∈ CL. The
dual-isomorphism Φ : CL → PL is defined as follows:

Φ(C) = F b , for some b ∈ C .

Proof. First, we have to show that the definition of Φ is independent of the choice of b. We prove
that F b = F c for b, c ∈ C. Without any loss of generality we can assume that b ≤ c. Then
F c ⊆ F b. Let x ∈ F b. By Lemma 2.2 we have n ∈ N such that bn ≤ x. As b, c belong to the
same Archimedean class, there exists m ∈ N such that cm ≤ bn. Thus cm ≤ x and x ∈ F c.
Consequently, F b = F c.
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Secondly, we prove that Φ is order-reversing and injective. Let C1, C2 ∈ CL such that C1 < C2.
Further, let b ∈ C1 and c ∈ C2. Since b < c, we get F b ⊇ F c. Moreover, we show that F b 6= F c.
Since C1 and C2 are disjoint, we have b 6∈ C2, i.e., b < cn for all n ∈ N. Thus b 6∈ F c.

Finally, we show that Φ is onto. Let F b ∈ PL. By Lemma 2.3, F b has a predecessor Fb. We
show that C = F b \ Fb is the Archimedean class such that Φ(C) = F b. Clearly, b belongs to C
because b 6∈ Fb. Thus it is sufficient to show that C is an Archimedean class. Let x, y ∈ C such
that x ≤ y. We will show that F b = F y. Since y ∈ C = F b \Fb, we get F y ⊇ F b (because it must
be larger than Fb and F b is the successor of Fb). Conversely, there is n ∈ N such that bn ≤ y
(because y ∈ F b). Let z ∈ F y. Then there is m ∈ N such that ym ≤ z. Hence bnm ≤ ym ≤ z
showing that z ∈ F b. Since x ∈ F b = F y, there is n ∈ N such that yn ≤ x, i.e., x ∼ y. �

From the last paragraph of the proof of Proposition 2.5, it follows that the inverse isomorphism
between CL and PL is Φ−1(F b) = F b \ Fb where Fb is the predecessor of F b.

3. Complete cancellative integral CRCs

The main aim of this paper is to investigate the structure of standard ΠMTL-chains whose
underlying lattice is complete. If L ∼= 2 ⊕ C is a complete ΠMTL-chain where C ∈ CanICRC,
then C is not complete since it has no minimum. However, C is almost complete, i.e.

∨
S exists

for all ∅ 6= S ⊆ C. Thus we call C in this case complete as well. Notice that
∧
S exists for S ⊆ C

if S has a lower bound in C.
Let L be an integral CRC and F ∈ FL. Then F is said to be nontrivial if F 6= {1}.

Lemma 3.1. Let C ∈ CanICRC and let F ∈ FC \ {C} be a nontrivial filter. If C is complete,
then F is an interval of the form (a,1] = {x ∈ C | a < x ≤ 1} for some a ∈ C \ {1}.

Proof. Each filter F is an interval. It follows from the fact that F is an upward closed set. If F
is nontrivial then

∧
F < 1 and

∧
F exists because F has a lower bound. Let us denote

∧
F by a.

The element a cannot belong to F . For if a ∈ F then a2 ∈ F and cancellativity implies a2 < a (a
contradiction with the fact that a =

∧
F ). �

Lemma 3.2. Let C be a complete cancellative integral CRC. Then each nontrivial filter F ∈
FC \ {C} has a successor.

Proof. Let F be a nontrivial filter. By Lemma 3.1 we have F = (a,1] for some a ∈ C \ {1}. Since
any filter greater than F must contain a, the principal filter F a generated by a is the successor. �

Lemma 3.3. Let C ∈ CanICRC, x ∈ C, and let F ∈ FC be a nontrivial filter. If C is complete,
then the equivalence class [x]F is convex, has a maximum and no minimum.

Proof. First, it is obvious that the lemma holds when F = C because in this case we have [x]F = C.
Assume that F 6= C. It is well known that every algebra with a lattice reduct has the property
that its congruence classes are convex sets with respect to the lattice order.

Secondly, we will show that there is no minimum. Let iFx =
∧

[x]F . We will prove that the
infimum exists (i.e. we have to show that [x]F has a lower bound). If [x]F 6= F then [x2]F < [x]F
(i.e. x2 is the lower bound). If [x]F = F then there is F ′ ) F and any y ∈ F ′ \ F is the
lower bound. Suppose that iFx ∈ [x]F . Then we would have iFx ∗ s < iFx for all s ∈ F \ {1} by
cancellativity. Since s θF 1, it follows iFx ∗ s θF iFx θF x. Thus iFx ∗ s ∈ [x]F but iFx ∗ s <

∧
[x]F (a

contradiction).
Finally, let us denote by mF

x the supremum of [x]F . Assume that mF
x 6∈ [x]F . Let s ∈ F \ {1}.

Then mF
x ∗s ∈ [mF

x ]F . Since mF
x ∗s < mF

x , mF
x cannot be the supremum of [x]F (a contradiction).

Consequently, mF
x is the maximum of [x]F . �

From now on, the maximum of an equivalence class [x]F will be denoted by mF
x . The next two

corollaries follow from the latter lemma.

Corollary 3.4. Let C ∈ CanICRC and let F ∈ FC \ {C} be a nontrivial filter. If C is complete,
then each element [x]F of C/F has a predecessor.
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Proof. By Lemma 3.3, [x]F has no minimum. Let us denote a =
∧

[x]F . Then [a]F must be a
predecessor of [x]F . Moreover, a = mF

a . �

Corollary 3.5. Let C ∈ CanICRC, F ∈ FC, and x ∈ C. If C is complete, then mF
x = max [mF

x ]F ′

for all F ′ ⊆ F , F ′ ∈ FC.

Lemma 3.6. Let C ∈ CanICRC and F ∈ FC. If C is complete, then C/F is complete as well.

Proof. Let ∅ 6= M ⊆ C/F . Let us define the following subset of C:

M ′ =
⋃

[x]F∈M

[x]F .

Since C is complete, there is a supremum of M ′. Let us denote it by m. Observe that m =∨
x∈M ′ m

F
x . We claim that [m]F is a supremum of M . Clearly, [m]F ≥ [x]F for all [x]F ∈ M

because x ≤ m for any x ∈ M ′. Suppose [y]F ≥ [x]F for all [x]F ∈ M . Then mF
y ≥ mF

x for all

x ∈M ′. Thus mF
y ≥

∨
x∈M ′ m

F
x = m. Consequently, [y]F = [mF

y ]F ≥ [m]F . �

Now we will show the crucial property of the congruence lattice of a complete integral can-
cellative CRC. By well-known theorem from Universal Algebra if an integral CRL L is subdirectly
irreducible then Con L\{∆} has a minimum. Thus there must also be the corresponding nontrivial
minimum filter. We will denote it by F∆.

Theorem 3.7. Let C ∈ CanICRC. If C is complete and subdirectly irreducible, then Con C is
well ordered.

