# A COUNTEREXAMPLE FOR CHARACTERIZING INVARIANT SUBSPACES OF MATRICES BY SINGULARITY SYSTEMS 

Kathrin Schreiber, Hubert Schwetlick<br>Dept. of Math., Dresden Univ. of Technology, D-01062 Dresden, Germany<br>$e$-mail: $\{$ Kathrin.Schreiber, Hubert.Schwetlick\} @tu-dresden.de

Keywords: eigenvalue, invariant subspace, singularity system, Newton


#### Abstract

Let $\lambda_{1}$ be a simple eigenvalue of a matrix $A$ with right and left eigenvectors $x_{1}, y_{1}$, resp., and $x_{1}^{H} x_{1}=y_{1}^{H} x_{1}=1$. Consider the singularity system $$
C(\lambda ; u, v)\left[\begin{array}{l} x  \tag{1}\\ \mu \end{array}\right]=\left[\begin{array}{cc} A-\lambda I & v \\ u^{H} & 0 \end{array}\right]\left[\begin{array}{l} x \\ \mu \end{array}\right]=\left[\begin{array}{l} 0 \\ 1 \end{array}\right]
$$


where $u, v$ are sufficiently good approximations to $x_{1}, y_{1}$, resp. Then the bordered matrix $C\left(\lambda_{1} ; u, v\right)$ is nonsingular so (1) uniquely defines $x=x(\lambda), \mu=$ $\mu(\lambda)$ for $\lambda$ close to $\lambda_{1}$, and for $\lambda=\lambda_{1}$ we have $x\left(\lambda_{1}\right)=x_{1} / u^{H} x_{1}, \mu\left(\lambda_{1}\right)=0$. Hence, $\lambda=\lambda_{1}$ may be determined by using the scalar singularity condition $\mu(\lambda)=e_{n+1}^{T} C(\lambda ; u, v)^{-1} e_{n+1}=0$ via, e.g., applying Newton's method as done in the Generalized Rayleigh Quotient Iteration of Schwetlick/Lösche [ZAMM 2000].
Now let $\operatorname{im} X_{1}, X_{1}^{H} X_{1}=I_{p}$, be a $p$-dimensional invariant subspace of $A$ which implies $A X_{1}-X_{1} \Lambda_{1}=0$ with $\Lambda_{1}=X_{1}^{H} A X_{1}$. With $U, V$ such that $\operatorname{im} U \approx$ $\operatorname{im} X_{1}, \operatorname{im} V \approx \operatorname{im} Y_{1}$ sufficiently good where $\operatorname{im} Y_{1}$ is the corresponding left invariant subspace with $Y_{1}^{H} X_{1}=I_{p}$, we try to define $X=X(\Lambda), M=M(\Lambda)$ as functions of $\Lambda$ by generalizing (1) to the block singularity system

$$
C(\Lambda ; U, V)[X, M]=\left[\begin{array}{c}
A X-X \Lambda+V M  \tag{2}\\
U^{H} X
\end{array}\right]=\left[\begin{array}{c}
0 \\
I_{p}
\end{array}\right]
$$

For $\Lambda=\Lambda_{*}=S^{-1} \Lambda_{1} S$ with $S=\left(U^{H} X_{1}\right)^{-1}$, the linear system (2) is solved by $X=X_{*}=X_{1} S, M=M_{*}=0$. Hence, when the linear operator $C\left(\Lambda_{*} ; U, V\right):[X, M] \rightarrow C\left(\Lambda_{*} ; U, V\right)[X, M]$ defined in (2) would be nonsingular, $[X, M]$ would be uniquely defined by (2) for $\Lambda$ close to $\Lambda_{*}$, and the $(p \times p)$ singularity condition $M(\Lambda)=0$ could be exploited for computing $\Lambda_{*}$ as in case $p=1$ above.

Since we did not succeed in proving nonsingularity of $C\left(\Lambda_{*} ; U, V\right)$ we started looking for a counterexample and, finally, constructed a $(5 \times 5)$-matrix $A$ with a two-dimensional simple invariant subspace such that even the optimal borderings $U=X_{1}$ (which leads to $\Lambda_{*}=\Lambda_{1}$ ) and $V=Y_{1}$ give an operator $C\left(\Lambda_{1}, X_{1}, Y_{1}\right)$ that has rank drop 1. Here we used that the Sylvester equation (2) can equivalently be written as standard linear system

$$
\mathcal{C}(\Lambda ; U, V)\left[\begin{array}{c}
\operatorname{vec}(X) \\
\operatorname{vec}(M)
\end{array}\right]=\left[\begin{array}{cc}
I_{p} \otimes A-\Lambda^{T} \otimes I_{n} & I_{p} \otimes V \\
I_{p} \otimes U^{H} & 0
\end{array}\right]\left[\begin{array}{c}
\operatorname{vec}(X) \\
\operatorname{vec}(M)
\end{array}\right]=\left[\begin{array}{c}
\operatorname{vec}(0) \\
\operatorname{vec}\left(I_{p}\right)
\end{array}\right] .
$$

