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1 Introduction

The problem of characterization of the structure of MTL-algebras, which form an equivalent
algebraic semantics for Monoidal T-norm Based Logic (see [9]) in the sense of Blok and Pigozzi
(see [3]), is still far from being solved. Since MTL-algebras are in fact subdirect products of
chains, it suffices to investigate only the structure of MTL-chains if we want to characterize the
structure of MTL-algebras. Thus a closely related problem already discussed in the literature
[11, 12, 13, 24] is the same task for totally ordered monoids since each MTL-chain forms
a totally ordered monoid. As was pointed out in [11], the characterization of the structure
of totally ordered monoids could be split into two steps: (1) determine the structure of an
arbitrary Archimedean totally ordered monoid; (2) determine the ways in which a given chain
of Archimedean totally ordered monoids can be assembled to form a totally ordered monoid
having the elements of the chain as its Archimedean classes. In order to solve these two steps,
it is clear that the notion of an Archimedean class is crucial.

Another closely related problem is to understand better the structure of the lattice of
subvarieties of MTL-algebras. It is quite natural to ask whether it is possible to express the
number of Archimedean classes in an MTL-chain by an identity. Unfortunately, this is not
possible in general. Indeed, there are product chains with arbitrary number of Archimedean
classes but the only nontrivial subvariety of product algebras is the variety of Boolean algebras.
However, in some cases it is possible as we are going to show in this paper. The obtained results
also shed some light on the structure of MTL-chains. The original motivation of our results
comes from [15] where the author posed a question whether the variety of ΠMTL-algebras
(i.e. the class of cancellative MTL-algebras) is generated by Archimedean ΠMTL-chains. The
paper [15] offers only a partial answer by showing it is not generated as a quasivariety. More
precisely, the author shows that the quasi-identity

(p→ q)→ q ≈ 1 ⇒ p ∨ q ∨ ¬q ≈ 1

is valid in all Archimedean ΠMTL-chains but there are ΠMTL-chains where this quasi-identity
is not valid. In this paper we prove that the answer to this question is negative. As a
byproduct we further describe a strictly increasing chain of subvarieties of ΠMTL-algebras.
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However, our results are applicable also to MTL-chains. In order to present the results more
generally, we prove our results for zero-free subreducts of MTL-chains and then translate their
consequences for particular subvarieties of MTL-algebras.

2 Preliminaries

A commutative residuated lattice (CRL) L = (L, ∗,→,∧,∨,1) is an algebraic structure, where
(L, ∗,1) is a commutative monoid, (L,∧,∨) is a lattice, and (∗,→) forms an adjoint pair, i.e.,

x ∗ y ≤ z iff x ≤ y → z .

The operation→ is called a residuum. It follows from the definition that ∗ is order-preserving,
i.e., a ≤ b implies a∗c ≤ b∗c. The residuum is decreasing in the first argument and increasing
in the second one. Further, the inequality a ∗ x ≤ b has a greatest solution for x (namely
a → b). In particular, the residuum is uniquely determined by ∗ and ≤. It is well known
that the class CRL of all commutative residuated lattices forms a variety (see e.g. [21]). The
existence of the residuum also implies that ∗ distributes over all existing joins, i.e. if

∨
X

exists for X ⊆ L, then
∨
x∈X a ∗ x exists for a ∈ L and is equal to a ∗

∨
X. Observe also that

if a CRL L possesses a bottom element 0 then we have a ∗ 0 = 0 for any a ∈ L.
Now we introduce several well-known subvarieties of residuated lattices.

• An integral CRL (ICRL) L is a CRL such that 1 is the top element of L. In this case
we have that x ≤ y implies x→ y = 1. The class ICRL of ICRLs is easily seen to be a
variety defined by x ≤ 1.

• A CRL L is said to be cancellative if for any x, y, z ∈ L, x ∗ z = y ∗ z implies x = y. It
was shown in [2] that the class CanCRL of cancellative CRLs forms a variety defined
by x ≈ y → (y ∗ x).

• Finally, a totally ordered CRL is referred to as a commutative residuated chain (CRC).
Analogously as before we write ICRC instead of integral CRC. A residuated lattice
is called representable if it is a subdirect product of CRCs. This is equivalent to the
demand that it satisfies 1 ≈ ((x → y) ∧ 1) ∨ ((y → x) ∧ 1) (see [21]), whence the
representable CRLs also form a variety. In the case of representable ICRLs this identity
can be simplified to 1 ≈ (x→ y) ∨ (y → x).

The class of all ICRCs will be denoted by ICRC and the variety generated by this class by
ICRLC (i.e., the variety of representable ICRLs). The superscript C refers to the fact that
this variety is generated by chains. Similarly the class of cancellative ICRCs is denoted by
CanICRC and the variety generated by this class CanICRLC .

The classes of algebras introduced above are closely connected to the algebraic semantics
of fuzzy logics. Let us recall this connection.

Definition 2.1 An algebra L = (L, ∗,→,∧,∨,0,1) is called an MTL-algebra if it satisfies
the following conditions:

1. (L, ∗,→,∧,∨,1) is a representable ICRL and

2. (L,∧,∨,0,1) is a bounded lattice.
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A totally ordered MTL-algebra is called an MTL-chain. The variety of MTL-algebras is
denoted by MT L.

There are several well-known subvarieties of MT L. We recall some of them.

• MTL-algebras satisfying x ∧ ¬x ≈ 0 are called SMTL-algebras.

• The subvariety ofMT L axiomatized by x∧y ≈ x∗(x→ y) is the variety of BL-algebras.

• The class of MTL-algebras satisfying ¬x ∨ ((x → x ∗ y) → y) ≈ 1 is the variety of
ΠMTL-algebras. It is known that ΠMTL-algebras form a subvariety of the variety of
SMTL-algebras.

• Finally, the subvariety ofMT L defined by x∨¬x ≈ 1 is the variety of Boolean algebras.

The corresponding varieties are denoted respectively by SMT L, BL, PMT L, and BA.

MTL-algebras were introduced by Esteva and Godo in [9] as the algebras of truth values
for the monoidal t-norm based logic (MTL). It is well known that zero-free subreducts of
MTL-algebras are exactly representable ICRLs1 (see [10]). The class of zero-free subreducts
of BL-algebras is the class of representable ICRLs satisfying the divisibility law, i.e. x ∧ y =
x ∗ (x→ y). These algebras are usually called basic hoops (see [10]).

It can be shown that there is a connection between ICRCs and SMTL-chains. First, we
need the notion of an ordinal sum. This notion was introduced in [1] for totally ordered basic
hoops and it was generalized to the case of ICRCs in [23].

Definition 2.2 Let 〈I,≤〉 be a totally ordered set. Let {Ai | i ∈ I} be a family of ICRCs
sharing the same top element, say 1, and such that for i 6= j, Ai ∩ Aj = {1}. Then

⊕
i∈I Ai

(the ordinal sum of the family) is the ICRC whose universe is
⋃
i∈I Ai and whose operations

are:

x ∗ y =


x ∗Ai y if x, y ∈ Ai,
y if x ∈ Ai and y ∈ Aj \ {1} with i > j,

x if x ∈ Ai \ {1} and y ∈ Aj with i < j.

x→ y =


x→Ai y if x, y ∈ Ai,
y if x ∈ Ai and y ∈ Aj with i > j,

1 if x ∈ Ai \ {1} and y ∈ Aj with i < j.