Proof. As Con C is isomorphic to the chain FC of all filters of C, it is sufficient to show that FC

is well ordered. Since C is subdirectly irreducible, there must be a minimum nontrivial filter F∆.
Let M be a non-empty set of filters, and let F =

⋂
M . Then F is a filter, and it suffices to prove

that F ∈ M . If not, then all filters in M properly contain F and F 6= C, therefore they contain
the successor s(F ) of F (this successor exists: if F = {1} then s(F ) = F∆, otherwise it exists by
Lemma 3.2). Thus F =

⋂
M ⊇ s(F ) ) F , which is a contradiction. �

A similar result holds also for the equivalence classes w.r.t. a nontrivial filter.

Theorem 3.8. Let C ∈ CanICRC and F ∈ FC a nontrivial filter. If C is complete then C/F is
i.w.o.

Proof. If F = C then C/F is a singleton which is obviously i.w.o. Assume that F 6= C. The
quotient algebra C/F is complete by Lemma 3.6. Thus any non-empty subset M of C/F has a
supremum, [m]F say. Clearly, it suffices to show that [m]F ∈M . Suppose not. Then [m]F > [x]F
for all [x]F ∈ M . By Corollary 3.4 [m]F has a predecessor p([m]F ), and p([m]F ) ≥ [x]F for all
[x]F ∈M . Therefore, [m]F > p([m]F ) ≥

∨
M = [m]F , which is a contradiction. �

4. Standard subdirectly irreducible ΠMTL-chains

In this section we start to investigate the structure of the standard ΠMTL-chains. We will
deal with the subdirectly irreducible standard ΠMTL-chains because they are the generators of
the variety of ΠMTL-algebras. Let L ∼= 2 ⊕ C be a standard ΠMTL-chain. Recall that L is
subdirectly irreducible iff C is by Lemma 1.10.

Let ((0, 1], ∗,→,min,max, 1) be an integral cancellative CRC on (0, 1]. Then we denote it by
(0,1]∗.

Lemma 4.1. Let (0,1]∗ ∈ CanICRC. If (0,1]∗ is subdirectly irreducible, then Con (0,1]∗ is at
most countable.

Proof. By Lemma 3.1 each nontrivial filter F ∈ F(0,1]∗
such that F 6= (0, 1] is of the form (a, 1].

Thus if we identify the nontrivial filters with their infima, we obtain a subset of (0, 1] which
i.w.o. since Con (0,1]∗ is well ordered by Theorem 3.7. But any i.w.o. subset of (0, 1] is at most
countable. Thus the set of all filters F(0,1]∗

is at most countable and Con (0,1]∗ as well. �
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Lemma 4.2. Let (0,1]∗ ∈ CanICRC. If (0,1]∗ is subdirectly irreducible, then for all a, b ∈ [x]F∆

we have a ∗ (a→ b) = a ∧ b.

Proof. If a ≤ b then the equality trivially holds. Also, if a or b equals 1 then the equality trivially
holds. Thus suppose that a > b and a, b 6= 1, i.e. a → b < 1 and a → b ∈ F∆. By residuation we
get a ∗ (a → b) ≤ b. Suppose that a ∗ (a → b) < b. Fix an arbitrary strictly increasing sequence
〈rn〉n∈N such that

∨
rn = 1 and rn ∈ F∆ for all n. As F∆ is a left-open interval of the type (c, 1]

for some 0 ≤ c < 1, there surely exists such a sequence. Since F∆ \ {1} is an Archimedean class,
we get that for each n there exists kn such that

rknn ≤ a→ b < rkn−1
n .

Thus we obtain for all n ∈ N:

a ∗ rknn ≤ a ∗ (a→ b) < b < a ∗ rkn−1
n .

The last inequality holds since a→ b is the maximal solution of the inequality a ∗ x ≤ b.
Further, by Proposition 1.1 we get

∨
(b ∗ rn) = b ∗

∨
rn = b. Hence there must be an n0 such

that a ∗ (a→ b) < b ∗ rn0 . Thus we obtain

a ∗ rkn0
n0 ≤ a ∗ (a→ b) < b ∗ rn0

< a ∗ rkn0
n0 ,

a contradiction. �

Theorem 4.3. Let (0,1]∗ ∈ CanICRC and x ∈ (0, 1]. If (0,1]∗ is subdirectly irreducible, then
each z ∈ [x]F∆

can be expressed uniquely as z = mF∆
x ∗ s for some s ∈ F∆ and we have

[x]F∆
= {mF∆

x ∗ s | s ∈ F∆} .

Proof. Let z ∈ [x]F∆ . By Lemma 4.2 we have mF∆
x ∗ (mF∆

x → z) = z. Thus we can take
s = mF∆

x → z ∈ F∆. The uniqueness of s follows from cancellativity (if z = mF∆
x ∗ s1 = mF∆

x ∗ s2

then s1 = s2).
On the other hand, mF∆

x ∗ s belongs to [x]F∆
for all s ∈ F∆ because mF∆

x → mF∆
x ∗ s = s. �

Lemma 4.2 has also other important consequences. It implies that the elements belonging to
F∆ = [1]F∆

behave like in a divisible algebra, i.e., if x ≤ y then there is an element z such that
y ∗ z = x, namely z = y → x.

Let R− = (R−,+,⇒,min,max, 0) be the cancellative integral CRC from Example 1.17.

Theorem 4.4. Let (0,1]∗ ∈ CanICRC. If (0,1]∗ is subdirectly irreducible, then F∆ = (F∆, ∗,→
,min,max, 1) is a subalgebra of (0,1]∗ isomorphic to R−.

Proof. The filter F∆ is a subuniverse of (0,1]∗ (see Theorem 1.9). By Lemma 4.2 the subalgebra
F∆ is divisible. Since F∆ is cancellative, divisible and Archimedean, it follows from [9, Theorem 2,
Page 165] that the `-monoidal reduct of F∆ is isomorphic to a sub-`-monoid S of R−. Thus F∆

∼= S
(as CRLs), because residua are uniquely determined by the monoid operation and order in both
algebras.

Now, it is sufficient to show that S = R−. Suppose not. Then there is an element y ∈ R− \ S.
Let M = {x ∈ S | x ≤ y}. As S is complete, we get

∨
M ∈ S and

∧
(S \ M) ∈ S. Thus∨

M < y <
∧

(S \M) by our assumption. However, it is a contradiction with the fact that S is
dense. Thus S = R−. �

Lemma 4.5. Let (0,1]∗ ∈ CanICRC. If (0,1]∗ is subdirectly irreducible, then the set E∗ of all
elements which cannot be expressed as a product of greater elements, i.e., the set

E∗ = {z ∈ (0, 1] | ¬(∃x, y ∈ (0, 1])(z = x ∗ y & x, y > z)}

is at most countable and i.w.o.

Proof. First, we show that E∗ ∩ F∆ = {1}. The element 1 obviously belongs to this intersection.
Let z ∈ F∆\{1}. Since F∆ is isomorphic to R− by Theorem 4.4, there must be an element x ∈ F∆

such that z = x ∗ x. Thus z 6∈ E∗.
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Secondly, we show that E∗ ⊆ {mF∆
x | x ∈ (0, 1]}. Let z ∈ (0, 1] \ F∆ and z 6= mF∆

z . Then by
Theorem 4.3, we have z = mF∆

z ∗ s for some s ∈ F∆. Thus z 6∈ E∗.
Finally, the set {mF∆

x | x ∈ (0, 1]} is order-isomorphic to (0,1]∗/F∆. Since (0,1]∗/F∆ is i.w.o.
by Theorem 3.8, the set E∗ is i.w.o. as well. Moreover, E∗ is at most countable because any i.w.o.
subset of (0, 1] is at most countable. �

Theorem 4.6. Let (0,1]∗ ∈ CanICRC and x ∈ (0, 1]. If (0,1]∗ is subdirectly irreducible, then
x = g1 ∗ · · · ∗ gn ∗ s for some gi ∈ E∗, i = 1, . . . , n, and s ∈ F∆.

