A Scalable Multi-level Preconditioner for Matrix-Free μ-Finite Element Analysis of Human Bone Structures

Peter Arbenz1

1Institute of Computational Science, ETH Zürich,

Coworkers

- Institute of Computational Science, ETH Zürich
 - Uche Mennel
 - Marzio Sala
 - Cyril Flaig

- Institute for Biomechanics, ETH Zürich
 - Harry van Lenthe
 - Ralph Müller
 - Andreas Wirth

- IBM Research Division, Zürich Research Lab
 - Costas Bekas
 - Alessandro Curioni
Outline of the talk

1. μFE Modeling of Trabecular Bone Structures
2. The Mathematical Model
3. Solving the system of equations
4. Algebraic multilevel preconditioning
5. Numerical experiments
6. Conclusions
The need for μFE analysis of bones

- **Osteoporosis** is disease characterized by low bone mass and deterioration of bone microarchitecture.
- Lifetime risk for osteoporotic fractures in women is estimated close to 40%; in men risk is 13%.
- Enormous impact on individual, society and health care systems (as health care problem second only to cardiovascular diseases).
- Since global parameters like bone density do not admit to predict the fracture risk, patients have to be treated in a more individual way.
- Today’s approach consists of combining 3D high-resolution CT scans of individual bones with a micro-finite element (μFE) analysis.
Cortical vs. trabecular bone
In vivo assessment of bone strength

High-res. pQCT → Create FE

Strength

Strains (%)

pQCT: Peripheral Quantitative Computed Tomography

Courtesy Harry van Lenthe
University and ETH Zurich

pQCT: Peripheral Quantitative Computed Tomography
The mathematical model

- Equations of linearized 3D elasticity (pure displacement formulation): Find displacement field u that minimizes total potential energy

$$
\int_{\Omega} \left[\mu \varepsilon(u) : \varepsilon(u) + \frac{\lambda}{2} (\text{div } u)^2 - f^T u \right] d\Omega - \int_{\Gamma_N} g^T_S u d\Gamma,
$$

with Lamé's constants λ, μ, volume forces f, boundary tractions g, symmetric strain tensor

$$
\varepsilon(u) := \frac{1}{2} (\nabla u + (\nabla u)^T).
$$

- Domain Ω is a union of voxels
Discretization using μFE

- Voxel has 8 nodes/vertices
- In each node we have 3 degrees of freedom: displacements in $(x-, y-, z\text{-direction})$
- In total 24 degrees of freedom
- Finite element approximation: displacements u represented by piecewise trilinear polynomials
- Strains / stresses computable by means of nodal displacements
Solving the system of equations I

- System of equation

\[Kx = b \]

- \(A \) is large (actually HUGE) sparse, symmetric positive definite.

- Approach by people of ETH Biomechanics: preconditioned conjugate gradient (PCG) algorithm
 - element-by-element (EBE) matrix multiplication
 \[
 K = \sum_{e=1}^{n_{el}} T_e K_e T_e^T, \tag{1}
 \]

 Note: all element matrices are identical!

- diagonal (Jacobi) preconditioning
- very memory economic, slow convergence as problems get big
Solving the system of equations II

- Our new approach: pcg which smoothed aggregation AMG preconditioning
 (It is known that this works, see Adams et al. [3])
- Requires assembling K
- Parallelization for distributed memory machines
- Employ software: Trilinos (Sandia Nat’l Lab)
 In particular we use
 - Distributed (multi)vectors and (sparse) matrices (Epetra).
 - Domain decomposition (load balance) with ParMETIS
 - Iterative solvers and preconditioners (AztecOO)
 - Smoothed aggregation AMG preconditioner (ML)
 - Direct solver on coarsest level (AMESOS)
Setup procedure for an abstract multigrid solver

1: Define the number of levels, \(L \)
2: \textbf{for} level \(\ell = 0, \ldots, L - 1 \) \textbf{do}
3: \quad \textbf{if} \(\ell < L - 1 \) \textbf{then}
4: \quad \quad Define prolongator \(P_\ell \);
5: \quad \quad Define restriction \(R_\ell = P_\ell^T \);
6: \quad \quad \(K_{\ell+1} = R_\ell K_\ell P_\ell \);
7: \quad \quad Define smoother \(S_\ell \);
8: \quad \textbf{else}
9: \quad \quad Prepare for solving with \(K_\ell \);
10: \quad \textbf{end if}
11: \textbf{end for}
Smoothed aggregation (SA) AMG preconditioner I