For every i ∈ I, Ai is called a component of the ordinal sum.
If in addition I has a minimum, say i0, and Ai0 is bounded, then the ordinal sum

⊕
i∈I Ai

forms an MTL-chain.

We say that an ICRC is indecomposable if it cannot be written as the ordinal sum of two
nontrivial ICRCs. For totally ordered basic hoops the indecomposable chains are characterized
(see [1]). Recall that a basic hoop L is called Wajsberg if (x→ y)→ y ≈ (y → x)→ x holds
in L. Then [1, Theorem 3.6] says that a totally ordered basic hoop L is indecomposable iff L
is Wajsberg. Further, we have the following theorem.

1Representable ICRLs are known also under different names, e.g. like prelinear semihoops, basic semihoops,
or MTLH-algebras.
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Theorem 2.3 ([1]) Every totally ordered basic hoop L is isomorphic to an ordinal sum of
Wajsberg hoops. If L is a BL-chain, then the first component of the ordinal sum is bounded.

Using the construction of ordinal sum, one can easily prove the following lemma.

Lemma 2.4 Let L be a nontrivial SMTL-chain. Then L ∼= 2 ⊕C where C is the zero-free
subreduct of L whose domain is L \ {0}.

Conversely, let A be an ICRC. Then 2⊕A is an SMTL-chain.

Analogous lemma holds also for ΠMTL-chains.

Lemma 2.5 ([14, 19]) Let L be a nontrivial ΠMTL-chain. Then L ∼= 2⊕C where C is the
zero-free subreduct of L whose domain is L \ {0}.

Conversely, let A be a cancellative ICRC. Then 2⊕A is a ΠMTL-chain.

Further, we need also to recall several facts on congruences and Archimedean classes. Let
L be an ICRL. A subalgebra S of L is called convex if for all x, y ∈ S and z ∈ L we have:
x ≤ z ≤ y implies z ∈ S. It is easy to see that the class of all convex subalgebras ordered by
set-inclusion forms a lattice.

Theorem 2.6 ([16]) Let L be an ICRL. Then its congruence lattice Con L is isomorphic to
the lattice of all convex subalgebras of L. The isomorphism is established via the assignments
θ 7→ Fθ and F 7→ θF , where

Fθ = {a ∈ L | 〈a,1〉 ∈ θ} ,

and
θF = {〈a, b〉 ∈ L× L | a→ b ∈ F and b→ a ∈ F} .

In the case when a bottom element 0 is in the signature (in particular if L is an MTL-algebra)
then Theorem 2.6 still holds but Fθ need not be a subalgebra. Nevertheless, it is a subalgebra
of the zero-free reduct of L. Thus we will call Fθ rather a filter. In other words:

When L is an ICRL or an MTL-algebra, then the filters of L are just the upward
closed submonoids of (L, ∗,≤,1).

Let L be an ICRL or MTL-algebra. The set of all filters of L will be denoted by FL. Let
F ∈ FL. Then we write simply L/F instead of L/θF . The equivalence class containing an
element x ∈ L with respect to a filter F will be denoted by [x]F = {a ∈ L | a θF x}. Observe
also that if L is totally ordered then only one of the terms in the definition of θF is important
because for all x, y either x ≤ y or y ≤ x, thus either x→ y = 1 or y → x = 1. Moreover, FL

forms a chain in this case since filters are upward closed.
The next easy result characterizes the principal filters, i.e., the filters generated by a single

element. A principal filter F generated by b will be denoted by F (b). The set of all principal
filters of an ICRL L will be denoted by PL.

Lemma 2.7 Let L be an ICRL and b ∈ L. Then the principal filter generated by b is of the
form:

F (b) = {z ∈ L | (∃n ∈ N)(bn ≤ z)} .
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As will be seen later on, the filters in ICRCs are also related to the so-called Archimedean
classes (see [12]).

Definition 2.8 Let L be an ICRC, a, b elements of L, and ∼ an equivalence on L defined as
follows:

a ∼ b iff there exists n ∈ N such that an ≤ b ≤ a or bn ≤ a ≤ b.

Then for any a ∈ L the equivalence class [a]∼ is called an Archimedean class.

Observe that {1} is always an Archimedean class in an ICRC. Such Archimedean class
is called trivial. An ICRC containing only one nontrivial Archimedean class is referred to as
Archimedean ICRC, i.e. if x ≤ y < 1, then there exists n ∈ N such that yn ≤ x. Observe
that due to the connection between filters and congruences, an ICRC is Archimedean iff it is
simple. It is also useful to note that a ∼ b iff F (a) = F (b).

Lemma 2.9 Let L be an ICRC and a, b ∈ L. Then we have:

1. [a]∼ is closed under ∗.

2. [a]∼ is convex.

3. [a ∗ b]∼ = [a ∧ b]∼.

Let L be an ICRC. Thanks to the previous lemma the collection CL of all Archimedean classes
of L can be totally ordered as follows:

[a]∼ < [b]∼ iff a < b and [a]∼ ∩ [b]∼ = ∅.

As we mentioned in the previous section, the Archimedean classes are related to filters.
This connection is described by the next proposition.

Proposition 2.10 ([18]) Let (CL,≤) be the chain of all Archimedean classes of an ICRC
L. Then CL is dually-isomorphic to the chain of all principal filters PL. Let C ∈ CL. The
order-isomorphism φ : CL → PL is defined as follows:

φ(C) = F (b) , for any b ∈ C .

For the inverse of φ we have φ−1(F (b)) = F (b) \ F where F is the predecessor of F (b).

Originally this proposition was proved for MTL-chains but the same proof works for ICRCs
as well.

Corollary 2.11 Let L be an ICRC such that PL is finite. Then CL is dually-isomorphic to
Con L.

Proof: Recall that FL is a chain. Let F ∈ FL. Then F =
⋃
a∈F F (a). Since we assume that

there are only finitely many principal filters, F = F (a) for some a ∈ L. Thus FL = PL and
the claim follows by Proposition 2.10 since FL

∼= Con L.

At the end of this section we recall another useful construction, which we will need for
the construction of non-Archimedean cancellative ICRCs.

5



Definition 2.12 Let A = (A, ∗A,→A,≤A,1A) and B = (B, ∗B,→B,≤B,1B) be cancellative

ICRCs. Then the lexicographic product of A and B is the algebra A
→
× B = (A × B, ∗,→,≤

, 〈1A,1B〉) where ≤ is the lexicographic order, i.e., 〈a, b〉 ≤ 〈c, d〉 iff a <A c or [a = c and
b ≤B d] and the operations are defined as follows:

〈a, b〉 ∗ 〈c, d〉 = 〈a ∗A c, b ∗B d〉 ,

〈a, b〉 → 〈c, d〉 =

{
〈a→A c,1B〉 if a ∗ (a→A c) <A c ,

〈a→A c, b→B d〉 otherwise.
.

Proposition 2.13 ([19]) Let A and B be cancellative ICRCs. Then A
→
×B is a cancellative

ICRC.

Example 2.14 Let R− = (R−,+,⇒,min,max, 0) be the cancellative ICRC arising from
the negative cone of the additive group of reals, i.e., x ⇒ y = (y − x) ∧ 0. Similarly, let
Z− = (Z−,+,⇒,min,max, 0) be the cancellative ICRC arising from the negative cone of the

additive group of integers. Then Z−
→
×R− is a cancellative ICRC which is not Archimedean

since 〈−1, 0〉 < 〈0,−1〉n for all n ∈ N.