Proof. By Theorem 4.3, we can write x = mF∆
x ∗ s for some s ∈ F∆. Thus it is sufficient to show

that mF∆
x = g1 ∗ · · · ∗ gn for some gi ∈ E∗, i = 1, . . . , n.

If mF∆
x ∈ E∗ then we are done. If not, mF∆

x can be expressed as mF∆
x = a∗b for some a, b > mF∆

x .
Moreover, a, b ∈ {mF∆

y | y ∈ (0, 1]}. Indeed, suppose that a = mF∆
a ∗ r for some r ∈ F∆ with

r < 1. Then mF∆
x = a ∗ b = mF∆

a ∗ r ∗ b. Thus mF∆
a ∗ b > mF∆

x contradicting the fact that mF∆
x is

the maximum of the equivalence class [x]F∆ . Now a, b belong to E∗ or can be again decomposed.
In this way, we obtain a binary tree where the leaves belong to E∗. Moreover, each branch of
the tree is strictly increasing. Since {mF∆

y | y ∈ (0, 1]} is i.w.o. by Theorem 3.8, each branch
must be finite. Thus there is a finite number of leaves. Let us denote them by g1, . . . , gn. Then
mF∆
x = g1 ∗ · · · ∗ gn. �

5. Fraction group

Let C ∈ CanICRC. Let us denote the →-free reduct (C, ∗,≤,1) by C∗. Since C∗ is a can-
cellative o-monoid, we can extend it to an o-group of fractions GC in the same way as integers
are constructed from natural numbers. The universe of GC is the set GC = (C × C)/≈, where
(a, b) ≈ (c, d) iff a ∗ d = c ∗ b. The group operation is defined (a, b) ∗ (c, d) = (a ∗ c, b ∗ d), (1,1) is
the neutral element, (a, b)−1 = (b, a), and (a, b) ≤ (c, d) iff a∗d ≤ b∗c. We will denote the ordered
pair (a, b) by a/b or a ∗ b−1. Further, we identify the elements from C with the corresponding
elements in GC, i.e., we will write a instead of a/1. Thus C can be viewed as a subuniverse of the
`-monoidal reduct of GC.

Lemma 5.1. Let C ∈ CanICRC. Then Con C can be embedded into Con GC.

Proof. We will work with the chain of the filters FC (resp. convex subalgebras CSGC
) instead of

Con C (resp. Con GC). To each filter F ∈ FC we can assign a corresponding convex subalgebra
F ∈ CSGC

as follows:

F = {z ∈ GC | (∃y ∈ F )(|z| ≤ |y|)} .
We start with the proof that F is a convex subalgebra. Clearly, F is convex. Let a/b and c/d be
elements of F . Then there are y1, y2 ∈ F such that |y1| ≥ |a/b| and |y2| ≥ |c/d|. Since y1 ∗ y2 ≤ 1
and y1 ∗ y2 ∈ F , we get

|y1 ∗ y2| = y−1
1 ∗ y−1

2 = |y1| ∗ |y2| ≥ |a/b| ∗ |c/d| ≥ |(a ∗ c)/(b ∗ d)| .

Thus (a ∗ c)/(b ∗ d) belongs to F . We have to also show that F is closed under taking inverse
elements. If |a/b| ≤ |y| for some y ∈ F , then |b/a| = |a/b| ≤ y.

Finally, we have to show that the mapping assigning F to F is injective and order-preserving.
Let F, F ′ be two different filters in FC. Since FC is linearly ordered, one of the filters contains
the other. Without any loss of generality suppose that F ′ ⊆ F . Let us take an arbitrary element
z ∈ F \ F ′. Then z 6∈ F ′ since there is no y ∈ F ′ such that y ≤ z. Thus F ) F ′. �

From now on, we will denote by F the convex subalgebra corresponding to F ∈ FC.
Next we show an example demonstrating the fact that Con C need not be isomorphic to

Con GC. Let C = Z−
→
× R− be the integral cancellative CRC from Example 1.17. Let us take

its submonoid S generated by 〈−1, 0〉 and 〈−1,−1〉. It is known that each finitely generated sub-
monoid of an o-monoid is i.w.o. (this follows also from our Theorem 6.5). Hence such a submonoid
is in fact residuated if we define a residuum in S as a→S b = max{c ∈ S | a+c ≤ b}. It is obvious
that S has only trivial filters since for all 〈k, r〉 ∈ S there is n ∈ N such that 〈−1, 0〉n ≤ 〈k, r〉. On
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the other hand the group of fractions GS has one nontrivial convex subalgebra. It is a subalgebra
generated by the fraction 〈−1,−1〉/〈−1, 0〉. Indeed, we have for all n ∈ N the following:

(〈−1,−1〉/〈−1, 0〉)n = 〈−n,−n〉/〈−n, 0〉 > 〈−1, 0〉 ,
since 〈−n,−n〉 > 〈−1, 0〉+ 〈−n, 0〉 = 〈−n− 1, 0〉.

Lemma 5.2. Let (0,1]∗ ∈ CanICRC. If (0,1]∗ is subdirectly irreducible, then its group of fractions
G(0,1]∗

is subdirectly irreducible as well and the minimum nontrivial congruence is determined by

the convex subalgebra F∆ = F∆ ∪ F−1
∆ , where

F−1
∆ = {x−1 ∈ G(0,1]∗

| x ∈ F∆} .

Proof. Since (0,1]∗ is subdirectly irreducible, there must be a minimum nontrivial congruence of

(0,1]∗. Thus we have a nontrivial minimum filter F∆. First, we will show that for any a/b ∈ F∆

either a/b ∈ F∆ or b/a ∈ F∆. Without any loss of generality we can suppose that a/b ≤ 1, i.e.,
a ≤ b. Then there exists y ∈ F∆ such that |a/b| ≤ |y| and y ≤ a/b. If we multiply this inequality
by b, we get b ∗ y ≤ b ∗ (a/b) = a. Hence y ≤ b → a. Since y ∈ F∆, we get b → a ∈ F∆. Thus

mF∆
a = mF∆

b . By Theorem 4.3 we get a = mF∆
a ∗ r and b = mF∆

a ∗ s for some r, s ∈ F∆. Thus
a/b = (mF∆

a ∗ r)/(mF∆
a ∗ s) = r/s. Since elements from F∆ satisfy the divisibility condition by

Lemma 4.2, r/s = s→ r ∈ F∆. Thus F∆ = F∆ ∪ F−1
∆ .

