# A TECHNIQUE FOR COMPUTING MINORS OF ORTHOGONAL MATRICES 

Christos Kravvaritis, Marilena Mitrouli<br>Department of Mathematics, University of Athens, Panepistemiopolis 15784, Athens, Greece, e-mail: ckrav@math.uoa.gr, mmitroul@math.uoa.gr

Keywords: orthogonal matrices, determinant calculus, symbolic computations, Gaussian elimination, growth problem


#### Abstract

We introduce a technique for computing all possible principal determinants (minors) of order $(n-j) \times(n-j)$ of various orthogonal $n \times n$ matrices, which works also for orthogonal matrices in a generalized sense, e.g. for binary Hadamard matrices $S\left(S^{T} S=\frac{1}{4}(n+1)\left(I_{n}+J_{n}\right)\right)$. The method takes advantage of the orthogonality property $A^{T} A=k I_{n}$ of an orthogonal matrix $A$ and of the symmetry of $B^{T} B$, where $B$ is a principal submatrix of $A$. The idea is facilitated by algebraic computations based on determinant formulas for matrices of the form $(k-\lambda) I_{n}+\lambda J_{n}$ and for block matrices of the form $\left[\begin{array}{c}B_{1} \\ B_{3} \\ B_{3}\end{array} B_{4}\right]$. The whole process can be standardized and implemented as a computer algorithm, which overcomes the difficulties occurring due to strenuous calculations done by hand. Theoretically, the algorithm works for every values $n$ and $j$, and specifically for small values of $j$ it provides general (i.e. they are valid of general $n$ ), analytical formulas. The symbolic implementation of the algorithm guarantees its precision. Finally, we justify the usefulness of such a method with an application to a problem of Numerical Linear Algebra, the growth problem. The results presented here are a generalization of an idea discussed in [2] for larger values $j$ and also for other classes of orthogonal matrices. Extensive information on orthogonal matrices can be found in [1].


Acknowledgement: This research was financially supported by PENED 03ED 740 of the Greek General Secretariat for Research and Technology.

## References

[1] A. V. Geramita and J. Seberry, Orthogonal designs: quadratic forms and Hadamard matrices, Marcel Dekker, New York-Basel, 1979.
[2] C. Kravvaritis, M. Mitrouli and J. Seberry, On the growth problem for skew and symmetric conference matrices, Linear Algebra Appl., 403 (2005), pp. 183-206.