3 Subvarieties of ICRLC and SMT L
As we mentioned already in the introduction, we derive all our results for ICRCs. Then we
present their consequences for particular subvarieties of MT L, namely for MT L, SMT L,
PMT L, and BL. In order to do this for SMT L and PMT L we need the result showing
that the lattice of subvarieties of ICRLC can be embedded into the lattice of subvarieties of
SMT L.

Let V be a subvariety of ICRLC . Then V is generated by its totally ordered members
since ICRLC is. Let Vch be the class of totally ordered members of V. We define a subvariety
2 ⊕ V of SMT L as the variety generated by 2 ⊕ Vch, where 2 ⊕ Vch is the class consisting
of 2 ⊕C for all C ∈ Vch. In [14, Theorem 9.66, Lemma 9.67] it is proved that the mapping
defined by V 7→ 2⊕ V is in fact a lattice isomorphism2.

Theorem 3.1 ([14]) Let Λ(ICRLC) and Λ(SMT L) be the lattices of subvarieties of ICRLC
and SMT L respectively. Then Λ(ICRLC) is isomorphic to the interval [BA,SMT L] of
Λ(SMT L) via the mapping V 7→ 2⊕ V.

According to the latter theorem we have SMT L = 2⊕ ICRLC . Thus we can bijectively
assign to each subvariety V of ICRLC the subvariety 2 ⊕ V of SMT L. In addition, we are
able to give an axiomatization of 2⊕ V as we show in the rest of this section.

Let Γ be the set of defining identities for ICRLC . Then the variety of SMTL-algebras is
axiomatized by Γ∪{0∧x ≈ 0, x∧¬x ≈ 0}. Recall that the logic of ICRLs is algebraizable in
the sense of Blok and Pigozzi if we translate a formula ϕ as ϕ ≈ 1 and an identity ϕ ≈ ψ as
ϕ↔ ψ. Thus we can assume that each identity is of the form ϕ ≈ 1 where ϕ is a term. The
fact that a term ϕ contains exactly n variables v1, . . . , vn will be denoted by ϕ(v1, . . . , vn).
Let ∆ be a set of identities. Then Mod(∆) stands for the variety of algebras defined by ∆.

2In order to see that [14, Theorem 9.66, Lemma 9.67] really applies to our case, one has to note that the
identity x ∧ ¬x ≈ 0 in the axiomatization of SMT L (cf. Definition 2.1) can be alternatively replaced by the
identity ¬¬x ∨ ¬x ≈ 1.
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Theorem 3.2 Let V be a subvariety of ICRLC and Γ ∪ Σ the set of its defining identities.
Then 2⊕ V is axiomatized by ∆ = Γ ∪ {0 ∧ x ≈ 0, x ∧ ¬x ≈ 0} ∪ Σ0, where

Σ0 = {¬v1 ∨ · · · ∨ ¬vn ∨ ϕ(v1, . . . , vn) ≈ 1 | ϕ(v1, . . . , vn) ≈ 1 ∈ Σ} .

Proof: Clearly all the generators of 2⊕V are SMTL-chains. Thus they satisfy each identity
from Γ ∪ {0 ∧ x ≈ 0, x ∧ ¬x ≈ 0}. Let 2⊕C be a generator of 2⊕ V and ¬v1 ∨ · · · ∨ ¬vn ∨
ϕ(v1, . . . , vn) ≈ 1 an element of Σ0. Then ϕ(v1, . . . , vn) ≈ 1 is valid in C. Let a1, . . . , an
be interpretations of v1, . . . , vn. If ai > 0 for all i, then ¬a1 ∨ · · · ∨ ¬an ∨ ϕ(a1, . . . , an) =
ϕ(a1, . . . , an) = 1. If at least one ai = 0, then ¬a1 ∨ · · · ∨ ¬an ∨ ϕ(a1, . . . , an) = ¬ai = 1.
Thus 2⊕ V ⊆ Mod(∆).

On the other hand, assume that C ∈ Mod(∆). Then C is an SMTL-algebra. Conse-
quently, C is a subdirect product of SMTL-chains Ci. Thus it is sufficient to prove that each
Ci ∈ 2⊕V. Clearly each Ci belongs to Mod(∆) as well. By Lemma 2.4 we have Ci

∼= 2⊕A
for an ICRC A. We have to show that A ∈ V. Let ϕ(v1, . . . , vn) ≈ 1 be an identity in Σ and
let a1, . . . , an be interpretations of v1, . . . , vn such that a1, . . . , an ∈ A. Since ¬ai = 0 for all
i, we obtain

ϕ(a1, . . . , an) = ¬a1 ∨ · · · ∨ ¬an ∨ ϕ(a1, . . . , an) = 1 .

�

Thanks to the latter theorem we have PMT L = 2 ⊕ CanICRLC . To see this, observe
that the identity ¬x ∨ ((x → x ∗ y) → y) ≈ 1 defining PMT L is equivalent to ¬x ∨ ¬y ∨
((x → x ∗ y) → y) ≈ 1 for MTL-chains. Indeed, the first one clearly implies the second
one. Conversely, if y is interpreted by 0, then the both identities become the same, namely
¬x ∨ ¬¬x ≈ 1. If y > 0, then ¬y < 1 implies ¬x ∨ ((x→ x ∗ y)→ y) ≈ 1.

4 Main results

Recall that the original motivation for our results was to show that PMT L is not generated
by its subclass of Archimedean ΠMTL-chains3. As was shown in [15] there is a quasi-identity
showing that this class does not generate it as a quasivariety. In order to show that it is not
generated as a variety, it suffices to prove that it is possible to replace this quasi-identity by an
identity. This will be in fact our main goal in this section. We will introduce a quasi-identity
(Q1) in the framework of ICRCs and then we will prove that it is possible to replace it by an
identity (A2

1). The above-mentioned quasi-identity and identity are defined as follows:

(Q1) (p→ q)→ q ≈ 1⇒ p ∨ q ≈ 1
(A1) (p→ q)→ q ≤ p ∨ q
(A2

1) ((p→ q)→ q)2 ≤ p ∨ q

The quasi-variety of representable ICRLs satisfying (Q1) will be denoted by Q1. The varieties
of representable ICRLs satisfying (A1), (A2

1) resp. will be denoted by A1, A2
1 respectively.

Observe that (A1) and (A2
1) hold trivially if p ≤ q or p = 1. Thus the only interesting case

is for 1 > p > q. Observe that (A1) is in fact equivalent to the well-known Wajsberg axiom

(p→ q)→ q ≤ (q → p)→ p ,

3The notion of an Archimedean ΠMTL-chain used by Hájek in [15] is not in accordance with our definition of
an Archimedean ICRC. Since the only Archimedean ΠMTL-chain in our sense is 2, Hájek calls a ΠMTL-chain
L ∼= 2⊕C Archimedean if C is an Archimedean cancellative ICRC.
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since p ∨ q = ((p→ q)→ q) ∧ ((q → p)→ p). Similarly p ∨ q can be replaced by (q → p)→ p
in (Q1) and (A2

1). Thus we can look at (Q1) and (A2
1) as weaker forms of Wajsberg axiom. It

is known that in the presence of Wajsberg axiom the divisibility axiom is already valid. Thus
we have the following lemma showing that A1 is the variety of Wajsberg hoops.