Secondly, we will prove that F∆ is the minimum nontrivial convex subalgebra. Let us take an
arbitrary element z ∈ F∆ \ {1}. We will show that z generates F∆. We can suppose that z ≤ 1 (if
not take z−1). From the previous paragraph we have z ∈ F∆. Since F∆ is the minimum nontrivial
filter, z generates F∆ and it must generate also F∆. �

Corollary 5.3. Let (0,1]∗ ∈ CanICRC such that (0,1]∗ is subdirectly irreducible and let F∆ be

its minimum nontrivial filter. Then the structure (F∆, ∗,≤, 1) is isomorphic to (R,+,≤, 0).

Proof. The structure (F∆, ∗,≤, 1) is isomorphic to (R−,+,≤, 0) by Theorem 4.4. Let us denote
the corresponding isomorphism by Φ. Since F∆ = F∆ ∪F−1

∆ , we define a mapping Ψ : F∆ → R by

Ψ(x) =

{
Φ(x) , x ≤ 1 ,

−Φ(x−1) , x > 1 .

We claim that Ψ is an isomorphism between F∆ and (R,+,≤, 0). The mapping Ψ is clearly one-
to-one, onto, and order-preserving. The fact that Ψ is an isomorphism can be easily checked. The
cases when x, y ≤ 1 or x, y > 1 are trivial. We only show the case when x ≤ 1, y > 1, and x∗y ≤ 1.
The other cases are similar. Then Ψ(x ∗ y) = Φ(x ∗ y) and Ψ(x) + Ψ(y) = Φ(x)− Φ(y−1). Since
x ∗ y ≤ 1, we get x ≤ y−1. Thus Φ(x) ≤ Φ(y−1) and Φ(x) − Φ(y−1) ≤ 0. Hence there is z ∈ F∆

such that Φ(z) = Φ(x)− Φ(y−1). Since

Φ(z ∗ y−1) = Φ(z) + Φ(y−1) = Φ(x)− Φ(y−1) + Φ(y−1) = Φ(x) ,

we obtain that z ∗ y−1 = x. Consequently, z = x ∗ y and Ψ(x ∗ y) = Ψ(x) + Ψ(y). Similarly the
case for x ∗ y > 1. Thus F∆ is isomorphic to (R,+,≤, 0). �

Now we show the relation between principal filters of an integral cancellative CRC C and the
principal convex subalgebras of its group of fractions GC.

Lemma 5.4. Let C ∈ CanICRC, F b ∈ PC, and let V b be the principal convex subalgebra of GL

generated by b. Then F b = V b.

Proof. The case when b = 1 is trivial. Let F b 6= {1}. We will show that F b is a successor of

Vb. As Vb is the greatest convex subgroup not containing b, we obtain Vb ⊆ F b. Since Vb is the

predecessor of V b, it is sufficient to prove that F b ⊆ V b. Let x ∈ F b. Then there is y ∈ F b such
that |x| ≤ |y|. Further by Lemma 2.2, there exists n ∈ N such that bn ≤ y. Since b, y ≤ 1, we get
|y| ≤ |bn| = |b|n. Thus |x| ≤ |b|n. Finally by Lemma 1.18, we obtain x ∈ V b. �

Corollary 5.5. Let C ∈ CanICRC and let F b ∈ PC be a nontrivial principal filter. Then F b/Vb
is isomorphic (as an o-group) to a subgroup of the additive group of real numbers.
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Proof. By Lemma 5.4 we have F b/Vb = V b/Vb. Since V b/Vb is an ordered Archimedean group, it
is isomorphic to a subgroup of the additive group of real numbers by Hölder’s Theorem (see [10,
Corollary 4.1.4]). �

Lemma 5.6. Let C ∈ CanICRC and let C∗ be the →-free reduct of C. Then the congruence
lattice Con GC can be embedded into Con C∗.

Proof. Let θ ∈ Con GC. Since C ⊆ GC, we can map θ to the restriction θ�C∗ . Clearly, θ�C∗
belongs to Con C∗. Thus it suffices to show that this mapping is injective and order-preserving.
If θ1 ⊆ θ2 then trivially θ1�C∗ ⊆ θ2�C∗ . Thus the mapping is order-preserving. Now, assume that
θ1 ( θ2. Let us denote by V1 (resp. V2) the convex subalgebra corresponding to θ1 (resp. θ2).
Then there must be an element a/b in V2 such that a/b 6∈ V1 and a, b ∈ C. Thus a θ2�C∗ b. But
it is not true that a θ1�C∗ b. Hence θ1�C∗ ( θ2�C∗ . �

Although Con GC can be embedded into Con C∗, they need not be isomorphic. Let Z−

be the integral cancellative CRC from Example 1.17. Consider the lexicographic product C =

Z−
→
×Z−

→
×Z−. Then its group of fractions GC has two nontrivial convex subalgebras; V1 generated

by 〈0, 0,−1〉 and V2 generated by 〈0,−1, 0〉. Obviously V1 ⊆ V2. Let θ1, θ2 be the congruences
corresponding to V1 and V2 respectively. Now we define an equivalence in C as follows: 〈a, b, c〉 ≈
〈a′, b′, c′〉 iff either a = 0 and 〈a, b, c〉 θ1�C∗ 〈a

′, b′, c′〉 or a 6= 0 and 〈a, b, c〉 θ2�C∗ 〈a
′, b′, c′〉. Then

it can be easily shown that ≈ is an `-monoidal congruence but there is no corresponding convex
subalgebra in GC.

Let C ∈ CanICRC, θ ∈ Con GC, and V its corresponding convex subalgebra. In order to
make the notation more transparent, we will use the expression C∗/V instead of C∗/θ�C∗ . Also
the equivalence class [x]θ�C∗ will be denoted by [x]∗V . Thus we are able to distinguish between an

element of GC/V (it is an equivalence class [x]V ) and an element of C∗/V (it is an equivalence
class [x]∗V ).

Theorem 5.7. Let C ∈ CanICRC and let F b ∈ PC be a nontrivial principal filter. Then F b/Vb
is isomorphic (as an `-monoid) to a submonoid of V b/Vb.

Proof. Since F b is a subalgebra of the `-monoidal reduct of V b, we get by the Third Isomorphism
Theorem (see [6, Page 49, Theorem 6.18]) that F b/Vb is isomorphic (as an `-monoid) to V bθ /Vb
where V bθ = {a ∈ V b | F b ∩ [a]Vb

6= ∅}. The isomorphism assigns to [x]∗Vb
the equivalence class

[x]Vb
. Since V bθ /Vb is a submonoid of V b/Vb, we are done. �

Corollary 5.8. Let C ∈ CanICRC and let F b ∈ PC be a nontrivial principal filter. Then F b/Vb
is isomorphic (as an `-monoid) to a submonoid of (R−,+,≤, 0).

Proof. From Theorem 5.7 it follows that F b/Vb is isomorphic (as an `-monoid) to a submonoid of
V b/Vb. By Hölder’s Theorem we get an isomorphism Φ between V b/Vb and the additive monoid
of real numbers. Since x ≤ 1 for any x ∈ F b, we obtain Φ(x) ≤ 0. Thus F b/Vb is isomorphic to a
submonoid of (R−,+,≤, 0). �

Hahn’s Embedding Theorem

Now, we recall what a full Hahn group is (for details see [10]). Let Γ be a totally ordered set.
Let us denote the set of all functions f : Γ → R such that supp f = {γ ∈ Γ | f(γ) 6= 0} is i.w.o.
by V (Γ). The set V (Γ) forms an o-group V(Γ) under addition (f + g)(γ) = f(γ) + g(γ) and f > 0
provided that f(max(supp f)) > 0. Such an o-group is called a full Hahn group.

