ON A QUADRATIC EIGENVALUE PROBLEM ARISING IN THE ANALYSIS OF DELAY EQUATIONS

Heike Faßbender

TU Braunschweig, Institut Computational Mathematics, 38023 Braunschweig, Germany email: h.fassbender@tu-bs.de

Keywords: polynomial eigenvalue problem, structured linearization, eigenvalue pairing

Abstract

The analysis of retarded linear m-delay time delay systems

$$\dot{x}(t) = \sum_{k=0}^{m} A_k x(t - h_k), \qquad t > 0 x(t) = \phi(t), \qquad t \in [-h_m, 0]$$

with $h_0 = 0 < h_1 < \ldots < h_m, x : [-h_m, \infty) \to \mathbb{R}^n, A_k \in \mathbb{R}^{n \times n}$, leads to a quadratic eigenvalue problem $Q(\lambda)u = 0$ where

$$Q(\lambda) = \lambda^2 E + \lambda F + G$$

with $E = A_m \otimes I$, $G = I \otimes A_m$, and $F = \sum_{k=0}^{m-1} I \otimes A_k e^{-i\phi_k} + A_k \otimes I e^{i\phi_k}$, $\phi_k = \omega h_k$ where \otimes denotes the Kronecker product.

As there exists a permutation matrix P such that $P^T(A \otimes B)P = B \otimes A$ for all real $n \times n$ matrices A, B, the quadratic matrix polynomial Q satisfies

$$P^{T} \operatorname{rev}(\overline{Q}(\lambda)) P = Q(\lambda), \tag{1}$$

where $\overline{Q}(\lambda) = \lambda^2 \overline{E} + \lambda \overline{F} + \overline{G}$ and $\operatorname{rev}(Q(\lambda)) = \lambda^2 Q(\frac{1}{\lambda})$. Matrix polynomials which satisfy (??) remind of the different palindromic polynomial definition given in [1], e.g., a palindromic polynomial is given by $\operatorname{rev}(Q(\lambda)) = Q(\lambda)$, while a \star -palindromic polynomial satisfies $\operatorname{rev}(Q^{\star}(\lambda)) = Q(\lambda)$, where \star is used as an abbreviation for transpose T in the real case and either T or conjugate transpose \star in the complex case.

Following the derivations in [1], we will discuss the spectral symmetry of matrix polynomials (??) as well the structured linearizations where we continue the practise stemming from Lancaster of developing theory for polynomials of degree k where possible in order to gain the most insight and understanding.

Acknowledgement: Work done in collaboration with Elias Jarlebring, TU Braunschweig, Germany and Nil and Steve Mackey, Western Michigan.

References

 D.S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN, Structured polynomial eigenvalue problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1029–1051.