Lemma 4.1 Let L be an ICRC. Then L is a Wajsberg hoop iff it satisfies (A1).

Proof: The left-to-right direction is obvious. In order to prove the other direction it is
sufficient to show that L is divisible. This follows from [8, Proposition 3.13 and Lemma 3.5].

�

We start with a couple of useful lemmata describing properties of ICRCs. Then we prove
several characterizations of ICRCs satisfying (Q1).

Lemma 4.2 Let L ∈ ICRLC. Then the following hold:

1. If p→ q = q then q = max [q]F (p).

2. If F is a filter in L and q = max [q]F then p→ q = q for all p ∈ F .

Proof:

1. Let F (p) be the principal filter generated by p. Assume that p→ q = q. We will show
that q = max [q]F (p). Suppose that z ∈ [q]F (p). Then z → q ∈ F (p). Thus there exists
n ∈ N such that pn ≤ z → q. By residuation we get z ≤ pn → q. Since we assume that
p → q = q, we have pn → q = pn−1 → (p → q) = pn−1 → q = q. Thus we obtain that
z ≤ q. Hence q = max [q]F (p).

2. Let p ∈ F . In any ICRL we have p → q ≥ q. Since p ≤ (p → q) → q and q → (p →
q) = 1, we have (p→ q) ∈ [q]F . As q is maximal, we get p→ q = q. �

Lemma 4.3 Let L be an ICRC. Then L satisfies (Q1) iff each [x]F different from [1]F has
no maximum for all nontrivial filters F .

Proof: Firstly, assume that L satisfies (Q1). Suppose that there is a nontrivial filter F and
[x]F 6= [1]F which has a maximum m. Let s ∈ F \ {1}. Then s → m = m by Lemma 4.2.
Consequently, (s→ m)→ m = m→ m = 1 and s∨m = s < 1. Hence (Q1) is not valid in L
(a contradiction).

Secondly, assume that (Q1) is not valid in L. Then there are p, q ∈ L such that (p →
q)→ q = 1 and p, q ≤ p∨ q < 1. As (p→ q)→ q = 1, we get p→ q = q. Thus by Lemma 4.2
it follows that q = max [q]F (p). Since p < 1, it follows that F (p) is nontrivial. Moreover,
q 6∈ F (p) otherwise q = 1. Thus [q]F (p) 6= [1]F and has a maximum. �

Lemma 4.4 Let L be a ICRC satisfying the quasi-identity (Q1) and p, q ∈ L such that p ≥ q.
Then q ∗ s ≤ p ∗ (p→ q) for all s < 1.
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Proof: The cases p = 1 and p = q are trivial. Thus suppose 1 > p > q. Assume that
there is s ∈ L \ {1} such that p ∗ (p → q) < q ∗ s. Let F (s) be the filter generated by s and
x ∈ [p → q]F (s) such that x > p → q. Such x exists. Indeed, either [p → q]F (s) 6= [1]F (s) in
which case the existence follows from Lemma 4.3 or [p → q]F (s) = [1]F (s) and we can take
x = 1. Then there is n ∈ N such that x ∗ sn+1 ≤ p → q < x ∗ sn since F (s) is generated
by s (n can be also 0). Let us multiply the first part of the latter inequality by p. Then
p ∗ x ∗ sn+1 ≤ p ∗ (p → q) < q ∗ s. Thus p ∗ x ∗ sn < q (otherwise p ∗ x ∗ sn+1 ≥ q ∗ s). By
residuation x ∗ sn ≤ p→ q which is a contradiction since x ∗ sn > p→ q. �

Lemma 4.5 Let L be an ICRC satisfying (Q1) and F a filter in L. Then (Q1) is valid in
L/F as well.

Proof: Suppose not. Then there are [p]F , [q]F ∈ L/F such that [p]F > [q]F , [(p → q) →
q]F = [1]F and [p ∨ q]F < [1]F . The first equality implies [p→ q]F = [q]F . Thus

[p2 → q]F = [p]F → [p→ q]F = [p→ q]F = [q]F .

Consequently, there is s ∈ F such that s ∗ (p2 → q) ≤ q, i.e. p2 → q ≤ s → q. Furthermore,
[p ∨ q]F < [1]F implies p 6∈ F . Hence we have s > p ≥ p2. All together we have

s→ q ≤ p→ q ≤ p2 → q ≤ s→ q .

Thus p → (p → q) = p2 → q = p → q which is a contradiction since (p → (p → q)) → (p →
q) = 1 and p ∨ q < 1. �

Theorem 4.6 An ICRC L satisfies the quasi-identity (Q1) iff L is either a Wajsberg hoop or
there is a minimal nontrivial filter F (i.e., L is subdirectly irreducible) and L/F is a Wajsberg
hoop such that each [x]F 6= [1]F has no maximum.

Proof: Firstly, assume that L satisfies (Q1) and there is no minimal nontrivial filter. Suppose
that L is not divisible. Then there are p, q ∈ L such that 1 > p > q and p ∗ (p → q) < q.
Then z = q → p ∗ (p → q) < 1 belongs to the filter F (z) generated by z. Let F (s) ( F (z)
be a nontrivial filter strictly smaller than F (z) generated by s ∈ L. Then p ∗ (p→ q) < q ∗ s.
This leads to a contradiction by Lemma 4.4. Thus L is a basic hoop. Moreover, as L satisfies
(Q1), each [x]F 6= [1]F cannot possess a maximum for any nontrivial filter F by Lemma 4.3.
Hence L is a Wajsberg hoop by [1, Theorem 3.6] since p → q = q implies p = 1 or q = 1 by
Lemma 4.2.

Further, suppose that L satisfies (Q1) and is subdirectly irreducible. Thus there is a
minimal nontrivial filter F . Assume that L/F is not divisible. Then there are [p]F , [q]F ∈ L/F
such that [1]F > [p]F > [q]F and [p]F ∗ ([p]F → [q]F ) < [q]F . Since [p ∗ (p → q)]F =
[p]F ∗ ([p]F → [q]F ) < [q]F , we get that p ∗ (p → q) < q ∗ s for any s ∈ F (because
q → p ∗ (p → q) 6∈ F ) but this is a contradiction by Lemma 4.4. Thus L/F is a basic hoop.
Assume that L/F is not a Wajsberg hoop. Thus [1, Theorem 3.6] gives us [p]F , [q]F such that
[p]F → [q]F = [q]F and [p]F 6= [1]F or [q]F 6= [1]F . By Lemma 4.2 we get that [q]F is the
maximum of the equivalence class containing [q]F w.r.t. the filter generated [p]F which is not
trivial. However, this is not possible, as L/F satisfies (Q1) by Lemma 4.5, this equivalence
class cannot possess a maximum by Lemma 4.3. Hence L/F is a Wajsberg hoop.
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Conversely, if L is a Wajsberg hoop then (Q1) is obviously valid in L. Thus assume that
L is not Wajsberg which is subdirectly irreducible with the minimal nontrivial filter F such
that L/F is a Wajsberg hoop and each [x]F 6= [1]F has no maximum. Suppose by the way
of contradiction that (Q1) is not valid in L. Then there are p, q ∈ L such that 1 > p > q
and (p → q) → q = 1. Thus p → q = q. From Lemma 4.2 it follows that q = max [q]F (p).
Since L/F is a Wajsberg hoop, we get that [1]F = [(p → q) → q]F = [p]F by Lemma 4.1.
Thus p ∈ F and q = max [q]F . As q < 1, q cannot belong to F . Thus [q]F 6= [1]F and has a
maximum which is a contradiction. �

Corollary 4.7 Let L be an ICRC. If L is Archimedean, then L satisfies (Q1).