Let C ∈ CanICRC and let Γ(GC) be the chain of all values of GC. Then the o-group GC

can be embedded into the full Hahn group V(Γ(GC)) by Hahn’s Embedding Theorem (see [10,
Theorem 4.C, Page 70]). Thus we obtain the following result.

Theorem 5.9. Let C ∈ CanICRC and let Γ(GC) be the chain of all values of GC. Then C∗ can
be embedded (as an `-monoid) into V(Γ(GC)).
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In order to prove the next lemma, we have to also recall the definition of the embedding from
Hahn’s embedding theorem. First, it is known (see [9, Lemma A, Page 56]) that each o-group G

can be extended to a divisible o-group Ĝ in such a way that Con G ∼= Con Ĝ and for each convex
subalgebra V ∈ CSG we have V = G ∩ V̂ where V̂ is the corresponding convex subalgebra in Ĝ.
By divisible we mean here that for any element g ∈ Ĝ and any n ∈ N there is an element f ∈ Ĝ
such that fn = g. Thus Ĝ and all its convex subalgebras can be viewed as vector spaces over
rationals.

Let Vγ ∈ Γ(G). We identify γ with Vγ and denote the successor of Vγ by V γ . Let us denote the

corresponding convex subalgebras in ĜC by V̂ γ and V̂γ respectively. The embedding from Hahn’s
Embedding Theorem assigns to each g ∈ G the function g′ defined as follows: g′(γ) = ργ(πγ(g)) ∈
R for each γ ∈ Γ(G), where πγ is the projection of the vector space Ĝ onto the subspace V̂ γ and ργ
is an order-preserving homomorphism from V̂ γ into R whose kernel is V̂γ . Such a homomorphism
exists by Hölder’s Theorem.

Lemma 5.10. Let C ∈ CanICRC, F ∈ PC a nontrivial principal filter, and g ∈ F . Further, let
V γ = F be the principal convex subalgebra in GC. Then the corresponding function g′ ∈ V(Γ(GC))
maps all α > γ to 0.

Proof. As F is principal, V γ is principal as well by Lemma 5.4. Thus there is a value Vγ ∈ Γ(GC)
which is the predecessor of V γ . Since α > γ, we get Vα ⊇ V γ ⊇ F . It follows that g ∈ V α and
also g ∈ Vα. Thus g = πα(g) and ρα(g) = 0 as g belongs to the kernel V̂α. �

At this point we know that each C ∈ CanICRC can be embedded as an `-monoid into the full
Hahn group V(Γ(GC)). Now it remains to describe which functions from V(Γ(GC)) correspond
to the original elements from C. First, we will prove several useful results about i.w.o. monoids.

6. Inversely well ordered monoids

Let A,B be totally ordered sets. We denote by A× B the cartesian product of A,B endowed
with the cartesian order, i.e., (a, b) ≤c (c, d) iff a ≤ c and b ≤ d.

Lemma 6.1. Let A,B be i.w.o. sets and C a totally ordered set such that there is a surjective
order-preserving mapping Φ : A×B → C. Then C is i.w.o.

Proof. Let ∅ 6= S ⊆ C, a0 = max π1(Φ−1(S)), and b0 = max π2(({a0} × B) ∩ Φ−1(S)). Both
maxima exist since A and B are i.w.o. Clearly, (a0, b0) is a maximal element of Φ−1(S). Thus the
set M of maximal elements of φ−1(S) is non-empty. Moreover, M is finite, as the product of two
i.w.o. sets cannot contain infinite antichains (by Dickson’s Lemma, a direct product of two well
quasi orders is a well quasi order). Hence max(Φ(M)) exists and is the maximum of C. �

Let M = (M,+,≤,0) be an o-monoid. Note that by Lemma 6.1, if A ⊆ M is i.w.o. then
A+ A = {a+ b | a, b ∈ A} is i.w.o. as well since + is a surjective order-preserving mapping from
A×A onto A+A. Indeed, (a, b) ≤c (c, d) implies a+ b ≤ c+ d. Let us further introduce the set
of all solutions of the equation c = a+ b for a given c ∈M and a, b 6= 0.

Tc = {(a, b) ∈M2 | a ∗ b = c, a, b > c} .
Observe that if (a, b) ∈ Tc then a, b 6= 0.

Theorem 6.2. Let M = (M,+,≤,0) be an o-monoid which is i.w.o. Then M has a unique
minimal set of generators G.

Proof. Let G be the following set:

G = {g ∈M | Tg = ∅} .
It is obvious that each set of generators of M must contain G because the elements of G cannot
be expressed as a sum of other elements from M . Thus it is sufficient to prove that G generates
M. Let c ∈ M . We will show that c can be generated from G. Either c ∈ G and we are done or
c = a + b for some (a, b) ∈ Tc. Now a either belongs to G or can be written as a sum of greater
elements. Similarly for b. In this way we obtain a binary tree. Since each branch of this tree is
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strictly increasing and M is i.w.o., each branch must be finite. Thus the tree is finite and the
leaves belong to G. Let us denote the leaves by g1, . . . , gn. Then c =

∑n
i=1 gi and the proof is

done. �

Lemma 6.3. Let M = (M,+,≤,0) be an Archimedean o-monoid and G its generating set. If G
is i.w.o. then M is i.w.o. as well.

Proof. If G = ∅ or G = {0} then M = {0} which is clearly i.w.o. Thus assume that there is x ∈ G
such that x 6= 0. Let ∅ 6= S ⊆ M , c ∈ S, and g = maxG \ {0}. Since M is Archimedean, there
exists nc ∈ N such that nc g ≤ c. Consequently, for any m ≥ nc, ai ∈ G \ {0} we have

m∑
i=1

ai ≤ mg ≤ nc g ≤ c .

Thus it is enough to consider only the sums of generators with less than nc summands since all
longer sums are surely less than or equal to c. But all such elements belongs to G+G+ · · ·+G
(nc-times) which is i.w.o. by Lemma 6.1. Hence S has a maximum. �

Lemma 6.4. Let M = (M,+,≤,0) be an o-monoid, G its generating set, and CM the chain of
Archimedean classes of M. If G is i.w.o. then CM is i.w.o. as well.

Proof. If G = ∅ then M = {0} and CM is obviously i.w.o. Assume that G 6= ∅. Then for each
C ∈ CM we have C∩G 6= ∅. Indeed, let x ∈ C. Then x =

∑n
i=1 gi for some gi ∈ G. By Lemma 2.4

we get [x]∼ = [min{g1, . . . , gn}]∼. Thus min{g1, . . . , gn} ∈ C ∩G.
Let ∅ 6= S ⊆ CM and H =

⋃
C∈S(C ∩ G). Since ∅ 6= H ⊆ G, it has a maximum, say g0. We

claim that [g0]∼ = max(S). Let [x]∼ ∈ S. Then x =
∑n
i=1 gi for some gi ∈ G. By Lemma 2.4 we

get [x]∼ = [min{g1, . . . , gn}]∼. Thus min{g1, . . . , gn} ∈ H. As min{g1, . . . , gn} ≤ g0, we obtain
[x]∼ ≤ [g0]∼. �

Theorem 6.5. Let M = (M,+,≤,0) be an o-monoid and G its generating set. If G is i.w.o.
then M is i.w.o. as well.

