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Abstract

We describe a MATLAB implementation [6] of the method LSTRS [5] for the
large-scale trust-region subproblem:

min
1

2
xTHx + gTx subject to (s.t.) ‖x‖2 ≤ ∆, (1)

where H is an n× n, real, large, symmetric matrix, g is an n-dimensional real
vector, and ∆ is a positive scalar. Problem (??) arises in connection with the
trust-region globalization strategy in optimization. A special case of problem
(??), namely, a least squares problem with a norm constraint, is equivalent to
Tikhonov regularization [7] for discrete forms of ill-posed problems.

LSTRS is based on a reformulation of the trust-region subproblem as a param-
eterized eigenvalue problem, and consists of an iterative procedure that finds
the optimal value for the parameter. The adjustment of the parameter requires
the solution of a large-scale eigenvalue problem at each step. The method relies
on matrix-vector products only and has low and fixed storage requirements,
features that make it suitable for large-scale computations. In the MATLAB
implementation, the Hessian matrix of the quadratic objective function can
be specified either explicitly, or in the form of a matrix-vector multiplication
routine. Therefore, the implementation preserves the matrix-free nature of the
method. The MATLAB implementation offers several choices for the eigen-
value calculation and it also allows the users to specify their own eigensolver
routine.
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We present a brief description of the LSTRS method from [5] and describe the
main components and features of the MATLAB software. We include com-
parisons with the following state-of-the-art, large-scale techniques for solving
problem (??): the Semidefinite Programming approach of Fortin and Wolkow-
icz [1], the Sequential Subspace Method of Hager [3], and the Generalized
Lanczos Trust Region method of Gould et al. [2] as implemented in the HSL
library [4]. We present examples of use of the software as well as results from
the regularization of large-scale discrete forms of ill-posed problems.
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