Proof: If L is a Wajsberg hoop then it is obvious. Suppose that L is not a Wajsberg hoop.
Clearly L is simple, hence subdirectly irreducible and the minimal nontrivial filter is F = L.
Thus L/F is the trivial ICRC which is obviously a Wajsberg hoop. Furthermore, it follows
that L contains no equivalence class [x]F different from [1]F . Thus (Q1) is valid in L by
Theorem 4.6. �

It is a natural question to ask whether there is a non-Archimedean ICRC satisfying (Q1)
which is not a Wajsberg hoop. Such algebras exist as it is shown in the following example.

Example 4.8 Let R2 be the lexicographic product of two copies of the totally ordered ad-
ditive group of reals and Z− the set of non-positive integers. Consider the submonoid L of
R2 whose universe is the set F ∪G where

F = {〈0, y〉 ∈ R2 | y ∈ Z−} , G = {〈x, y〉 ∈ R2 | x < 0} .

Then L is clearly integral and even residuated. The corresponding residuum is computed as
follows:

〈a, b〉 → 〈c, d〉 =


〈0, 0〉 if 〈a, b〉 ≤ 〈c, d〉 ,
〈c− a, d− b〉 if a > c ,

〈0, bd− bc〉 if a = c and b > d,

where bxc is the greatest integer less than or equal to x. Thus L forms a cancellative ICRC
which is not divisible. The subset F is its minimum nontrivial filter. The quotient L/F is
isomorphic to the ICRC R− defined in Example 2.14 which is a Wajsberg hoop. Moreover,
each [〈x, y〉]F has no maximum for x < 0. Hence L satisfies (Q1) by Theorem 4.6.

Lemma 4.9 Let L be an ICRC satisfying (Q1) such that L is not a Wajsberg hoop. Then L
has a co-atom, i.e., the set L \ {1} has a maximum.

Proof: Suppose that M = L \ {1} has no maximum. Clearly
∨
M = 1. Observe that L

cannot be a basic hoop. Since it is not a Wajsberg hoop, it would not be indecomposable by
[1, Theorem 3.6], i.e. it would have to be an ordinal sum of at least two nontrivial components
A1 and A2. Let p ∈ A1 and q ∈ A2 such that 1 > p > q. Then (p → q) → q = q → q = 1.
Thus by (Q1) we would get p = 1 (a contradiction). Hence L cannot be divisible and there
are p, q ∈ L such that 1 > p > q and p ∗ (p→ q) < q. Since

∨
r∈M (q ∗ r) = q ∗

∨
M = q, there

is s ∈M such that p ∗ (p→ q) < q ∗ s which implies that (Q1) is not valid in L by Lemma 4.4
(a contradiction). �
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Lemma 4.10 Let L be an ICRC satisfying (Q1) and p, q ∈ L. If 1 > p > q then

((p→ q)→ q)2 < p .

Proof: First, assume that L is a Wajsberg hoop and ((p→ q)→ q)2 ≥ p. Since we assume
that L is Wajsberg hoop, we get (p→ q)→ q = p which implies p2 ≥ p, i.e., p2 = p. Thus p
is idempotent, i.e., either p = 1 which is not possible or p is a bottom element which also not
possible since p > q.

Hence assume that L is not a Wajsberg hoop. Then L is subdirectly irreducible and L/F
is a Wajsberg hoop by Theorem 4.6 (F is the minimal nontrivial filter) and there is a co-atom
a ∈ L by Lemma 4.9. Since (Q1) is valid in L, we have (p→ q)→ q ≤ a < 1. We claim that
there is x ∈ [p→ q]F such that x > p→ q. Indeed, either [p→ q]F 6= [1]F then the existence
follows from Lemma 4.3 or [p→ q]F = [1]F then take x = 1. Since F is generated by a, there
is n ∈ N such that

x ∗ an+1 ≤ p→ q < x ∗ an . (1)

Since x ∗ an > p → q, we get x ∗ an → q < p (if p ≤ x ∗ an → q then x ∗ an ≤ p → q). It
follows that

(p→ q)→ q ≤ x ∗ an+1 → q = a→ (x ∗ an → q) ≤ a→ p .

Thus (p→ q)→ q ≤ a→ p. From (p→ q)→ q ≤ a we obtain

((p→ q)→ q)2 ≤ a ∗ (a→ p) ≤ p .

Now it remains to show that p 6= ((p → q) → q)2. Suppose that p = ((p → q) → q)2.
Then

p = ((p→ q)→ q)2 ≤ a ∗ ((p→ q)→ q) ≤ a ∗ (a→ p) ≤ p ,

showing that all the terms above are equal. It follows x ∗ an+1 ∗ ((p → q) → q) = p ∗ x ∗ an.
Moreover, we have p∗x∗an > q because if p∗x∗an ≤ q then x∗an ≤ p→ q, contradicting the
inequality (1). Thus x∗an+1 ∗((p→ q)→ q) = p∗x∗an > q and (p→ q)→ q > x∗an+1 → q.
But from the first inequality in (1) we also get (p→ q)→ q ≤ x ∗ an+1 → q, and we reach a
contradiction. �

Theorem 4.11 Let L be an ICRC. Then (Q1) is valid in L iff (A2
1) is valid in L.

Proof: The right-to-left direction is obvious. Assume that L satisfies (Q1). The only
interesting case, when (A2

1) could fail, is the case when 1 > p > q. But in this case we have
((p→ q)→ q)2 < p by Lemma 4.10. �

Finally, it is possible to extend the previous results to all representable ICRLs. In order
to prove this we will use results from [25]. First, we have to prove the following lemma.

Lemma 4.12 Let L ∈ Q1. Then the following quasi-identity is valid in L:

((p→ q)→ q) ∨ r ≈ 1 ⇒ p ∨ q ∨ r ≈ 1 .

11



Proof: Assume that ((p→ q)→ q) ∨ r = 1. First, we will show that

((p→ q)→ q) ∨ r ≤ ((p ∨ r)→ q)→ q .

Clearly, (p→ q)→ q ≤ ((p∨r)→ q)→ q since→ is anti-tone in the first argument. Moreover,
r ≤ p ∨ r ≤ ((p ∨ r) → q) → q. Thus we obtain ((p → q) → q) ∨ r ≤ ((p ∨ r) → q) → q.
Consequently, ((p ∨ r)→ q)→ q = 1. Now, using (Q1) we get p ∨ q ∨ r = 1. �

Now using the previous lemma, [25, Corollary 9] tells us that the logic corresponding to
the quasi-variety Q1 is complete w.r.t. chains. Since (Q1) and (A2

1) are equivalent on chains
by Theorem 4.11, we obtain the following theorem.

Theorem 4.13 Let L ∈ ICRLC. Then (Q1) is valid in L iff (A2
1) is valid in L.