Proof. Let CM be the chain of Archimedean classes of M. By Lemma 6.4 the chain CM is i.w.o.
Thus there is an ordinal τ such that the elements of CM can be indexed by ordinals 0 ≤ α < τ in
such a way that for any Cα, Cβ ∈ CM we have α < β iff Cβ < Cα. Consider the following sets:

Gα = G ∩ Cα , G≤α =
⋃
β≤α

Gβ , G<α =
⋃
β<α

Gβ .

Clearly G<τ = G. We will prove by transfinite induction that M = Sg(G<τ ) is i.w.o.

(1) If τ = 1 then M has only one Archimedean class. Thus M is i.w.o. by Lemma 6.3.
(2) Let τ = α+ 1. By the induction assumption we have that Sg(G<α) is i.w.o. Since the o-

monoid Sg(Gα) is Archimedean, Sg(Gα) is i.w.o. by Lemma 6.3. Let x ∈ Sg(G<τ ). Then

x =
∑n
i=1 gi+

∑k
j=1 hj where gi ∈ G<α and hj ∈ Gα. Thus Sg(G<τ ) = Sg(G<α)+Sg(Gα).

Consequently, Sg(G<τ ) is i.w.o. by Lemma 6.1.
(3) Let τ be a limit ordinal. Then Sg(G≤β) = Sg(G<β+1) is i.w.o. for all β < τ by the

induction assumption. Let ∅ 6= S ⊆ Sg(G<τ ) and x ∈ S. Then x =
∑n
i=1 gi where

gi ∈ Gβi and βi < τ . Thus x ∈ Sg(G≤β) for β = max{β1, . . . , βn}. Moreover, [x]∼ =

[min{g1, . . . , gn}]∼ = Cβ by Lemma 2.4. Let y ∈ S such that y ≥ x. Then y =
∑k
j=1 hj for

hj ∈ G. Thus [min{h1, . . . , hk}]∼ = [y]∼ ≥ [x]∼ = Cβ . Consequently, min{h1, . . . , hk} ∈
Gα for some α ≤ β. Hence y ∈ Sg(G≤β). Since Sg(G≤β) is i.w.o. by the induction
assumption, we get max(S) = max(S ∩ Sg(G≤β)).

�
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7. Construction method

In this section we shall present a method of constructing standard subdirectly irreducible
ΠMTL-chains. In the next section we will show that each standard subdirectly irreducible ΠMTL-
chain can be constructed by this method. Let V(Γ) be a full Hahn group. The negative cone of
V(Γ) will be denoted by V (Γ)−. We define for each γ ∈ Γ the following set:

(γ,→) = {α ∈ Γ | α > γ} .

Definition 7.1. Let us define an o-monoid CG by the following steps:

(1) Let Γ be an at most countable totally ordered set with a minimum γ0 ∈ Γ and V(Γ) the
corresponding full Hahn group.

(2) Let G ⊆ V (Γ)− be any at most countable i.w.o. set.
(3) G0 = {f ∈ V (Γ) | f(γ0) ≤ 0, f�(γ0,→) = 0}.

Then CG = (CG,+,≤, 0) is the sub-`-monoid of V(Γ) generated by G ∪G0.

Observe that G0 forms a submonoid of V(Γ) isomorphic to R−. The submonoid of CG gen-
erated by G will be denoted by Sg(G). Note that Sg(G) is i.w.o. by Theorem 6.5 and is at
most countable because Sg(G) is an at most countably generated algebra (see [6, Corollary 3.6,
Page 32]). Let us define the following relation on CG:

f θ0 g iff − |f − g| ∈ G0 .

It can be easily seen that θ0 is an equivalence. We show that each equivalence class w.r.t. θ0 has a
maximum. Let f =

∑n
i=1 gi for some gi ∈ (G∪G0) \ {0}. If one of gi is from G0 then f cannot be

maximum. Without any loss of generality suppose that gn ∈ G0. Then f θ0 f
′ for f ′ =

∑n−1
i=1 gi

and moreover f ′ > f . Thus if [f ]θ0 has a maximum then this maximum belongs to Sg(G). Since
Sg(G) is i.w.o., max [f ]θ0 = max ([f ]θ0 ∩ Sg(G)). Let us denote this maximum by fm. Each
equivalence class [f ]θ0 is convex. Let f < g < h such that f θ0 h. Then f − h < g − h < 0 and
f −h ∈ G0. Since all functions between 0 and f −h belong to G0, g−h also belongs to G0. Thus
g θ0 h. Further, it is obvious that each element g of [f ]θ0 can be decomposed as g = fm + z for
some z ∈ G0. Indeed, since −|g − fm| = g − fm ∈ G0, we can set z = g − fm.

Now, we show that CG is residuated. It is sufficient to prove that a maximum of M = {h ∈
CG | f + h ≤ g} exists for each f, g ∈ CG. We denote the maximum of M ∩ Sg(G) by k. If
k = maxM we are done. Thus assume that k 6= maxM . Let h ∈ M such that h > k. According
to the latter paragraph, we can write h = hm + z for some hm ∈ Sg(G) and z ∈ G0. Then
f + hm + z ≤ g < f + hm. Hence g θ0 f + hm, i.e. s = g − (f + hm) ∈ G0. Consequently,
f + hm + s = g and hm + s = maxM .

Let us define a structure C→G = (CG,+,→,≤, 0) where (CG,+,≤, 0) is the ordered submonoid
of V(Γ) and the operation → is defined as follows:

f → g = max{h ∈ CG | f + h ≤ g} .

Lemma 7.2. The structure C→G = (CG,+,→,≤, 0) is an integral cancellative CRC. Moreover,
C→G is subdirectly irreducible.

Proof. Since CG is a submonoid of the group V(Γ), CG is obviously cancellative. The definition
of → ensures that (+,→) is a residuated pair. Moreover, since G ∪G0 ⊆ V (Γ)−, C→G is integral.
The irreducibility of C→G follows from the fact that G0 forms a minimum nontrivial filter and θ0

is its corresponding congruence. �

The final step in the construction is to prove that the ΠMTL-chain 2 ⊕ C→G is isomorphic to
a standard ΠMTL-chain. For this it suffices to show that CG is order-isomorphic to (0, 1]. It is
known from set theory (see e.g. [15, Theorem 5.7, Page 89]) that a chain S is order-isomorphic to
(0, 1) iff it satisfies the following conditions:

(1) S is complete (each non-empty subset has a supremum and an infimum),
(2) S has no minimum and no maximum,
(3) S contains a countable dense subset in it.
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Clearly CG \ {0} has no maximum because G0 \ {0} has no maximum. Since CG is a cancellative
o-monoid, it has no minimum. Let us denote the set of maxima of the equivalence classes w.r.t.
θ0 by M . Since M is a subset of Sg(G), we get that M is at most countable and i.w.o. Let
D = {g ∈ G0 | g(γ0) ∈ Q}. The set D is clearly countable and dense in G0. Consequently, the set

M +D = {f + g | f ∈M, g ∈ D}
is obviously countable and dense in CG because each element from CG can be expressed as f + g
for some f ∈M and g ∈ G0. Finally, let ∅ 6= S ⊆ CG. As M is i.w.o., we can define m = max{f ∈
M | f θ0 g for some g ∈ S}. Then

∨
S =

∨
([m]θ0 ∩ S) since [m]θ0 = {m}+G0 is complete. Thus

CG \ {0} is order-isomorphic to (0, 1) and CG to (0, 1].

