MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

Ulrike Baur, Peter Benner
Fakultät für Mathematik, Technische Universität Chemnitz, Germany

Keywords: model reduction, hierarchical matrices, Sylvester equations, CrossGramian

Abstract

We consider linear time-invariant (LTI) systems of the following form $$
\Sigma:\left\{\begin{array}{ll} \dot{x}(t)=A x(t)+B u(t), & t>0, \\ y(t)=C x(t)+D u(t), & t \geq 0, \end{array} \quad x(0)=x^{0},\right.
$$ with stable state matrix $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$, arising, e.g., from the discretization and linearization of parabolic PDEs. Typically, in practical applications, we have a large state-space dimension $n=$ $\mathcal{O}\left(10^{5}\right)$ and a small input and output space, $n \gg m, p$. We further assume that the system is square, i.e., $p=m$. We show how to compute an approximate reduced-order system $\hat{\Sigma}$ of order $r \ll n$ with a balancing-related model reduction method. The method is based on the computation of the cross-Gramian X, which is the solution of the Sylvester equation

$$
A X+X A+B C=0 .
$$

As standard algorithms for the solution of Sylvester equations are of limited use for large-scale systems, we investigate approaches based on the matrix sign function method [2]. To make this iterative method applicable in the large-scale setting, we propose a modified iteration scheme for computing lowrank factors of the solution X and we incorporate structural information from the underlying PDE model into the approach. By using data-sparse matrix approximations, hierarchical matrix formats, and the corresponding formatted arithmetic we obtain an efficient solver having linear-polylogarithmic complexity [1]. We show that the reduced-order model can then be computed from the low-rank factors directly.

Note this continues the talk submitted by P. Benner.

References

[1] U. BAUR, Low rank solution of data-sparse Sylvester equations, Preprint \#266, MATHEON, Berlin, FRG, Oct. 2005. To appear in Numerical Linear Algebra with Applications.
[2] P. Benner, Factorized solution of Sylvester equations with applications in control, In Proc. Intl. Symp. Math. Theory Networks and Syst 2004.