5 Subvarieties of ICRLC

In this section we deal with subvarieties of ICRLC obtained by a generalization of the identity
(A2

1), namely

(A2
n)

∧n
i=1((pi−1 → pi)→ pi)

2 ≤
∨n
i=0 pi.

The subvariety of ICRLC defined by (A2
n) will be denoted by An2 . Analogously, the subvariety

of CanICRLC defined by (A2
n) will be denoted by CanA2

n. Note that if pj−1 ≤ pj or pj−1 = 1
for some j ∈ {1, . . . , n}, then (A2

n) is valid.

Lemma 5.1 For all n ∈ N \ {0} we have A2
n ⊆ A2

n+1.

Proof: Suppose that L ∈ A2
n. Then

n+1∧
i=1

((pi−1 → pi)→ pi)
2 ≤

n∧
i=1

((pi−1 → pi)→ pi)
2 ≤

n∨
i=0

pi ≤
n+1∨
i=0

pi .

Thus L ∈ A2
n+1. �

Theorem 5.2 Let L be an ICRC with at most n nontrivial Archimedean classes. Then (A2
n)

is valid in L.

Proof: Clearly the only interesting case is when 1 > p0 > p1 · · · > pn. Then at least one
pair pj−1, pj must belong to one nontrivial Archimedean class C. By Proposition 2.10 there
is a principal filter FC corresponding to C and C = FC \ F where F is the predecessor of
FC . If we factorize FC/F , we get an Archimedean ICRC. Thus (Q1) is valid in FC/F by
Corollary 4.7. Moreover, by Lemma 4.10 we have [((pj−1 → pj) → pj)

2]F < [pj−1]F . Thus
((pj−1 → pj) → pj)

2 < pj−1. Since
∧n
i=1((pi−1 → pi) → pi)

2 ≤ ((pj−1 → pj) → pj)
2 and

pj−1 ≤
∨n
i=0 pi, we are done. �

12



Example 5.3 Let us denote the set of nonpositive integers by Z− = {z ∈ Z | z ≤ 0}. Then
Z− = (Z−,+,→,≤, 0), where + is the usual addition, ≤ is the usual order, and x → y =

min{0, y − x}, is an Archimedean cancellative ICRC. Let
→
Zn be the lexicographic product of

n copies of Z−, i.e.
→
Zn = Z−

→
× · · ·

→
× Z−. Then

→
Zn is a cancellative ICRC. Observe that

→
Zn

possesses n nontrivial Archimedean classes of the form

Ci = {〈0, . . . , 0, ai, . . . , an〉 ∈ (Z−)n | ai, . . . , an ∈ Z−} .

Theorem 5.4 The chain of varieties A2
n is strictly increasing.

Proof: Let
→
Zn be the ICRC from Example 5.3. First, we show that (A2

n−1) is not valid in
→
Zn. Let us evaluate the variables as follows:

p0 = 〈0, . . . , 0,−1〉 ,
p1 = 〈0, . . . ,−1, 0〉 ,

...

pn−1 = 〈−1, . . . , 0, 0〉 .

Then pi−1 → pi = pi and pn−1 < · · · < p1 < p0 < 〈0, . . . , 0〉. Thus ((pi−1 → pi) → pi)
2 =

〈0, . . . , 0〉 and p0 =
∨n
i=0 pi < 〈0, . . . , 0〉.

Second,
→
Zn consists of n nontrivial Archimedean classes, therefore (A2

n) is valid in
→
Zn by

Theorem 5.2. �

Theorem 5.5 Let L be an ICRC and n ≥ 2. Then L belongs to A2
n iff L/FM belongs to A2

1

where FM is the maximal filter such that FM is a subalgebra belonging to A2
n−1.

Proof: The maximal filter FM clearly exists and is the union of all filters belonging to A2
n−1.

The union is not empty as the trivial filter satisfies this condition.
(⇒): Assume that L ∈ A2

n. Let FM be the maximal filter belonging to A2
n−1. Suppose

that L/FM 6∈ A2
1. Then (Q1) is not valid in L/FM by Theorem 4.11. Thus there must be

p, q ∈ L such that [1]FM
> [p]FM

> [q]FM
, [(p → q) → q]FM

= [1]FM
and [p]FM

< [1]FM
. It

follows that (p→ q)→ q ∈ FM and p 6∈ FM . Moreover, we have [p→ q]FM
= [q]FM

. Further

[p2 → q]FM
= [p]FM

→ [p→ q]FM
= [p→ q]FM

= [q]FM
.

We claim that p → q = p2 → q. Since [p2 → q]FM
= [q]FM

, there is s ∈ FM such that
s ∗ (p2 → q) ≤ q. By residuation we get p2 → q ≤ s → q. As s > p ≥ p2, we have
s→ q ≤ p→ q ≤ p2 → q. Consequently, s→ q = p→ q = p2 → q. Thus p2 → q = p→ (p→
q) = p→ q and we obtain that p→ q = max [p→ q]F (p) by Lemma 4.2.

Now, since FM is maximal such that FM ∈ A2
n−1, the subalgebra F (p) 6∈ A2

n−1. Hence
there are p0, p1, . . . , pn−1 ∈ F (p) such that 1 > p0 > p1 > · · · > pn−1 and

n−1∧
i=1

((pi−1 → pi)→ pi)
2 >

n−1∨
i=0

pi .
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Moreover, pn−1 cannot belong to FM otherwise p0, . . . , pn−1 ∈ FM and (A2
n−1) is valid in FM .

Thus pn−1 ∈ F (p)\FM . Since p→ q = max [p→ q]F (p), we get that pn−1 → (p→ q) = p→ q
by Lemma 4.2. In particular, 1 > pn−1 > p→ q. Consequently, we obtain

n−1∧
i=1

((pi−1 → pi)→ pi)
2 ∧ ((pn−1 → (p→ q))→ (p→ q))2 =

=
n−1∧
i=1

((pi−1 → pi)→ pi)
2 >

n−1∨
i=0

pi =
n−1∨
i=0

pi ∨ (p→ q) .

Thus (A2
n) is not valid in L (a contradiction).

(⇐): Let L be an ICRC such that L/FM ∈ A2
1 where FM is the maximal filter such that

FM ∈ A2
n−1. Suppose that L 6∈ A2

n. Then there must be 1 > p0 > p1, · · · > pn such that

n∧
i=1

((pi−1 → pi)→ pi)
2 >

n∨
i=0

pi .

Suppose that p0, . . . , pn−1 ∈ FM . Since (A2
n−1) is valid in FM , we have

n−1∧
i=1

((pi−1 → pi)→ pi)
2 ≤

n−1∨
i=0

pi .

Thus we get a contradiction:

n∧
i=1

((pi−1 → pi)→ pi)
2 ≤

n−1∧
i=1

((pi−1 → pi)→ pi)
2 ≤

n−1∨
i=0

pi ≤
n∨
i=0

pi .

Hence at least pn−1 and pn cannot belong to FM . Since L/FM ∈ A2
1, we obtain [((pn−1 →

pn) → pn)2]FM
< [pn−1]FM

by Lemma 4.10. Consequently, ((pn−1 → pn) → pn)2 < pn−1.
Finally, we get a contradiction:

n∧
i=1

((pi−1 → pi)→ pi)
2 ≤ ((pn−1 → pn)→ pn)2 < pn−1 ≤

n∨
i=0

pi .