Theorem 7.3. The integral cancellative CRC C→G = (CG,+,→,≤, 0) is isomorphic to a subdi-
rectly irreducible (0,1]∗ ∈ CanICRC and the ΠMTL-chain 2 ⊕ C→G is isomorphic to a standard
subdirectly irreducible ΠMTL-chain.

8. Structural theorem

We are ready to prove that each subdirectly irreducible (0,1]∗ ∈ CanICRC is isomorphic to
some C→G . According to Definition 7.1 we have to define the following three sets:

(1) Let Γ(G(0,1]∗
) be the chain of all values of the fraction group G(0,1]∗

. So by Theorem 5.9

there is an `-monoidal embedding Φ: (0,1]∗ → V(Γ(G(0,1]∗
)).

(2) Let G = Φ(E∗) where E∗ is the set of product irreducible elements from Lemma 4.5.
(3) G0 = {f ∈ V (Γ(G(0,1]∗

)) | f(γ0) ≤ 0, f�(γ0,→) = 0}.
Further, we have to show that (1) Γ(G(0,1]∗

) is at most countable and contains a minimum, (2)
G is at most countable and i.w.o.

(2) The set G = Φ(E∗) is at most countable and i.w.o. by Lemma 4.5.
(1) The o-group G(0,1]∗

is subdirectly irreducible by Lemma 5.2. Thus there is a minimum
nontrivial convex subalgebra V γ0 ∈ CSG(0,1]∗

. Since V γ0 is principal, its predecessor Vγ0
is the

minimum of Γ(G(0,1]∗
). We will denote this minimum shortly by γ0.

Lemma 8.1. The set of values Γ(G(0,1]∗
) is at most countable.

Proof. Let N be the chain of all principal convex subalgebras in G(0,1]∗
. Since the set of values

Γ(G(0,1]∗
) is equipotent (via the mapping Vg 7→ V g) to the set N \ {1}, it suffices to prove that

N is at most countable. Let F∆ be the nontrivial minimum filter in (0,1]∗. By Theorem 3.8 we
know that the set M = {mF∆

x | x ∈ L} is i.w.o. Since M ⊆ [0, 1], M must be at most countable.
By Theorem 4.3 each element x ∈ (0, 1] can be expressed as x = mF∆

x ∗ s for some s ∈ F∆. Thus

each element in G(0,1]∗
is of the form a/b = (mF∆

a ∗ s)/(m
F∆

b ∗ r) = (mF∆
a /mF∆

b ) ∗ (s/r) for some

s/r ∈ F∆.

Let us define a mapping λ : M2 → N by λ(mF∆
a ,mF∆

b ) = V h where h = mF∆
a /mF∆

b . We will

show that λ(M2) = N \{F∆}. Let V g ∈ N such that Vg 6= F∆. If g = 1 then we have V g = {1} =

λ(1, 1). Suppose that g 6= 1. Then g cannot belong to F∆. Thus g = (mF∆
a /mF∆

b ) ∗ (s/r) for some

s/r ∈ F∆ and mF∆
a /mF∆

b 6∈ F∆. Let h = mF∆
a /mF∆

b . Since V g, V h ⊇ F∆, we have g ∈ V h and

h ∈ V g, i.e. V h = V g. Thus λ(mF∆
a ,mF∆

b ) = V g. As M2 is at most countable, its image λ(M2) is

at most countable as well (see [15, Theorem 3.4, Page 74]). Hence N = λ(M2) ∪ {F∆} is at most
countable. �

Thus C→G ∈ CanICRC by Lemma 7.2 and it remains to prove that (0,1]∗ is isomorphic to C→G .

Lemma 8.2. We have Φ(F∆) = G0.

Proof. By Theorem 4.4, F∆ is isomorphic to R−. Thus F∆ is complete and dense. Since V γ0 =
F∆ = F∆ ∪ F−1

∆ , we have f�(γ0,→) = 0 for all f ∈ Φ(F∆) by Lemma 5.10. Thus Φ(F∆) ⊆ G0.
Suppose that Φ(F∆) 6= G0. Then there is g ∈ G0\Φ(F∆). Let M = {f ∈ Φ(F∆) | f ≤ g}. Observe
that M 6= ∅ since G0 forms an Archimedean o-monoid. Indeed, let x ∈ F∆ \ {1}. Then Φ(x) < 0
and there is n ∈ N such that g ≥ (Φ(x))n = Φ(xn). As F∆ is complete, we get

∨
M ∈ Φ(F∆) and
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(Φ(F∆) \M) ∈ Φ(F∆). Thus

∨
M < g <

∧
(Φ(F∆) \M) by our assumption. However, it is a

contradiction with the fact that F∆ is dense. Hence Φ(F∆) = G0. �

Theorem 8.3. The algebra (0,1]∗ is isomorphic to C→G .

Proof. We will show that Φ is an isomorphism between (0,1]∗ and C→G∗ . First, we prove Φ((0, 1]) ⊆
CG. Let x ∈ (0, 1]. Then x = g1 ∗ · · · ∗ gn ∗ s for some gi ∈ E∗ and s ∈ F∆ by Theorem 4.6. Thus
Φ(x) = Φ(g1 ∗ · · · ∗ gn ∗ s) = Φ(g1) + · · · + Φ(gn) + Φ(s). Since Φ(gi) ∈ G and by Lemma 8.2
Φ(s) ∈ G0, we have Φ(x) ∈ CG.

Now we prove that Φ is onto CG. Let h ∈ CG. Then h = (
∑n
i=1 fi) + g for some fi ∈ G and

g ∈ G0. By definition of G, there are elements xi ∈ (0, 1] such that Φ(xi) = fi. By Lemma 8.2
there is s ∈ F∆ such that Φ(s) = g. Let us take x = x1 ∗ · · · ∗ xn ∗ s. Since Φ is an embedding,
we have Φ(x) = Φ(x1) + · · · + Φ(xn) + Φ(s) = (

∑n
i=1 fi) + g = h. Thus Φ is onto. Hence Φ is

an isomorphism between the →-free reduct of (0,1]∗ and CG. Consequently, (0,1]∗
∼= C→G , as

CRLs. �

Corollary 8.4. Each standard subdirectly irreducible ΠMTL-chain L is isomorphic to 2 ⊕ C→G
for some at most countable i.w.o. subset G ⊆ Γ where Γ is an at most countable chain with a
minimum.

9. Subdirectly reducible integral cancellative CRCs on (0, 1]

In this section we will focus on the structure of subdirectly reducible chains.

Lemma 9.1. Let C ∈ CanICRC be a complete subdirectly reducible CRC and F ∈ FC a nontrivial
filter. Then C/F is subdirectly irreducible and Con C/F is well ordered.

