RITZ VALUES OF HERMITIAN MATRICES

Chris Paige, Ivo Panayotov
McGill University, $P Q$, Canada
e-mail: paige@cs.mcgill.ca, ipanay@math.mcgill.ca

Keywords: Hermitian matrices, invariant subspaces, Ritz approximations

Abstract

If $x, y \in \mathbb{C}^{n}$ are unit-length vectors $\left(x^{H} x=y^{H} y=1\right)$ where y is an approximation to an eigenvector x of $A=A^{H} \in \mathbb{C}^{n \times n}$ with $A x=x \lambda, \lambda=x^{H} A x \in \mathbb{R}$,

 then it is well known that the Rayleigh quotient $y^{H} A y$ satisfies$$
\begin{equation*}
\left|\lambda-y^{H} A y\right| \leq \sin ^{2} \theta(x, y) \cdot \text { spread }(A) \tag{1}
\end{equation*}
$$

Here if $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$ are the eigenvalues of A in descending order then $\operatorname{spread}(A) \equiv \lambda_{1}(A)-\lambda_{n}(A)$, and $\theta(x, y) \equiv \cos ^{-1}\left|x^{H} y\right| \in[0, \pi / 2]$ is the acute angle between x and y. This shows that the Rayleigh quotient approximation $y^{H} A y$ to the eigenvalue λ of A can be far more accurate than the approximation of range(y) to the invariant subspace range (x) of A. We generalize this result to a higher dimensional subspace \mathcal{Y} approximating an invariant subspace \mathcal{X}.
Let $X, Y \in \mathbb{C}^{n \times k}$ be such that $X^{H} X=Y^{H} Y=I_{k}$, the $k \times k$ unit matrix, where $\mathcal{Y} \equiv \operatorname{range}(\mathrm{Y})$ is an approximation to the invariant subspace $\mathcal{X} \equiv$ range (X) of A, so that $A X=X . X^{H} A X$. Let $\lambda\left(X^{H} A X\right)$ and $\lambda\left(Y^{H} A Y\right) \in \mathbb{R}^{k}$ be the vectors of eigenvalues in descending order of $X^{H} A X$ and $Y^{H} A Y$ respectively. The elements of $\lambda\left(Y^{H} A Y\right)$ are called Ritz values in the Rayleigh-Ritz method for approximating the eigenvalues $\lambda\left(X^{H} A X\right)$ of A. Such approximations are used in numerical computing, and computed for example via the Lanczos method for the Hermitian eigenproblem. Let $\theta(\mathcal{X}, \mathcal{Y}) \in \mathbb{R}^{k}$ be the vector of angles (in descending magnitude) between the subspaces \mathcal{X} and \mathcal{Y}, so that $\cos \theta(\mathcal{X}, \mathcal{Y})=$ $\left(\sigma_{k}, \ldots, \sigma_{1}\right)^{T}$ where $\sigma_{1} \geq \cdots \geq \sigma_{k}$ are the singular values of $X^{H} Y$. Then we show, see [1], that for many practical cases (c.f. (??))

$$
\begin{equation*}
\left|\lambda\left(X^{H} A X\right)-\lambda\left(Y^{H} A Y\right)\right| \prec_{w} \sin ^{2} \theta(\mathcal{X}, \mathcal{Y}) \cdot \operatorname{spread}(A) \tag{2}
\end{equation*}
$$

where " \prec_{w} " denotes weak (sub-) majorization: that is, if $u, v \in \mathbb{R}^{k}$ and $u^{\downarrow}=\left(u_{1}^{\downarrow}, \ldots, u_{k}^{\downarrow}\right)^{T}$ is u with its elements rearranged in descending order, then

$$
\begin{equation*}
u \prec_{w} v \quad \Leftrightarrow \quad \sum_{i=1}^{j} u_{i}^{\downarrow} \leq \sum_{i=1}^{j} v_{i}^{\downarrow} \quad \text { for } \quad j=1, \ldots, k . \tag{3}
\end{equation*}
$$

Let $e \equiv(1, \ldots, 1)^{T}$. We say u is majorized by $v($ written $u \prec v)$ if $e^{T} u=e^{T} v$ as well as (??). We suspect that the Ritz value result (??) holds in general, but have only been able to prove that a slightly weaker version always holds.

References

[1] M. E. Argentati, A. V. Knyazev, C. C. Paige, and I. Panayotov, Bounds on changes in Ritz values for a perturbed invariant subspace of a Hermitian matrix, submitted to SIAM J. Matrix Anal. Appl. in July 2006.