�

Theorem 5.6 The smallest variety containing all algebras from A2
n for all n ∈ N is the

variety ICRLC.

Proof: It is known that the variety ICRLC has the finite embeddability property (FEP)
(see [4, 7, 22]). Thus ICRLC is generated by its finite members. Since every finite ICRC L
consists of finitely many Archimedean classes, L belongs toA2

n for some n ∈ N by Theorem 5.2.
�

Theorem 5.7 The chain of subvarieties of CanICRLC given by identities (A2
n) is strictly

increasing and its limit is CanICRLC.
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Proof: The fact that the chain is strictly increasing follows already from the proof of Theo-

rem 5.4 if we observe that the used example
→
Zn in this proof belongs in fact to CanICRLC . The

second claim holds since CanICRLC is generated by members with finitely many Archimedean
classes as was shown in [17]. �

6 Applications to MTL-algebras

In this section we present several applications of the results above. First, we will deal with
subvarieties of MTL-algebras. Then we will show that the identities (A2

n) can express the
number of Archimedean classes under certain conditions. Finally, the consequences for basic
hoops and BL-algebras will be presented.

6.1 Subvarieties of MT L

Now we can employ the lattice isomorphism between ICRLC and SMT L (see Theorem 3.1)
together with Theorems 5.6 and 5.4 and show several facts on subvarieties of MT L.

Theorem 6.1 The chain of subvarieties of MT L given by identities (A2
n) is strictly increas-

ing and its limit is MT L.

Proof: Let L =
⊕n

i=0 Ai be the ordinal sum of n + 1 copies of the two-element Boolean
algebra 2. Then L has n + 1 nontrivial Archimedean classes (it is in fact the n + 2-valued
Gödel chain). Thus by Theorem 5.2 (A2

n+1) is valid in L. However, L does not satisfy (A2
n).

Let pn−i ∈ Ai \ {1} for 0 ≤ i ≤ n. Then (pi−1 → pi)→ pi = pi → pi = 1 for all i. Thus

n∧
i=1

((pi−1 → pi)→ pi)
2 = 1 > p0 ≥

n∨
i=0

pi .

For the second part of the claim, we can argue in the same way as in the proof of Theorem 5.6
since MT L satisfies FEP. �

Theorem 6.2 The chains of subvarieties 2⊕A2
n and 2⊕ CanA2

n are strictly increasing and
their limits are respectively SMT L and PMT L.

Proof: The claim for 2 ⊕ A2
n is an immediate consequence of Theorems 5.6 and 5.4 to-

gether with Theorem 3.1. The same is true for 2⊕ CanA2
n if we use Theorem 5.7 instead of

Theorem 5.6. �

We can also easily give an axiomatization of 2 ⊕ A2
n and 2 ⊕ CanA2

n as subvarieties of
SMT L and PMT L respectively.

Proposition 6.3 The variety 2⊕A2
n is a subvariety of SMT L defined by the identity (A2

n+1)
and 2⊕ CanA2

n is a subvariety of PMT L defined by the same identity.
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Proof: Let L be a generator of 2⊕A2
n, i.e. it is of the form 2⊕C for an ICRC C satisfying

(A2
n). We have to show that (A2

n+1), i.e.

n+1∧
i=1

((pi−1 → pi)→ pi)
2 ≤

n+1∨
i=0

pi ,

is valid in L. Clearly, if all pi’s are in C, then the inequality above is trivially satisfied
because C satisfies (A2

n). Thus the only case, which has to be discussed, is the case when
1 > p1 > · · · > pn > pn+1 = 0. Then

n+1∧
i=1

((pi−1 → pi)→ pi)
2 =

n∧
i=1

((pi−1 → pi)→ pi)
2 ∧ ¬¬pn+1 =

=
n∧
i=1

((pi−1 → pi)→ pi)
2 ∧ 1 =

n∧
i=1

((pi−1 → pi)→ pi)
2 ≤ 0 ∨

n∨
i=0

pi =
n+1∨
i=0

pi .

Conversely, assume that L ∈ SMT L, where (A2
n+1) is valid. Then by Lemma 2.4 L ∼=

2⊕C for an ICRC C. It suffices to show that (A2
n) is valid in C. Suppose not. Then there

are p0, . . . , pn ∈ C such that 1 > p0 > · · · > pn and

n∧
i=1

((pi−1 → pi)→ pi)
2 >

n∨
i=0

pi .

Then we have

n∧
i=1

((pi−1 → pi) → pi)
2 ∧ ¬¬pn =

n∧
i=1

((pi−1 → pi) → pi)
2 >

n+1∨
i=0

pi = 0 ∨
n+1∨
i=0

pi ,

showing that (A2
n+1) is not valid in L (a contradiction).

The proof for PMT L can be done analogously, using Lemma 2.5 instead of Lemma 2.4.
�

From the previous theorem we can also obtain a negative solution to Hájek’s problem
mentioned in the introduction.

Corollary 6.4 Let K be the class of ΠMTL-chains containing at most two nontrivial Archimedean
classes. Then the variety PMT L is not generated by K.

Proof: Since each ΠMTL-chain in K satisfies (A2
2) by Proposition 6.3, the variety generated

by K is strictly smaller than the variety PMT L by Theorem 6.2. �

6.2 Number of Archimedean classes

The identities (A2
n) in some cases express the number of Archimedean classes. We start with

a general theorem which can be applied to particular cases.

Theorem 6.5 Let K be a class of ICRCs satisfying the following conditions:
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1. K is closed under homomorphic images.

2. Let L ∈ K. Then (A2
1) is valid in L iff L is Archimedean.

Then an algebra L ∈ K satisfies (A2
n) iff L contains at most n nontrivial Archimedean classes.

Proof: The left-to-right direction follows from Theorem 5.2. Let L ∈ K satisfying (A2
n). We

prove the right-to-left direction by induction on n. For n = 1 the claim follows from the second
condition on K. Now assume that the claim holds for n− 1. Let FM be the maximum filter
such that FM is a subalgebra belonging to A2

n−1. Then FM contains at most n− 1 nontrivial
Archimedean classes by the induction assumption and L/FM belongs to A2

1 by Theorem 5.5.
The quotient L/FM also belongs to K by the first condition on K. Thus L/FM is Archimedean
(hence simple) by the second condition. Consequently, Con L/FM is just a two-element chain.
It is well known from universal algebra that Con L/FM ∼= [θFM

, θL] (see e.g. [5, Page 54,
Theorem 6.20]). Thus [θFM

, θL] = {θFM
, θL}. Further, we clearly have Con FM ∼= [θ{1}, θFM

]
by Theorem 2.6. Since FM has at most n − 1 nontrivial Archimedean classes, Con FM is a
chain containing at most n elements. Altogether, Con L = [θ{1}, θL] = [θ{1}, θFM

] ∪ [θFM
, θL]

has at most n+ 1 elements. Thus L has at most n nontrivial Archimedean classes. �

The first class of algebras, where Theorem 6.5 can be applied, is the case of complete
ICRCs. Our definition of completeness differs from the usual one since an ICRC need not
possess a bottom element. Precisely, we say that an ICRC is complete if each non-empty
subset has a supremum. Observe that a subset in this setting has an infimum iff it has a
lower bound.

Now it suffices to prove that the class of complete ICRCs satisfies the conditions from
Theorem 6.5.