Proof. If F = C then C/F is trivial and the statement clearly holds. Assume that F 6= C. Since
each nontrivial filter F ∈ FC has a successor by Lemma 3.2, C/F is subdirectly irreducible. As
C/F is complete by Lemma 3.6, Con C/F is well ordered by Theorem 3.7. �

For a subdirectly irreducible (0,1]∗ ∈ CanICRC we have that Con (0,1]∗ is well ordered by
Theorem 3.7. For subdirectly reducible algebras we have the following result. Let ω∗ be the
inversely ordered set of natural numbers.

Theorem 9.2. Let (0,1]∗ ∈ CanICRC. If (0,1]∗ is subdirectly reducible then Con (0,1]∗ \ {∆}
has the same order type as a subset of the lex. product ω∗ × α where α is an at most countable
ordinal. In particular, Con (0,1]∗ is countable.

Proof. Let θn be a decreasing sequence such that
⋂
n∈N θn = ∆. There is such a sequence. Indeed,

let 〈an〉n∈N, an ∈ (0, 1], be an increasing sequence such that
∨
n∈N an = 1. Then 〈F an〉n∈N is a

decreasing sequence of filters whose limit is ∆ because (0,1]∗ is subdirectly reducible. Thus we
can set θn = θFan .

Let I0 = (θ0,∇] and In = (θn, θn−1] for n ≥ 1. Then Con (0,1]∗ \ {∆} =
⋃
n∈N In. Since

Con (0,1]∗/θn
∼= [θn,∇] is well ordered for all n ∈ N by Lemma 9.1, we get that In ⊆ [θn,∇] is

well ordered. Moreover, Con (0,1]∗/θn is at most countable by the same reasoning as in the proof
of Lemma 4.1. Thus each In is at most countable as well. Let α be the supremum of all ordinals
order-isomorphic to the intervals In. Since all such intervals are at most countable and there are
countable many of them, α is at most countable as well. Each In can be order-embedded into α
by some Φn : In → α. If we define a mapping Φ: Con (0,1]∗ \{∆} → ω∗×α by Φ(θ) = 〈n,Φn(θ)〉
for θ ∈ In, we get an order-preserving injection. �

Now we prove that if C ∈ CanICRC is not subdirectly irreducible then its fraction group GC

has the same property.

Lemma 9.3. Let C ∈ CanICRC. If C is subdirectly reducible then⋂
F∈FC, F 6={1}

F = ∆ ,

where ∆ is the minimum of Con GC.
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Proof. Suppose that there is a nontrivial convex subalgebra V such that V ⊆ F for all F ∈ FC,
F 6= {1}. Thus there is an element a/b ∈ V such that a < b and a/b > x for all x ∈ C \ {1},
i.e. b ∗ x < b ∗ (a/b) = a. Since C is subdirectly reducible it cannot possess a coatom c otherwise
F c would be the minimum nontrivial filter. Thus

∨
(C \ {1}) = 1. Consequently, we have for all

x ∈ C \ {1}
b = b ∗

∨
(C \ {1}) =

∨
x∈C\{1}

(b ∗ x) ≤ a ,

a contradiction with the fact that a < b. �

By Lemma 9.3 there is no minimum nontrivial congruence in Con GC. Thus GC cannot be
subdirectly irreducible.

Theorem 9.4. Let C ∈ CanICRC. If C is subdirectly reducible then GC is subdirectly reducible
as well.

If (0,1]∗ ∈ CanICRC is subdirectly irreducible then it follows from Corollary 3.5 that the set

{mF
x ∈ (0, 1] | x ∈ (0, 1], F ∈ F(0,1]∗

, F 6= {1}} = {mF∆
x | x ∈ (0, 1]} .

Thus this set is i.w.o. by Theorem 3.8. This is not the case if (0,1]∗ is subdirectly reducible.

Proposition 9.5. Let (0,1]∗ ∈ CanICRC. If (0,1]∗ is subdirectly reducible then the set

M = {mF
x ∈ (0, 1] | x ∈ (0, 1], F ∈ F(0,1]∗

, F 6= {1}}
is dense in (0, 1].

Proof. Let m1,m2 ∈ M and m1 > m2. Then z = m1 → m2 belongs to the principal filter F z.
Let Fz be the predecessor of F z. Since L is subdirectly reducible, there exists a filter F such that
F ( Fz. Let s be an element from Fz \ F and m = max [m1 ∗ s]F . Then m1 → m1 ∗ s = s 6∈ F .
Thus m1 6∈ [m1 ∗ s]F and consequently m < m1. Since s > z, we have m ≥ m1 ∗ s > m2. Thus
m > m2 and the proof is done. �

Let (0,1]∗ ∈ CanICRC be a subdirectly reducible CRC. It is a well-known fact from Universal
Algebra that if we have an indexed family θi ∈ Con (0,1]∗ such that

⋂
i∈I

θi = ∆, then the natural

homomorphism

ν : (0,1]∗ →
∏
i∈I

(0,1]∗/θi

defined by ν(x)(i) = [x]θi is a subdirect embedding (see [6, Lemma 8.2, Page 57]). We know
from the proof of Theorem 9.2 that Con (0,1]∗ contains a non-increasing sequence 〈θn〉n∈N such
that

⋂
n∈N θn = ∆ and θn 6= ∆. In the following theorem we show that the structure of each

factor (0,1]∗/θn can be described by means of Theorem 8.3. Thus we obtain a characteriza-
tion of the structure of (0,1]∗ since (0,1]∗ can be subdirectly embedded into the direct product∏
n∈N (0,1]∗/θn.

Theorem 9.6. Let (0,1]∗ ∈ CanICRC, θ ∈ Con (0,1]∗, and θ 6= ∆. Then (0,1]∗/θ is isomorphic
to some C→G /θ∆ where θ∆ = min(Con C→G \ {∆}).

Proof. Let (0,1]Π be the integral cancellative CRC such that 2 ⊕ (0,1]Π is isomorphic to the

standard product algebra [0,1]Π. Then A = ((0,1]∗/θ)
→
× (0,1]Π is an integral cancellative CRC

by Proposition 1.16. It is easy to verify that the mapping Ψ : (0, 1]/θ → A defined by Ψ(x) = 〈x, 1〉
is an embedding of (0,1]∗/θ into A.

Further, A′ = A \ {〈1, 1〉} is order-isomorphic to (0, 1) since A′ has no minimum and no
maximum, {〈a, x〉 ∈ A′ | x ∈ Q} is countable and dense in A′ (because (0, 1]/θ is at most
countable), and each non-empty subset of A′ has a supremum (because (0,1]∗/θ is i.w.o. and
(0, 1] is complete). Thus A is isomorphic to some cancellative integral CRC (0,1]� = ((0, 1],�,→
,min,max, 1). It is easy to see that F∆ = {〈1, r〉 ∈ A | r ∈ (0, 1]} is the minimum nontrivial filter
in A and A/F∆

∼= (0,1]∗/θ. Hence A is subdirectly irreducible. Finally, A is isomorphic to some
C→G by Theorem 8.3. Hence (0,1]∗/θ

∼= A/F∆
∼= C→G /θ∆. �
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