Lemma 6.6 Let L be a complete ICRC. Then L satisfies (A2
1) iff L is Archimedean.

Proof: The left-to-right direction follows from Corollary 4.7 and Theorem 4.11. For the
right-to-left direction we can suppose that L satisfies (Q1) by Theorem 4.11. Assume that
L is not Archimedean, i.e. not simple. Then there is a nontrivial filter F such that F 6= L,
i.e. there is x 6∈ F . Note that x is a lower bound of F . By Lemma 4.3 each [x]F 6= [1]F has
no maximum. Hence F cannot have a minimum m (otherwise m→ x would be a maximum
of [x]F ). Thus the infimum i of F does not belong to F and clearly i = max [i]F which is
a contradiction with the fact that [i]F has no maximum. Consequently, L must be simple,
hence Archimedean. �

Lemma 6.7 Let L be an ICRC and F ∈ FL. If L is complete, then L/F is complete as well.

Proof: Let ∅ 6= M ⊆ L/F . If M has a maximum, then this maximum is a supremum as
well. Assume that M has no maximum. Let us define the following subset of L:

M ′ =
⋃

[x]F∈M

[x]F .

Observe that [x]F ∈ M iff x ∈ M ′. Since L is complete, there is a supremum of M ′, say m.
We claim that [m]F is a supremum of M . Clearly, [m]F ≥ [x]F for all [x]F ∈ M because
m ≥ x for any x ∈M ′. Suppose [y]F ≥ [x]F for all [x]F ∈M . Since we assume that M has no
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maximum, we have in fact [y]F > [x]F for all [x]F ∈M . Consequently, y > x for all x ∈M ′.
Thus y ≥ m showing that [y]F ≥ [m]F . �

Using Theorem 6.5 and the lemmata above we get the following theorem.

Theorem 6.8 Let L be a complete ICRC. Then (A2
n) is valid in L iff L has at most n

nontrivial Archimedean classes.

Another interesting class of algebras, where Theorem 6.5 can be applied, is the variety of
k-contractive MTL-algebras. These algebras were introduced in [6] as MTL-algebras satisfying
a sort of generalized contraction law xk ≈ xk−1. Since the class of k-contractive MTL-chains
is clearly closed under taking homomorphic images, it suffices to prove the following lemmata.

Lemma 6.9 Let L be an k-contractive MTL-algebra and F ∈ PL. Then each [x]F has a
minimum and a maximum.

Proof: Since F is a principal filter, it is generated by a single element, say a. Then ak is
idempotent and the minimum of F because L is k-contractive. We claim that x∗ak = min [x]F
and ak → x = max [x]F . Let y ∈ [x]F . Then x → y ∈ F , i.e. ak ≤ x → y showing that
x ∗ ak ≤ y. Further, we have y → x ∈ F , i.e. ak ≤ y → x. Consequently, y ≤ ak → x. �

Lemma 6.10 Let L be an k-contractive MTL-chain. Then L satisfies (A2
1) iff it is Archimedean.

Proof: The left-to-right direction follows from Corollary 4.7 and Theorem 4.11. Conversely,
assume that (A2

1) is valid in L. If L is not Archimedean (i.e. non-simple), then there must
be a nontrivial principal filter F such that F 6= L. Thus there is x ∈ L \ F . By Lemma 6.9
we get that [x]F has a maximum which is a contradiction by Lemma 4.3. �

Theorem 6.11 Let L be an k-contractive MTL-chain. Then (A2
n) is valid in L iff L has at

most n nontrivial Archimedean classes.

Corollary 6.12 The class of k-contractive MTL-algebras generated by chains containing at
most n Archimedean classes is axiomatized by (A2

n).

Let us denote the class of all k-contractive MTL-algebras by CkMT L.

Theorem 6.13 The chain of subvarieties of CkMT L given by identities (A2
n) is strictly

increasing and its limit is CkMT L.

Proof: The strictness can be proved by the same reasoning as in the proof of Theorem 6.1.
The fact the the limit of the chain is CkMT L follows since CkMT L satisfies the FEP (see [20]).

�
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6.3 Basic hoops and BL-algebras

Lemma 6.14 Let L be a totally ordered basic hoop. Then (A2
1) is valid in L iff L is inde-

composable (i.e. Wajsberg).

Proof: If L is indecomposable, then it is a Wajsberg hoop which satisfies (A2
1). Conversely,

assume that (A2
1) is valid in L. Then by Theorem 4.11 (Q1) is valid in L as well. Assume

that L ∼= A⊕B for some nontrivial totally ordered basic hoops. Let x ∈ A \ {1}. Then B is
clearly a nontrivial filter and [x]B = {x} which is a contradiction by Lemma 4.3. �

Theorem 6.15 A totally ordered basic hoop satisfies (A2
n) iff it is an ordinal sum consisting

of at most n indecomposable components.

Proof: Let L be a totally ordered basic hoop satisfying (A2
n). Suppose that L has more

than n indecomposable components, i.e. L ∼=
⊕n

i=0 Ai. Let pn−i ∈ Ai \ {1}. Then 1 > p0 >
· · · > pn and (pi−1 → pi)→ pi = 1 for all 1 ≤ i ≤ n. Consequently, we get

n∧
i=1

((pi−1 → pi)→ pi)
2 = 1 >

n∨
i=0

pi ,

showing that (A2
n) is not valid (a contradiction).

Conversely, suppose that L is an ordinal sum of at most n indecomposable components.
Again the only case when (A2

n) could fail is the case for 1 > p0 > · · · > pn. Since L has at most
n components, there must be j ∈ {1, . . . , n} such that pj−1 and pj are in the same component,
say A. By Lemma 6.14 the identity (A2

1) is valid in A. Thus ((pj−1 → pj)→ pj)
2 ≤ pj−1∨pj .

Consequently, we obtain

n∧
i=1

((pi−1 → pi)→ pi)
2 ≤ ((pj−1 → pj)→ pj)

2 ≤ pj−1 ∨ pj ≤
n∨
i=0

pi ,

showing that (A2
n) is valid in L. �

Corollary 6.16 The subvariety of basic hoops (BL-algebras) generated by ordinal sums of at
most n indecomposable totally ordered basic hoops is axiomatized by (A2

n).

Remark 6.17 In fact, in the previous corollary we can replace the identity (A2
n) by the

simpler identity (An):
n∧
i=1

((pi−1 → pi)→ pi) ≤
n∨
i=0

pi ,

obtaining the axiomatization presented in [1, Lemma 4.2]. This can be done since Lemma 6.14
can be easily improved as follows: a totally ordered basic hoop satisfies (A1) iff it is indecom-
posable (i.e. Wajsberg).

Theorem 6.18 The chain of subvarieties of BL given by identities (A2
n) is strictly increasing

and its limit is BL.
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Figure 1: Relations between considered subvarieties of MT L.

Proof: The strictness can be proved as in Theorem 6.13. The second part of the claim holds
since BL is generated by finite ordinal sums of finite Wajsberg hoops (see [1]). �

The relations between investigated varieties are depicted in Figure 6.3. The varieties of
Boolean algebras, Gödel algebras, MV-algebras, and product algebras are denoted respectively
by BA, G,MV, and P. In order to make the picture simpler, the relations from Proposition 6.3
between 2⊕A2

n and the subvariety of MT L defined by (A2
n+1) are not included.
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