1. Build adjacency graph \(G_0 \) of \(K_0 = K \).
 (Take 3 \(\times \) 3 block structure into account.)

2. Group graph vertices into contiguous subsets, called aggregates. Each aggregate represents a coarser grid vertex.
 - Typical aggregates: 3 \(\times \) 3 \(\times \) 3 nodes (of the graph) up to 5 \(\times \) 5 \(\times \) 5 nodes (if aggressive coarsening is used)
 - ParMETIS
 - Note: The matrices \(K_1, K_2, \ldots \) need much less memory space than \(K_0 \)!
 - Typical operator complexity for SA: 1.4 (!!!)
Define a grid transfer operator:

- Low-energy modes, in our case, the rigid body modes (near-kernel) are ‘chopped’ according to aggregation:

\[B_\ell = \begin{bmatrix} B_1^{(\ell)} \\ \vdots \\ B_{n_{\ell+1}}^{(\ell)} \end{bmatrix} \]

- Let \(B_j^{(\ell)} = Q_j^{(\ell)} R_j^{(\ell)} \) be QR factorization of \(B_j^{(\ell)} \) then

\[B_\ell = \tilde{P}_\ell B_{\ell+1}, \quad \tilde{P}_\ell^T \tilde{P}_\ell = I_{n_{\ell+1}}, \]

with

\[\tilde{P}_\ell = \text{diag}(Q_1^{(\ell)}, \ldots, Q_{n_{\ell+1}}^{(\ell)}) \]

and

\[B_{\ell+1} = \begin{bmatrix} R_1^{(\ell)} \\ \vdots \\ R_{n_{\ell+1}}^{(\ell)} \end{bmatrix}. \]

Columns of \(B_{\ell+1} \) span the near kernel of \(K_{\ell+1} \).

- Notice: matrices \(K_\ell \) are not used in constructing tentative prolongators \(\tilde{P}_\ell \), near kernels \(B_\ell \), and graphs \(G_\ell \).
4 For elliptic problems, it is advisable to perform an additional step, to obtain smoothed aggregation (SA).

\[
P_\ell = (I_\ell - \omega_\ell D_\ell^{-1} K_\ell) \tilde{P}_\ell, \quad \omega_\ell = \frac{4/3}{\lambda_{\text{max}}(D_\ell^{-1} K_\ell)},
\]

smoothed prolongator

In non-smoothed aggregation: \(P_\ell = \tilde{P}_\ell \)

5 Smoother \(S_\ell \): polynomial smoother
 - Choose a Chebyshev polynomial that is small on the upper part of the spectrum of \(K_\ell \) (Adams, Brezina, Hu, Tuminaro, 2003).
 - Parallelizes perfectly, quality independent of processor number.
'Matrix-free' multigrid

- We do NOT form $K = K_0$ but do an element-by-element (EBE) matrix multiplication

$$K = \sum_{e=1}^{n_{el}} T_e K_e T_e^T$$

- In our implementation: P_0 is not smoothed.
- Matrices K_1, K_2, \ldots are formed.
- All graphs, including G_0 are constructed.
- Memory savings (crude approximation): $\frac{1.4}{0.4} = 3.5$
- Clever formation of K_1.
Procedure I

1. Definition of the aggregates on G_0.

2. Definition of the (tentative) prolongator P_0. This requires the aggregates defined in step 1, and the ‘near null space’.

3. Computation of the (i,j) block-elements of K_1 for non-smoothed aggregation:

$$K_1(i,j) = \Phi_i^T K_0 \Phi_j,$$

where Φ_i is the i-th block column of P_0.

If two Φ_j and Φ_k are “far-away”, we can group them together in a $\Phi' = \Phi_j + \Phi_k$, then compute $K_0 \Phi'$ with one matvec.
Procedure II

Courtesy Radim Blaheta, U. of Ostrava
Procedure III

4 Building K_1:
 - Construct (in parallel) the graph G_1 of K_1, by working on G_0
 - Color G_1 using (parallel) distance-2 coloring
 - Apply K_0 to all Φ_j belonging to the same color
 - Fewer colors for non-smoothed aggregation (typically from 15 to 25 colors)

5 Smoother for level 0:
 - Chebyshev polynomials
 - need to determine $D_0 = \text{diag}(K_0)$ with a distance-1 coloring
Weak scalability test

Problem size scales with the number of processors. Computations done on Cray XT3 at Swiss National Supercomputer Center (CSCS) and on IBM Blue Gene/L at Zürich Research Lab.
Weak scalability test: problem sizes

<table>
<thead>
<tr>
<th>name</th>
<th>elements</th>
<th>nodes</th>
<th>matrix rows</th>
<th>file size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c01</td>
<td>98'381</td>
<td>60'482</td>
<td>295'143</td>
<td>9</td>
</tr>
<tr>
<td>c02</td>
<td>774'717</td>
<td>483'856</td>
<td>2'324'151</td>
<td>74</td>
</tr>
<tr>
<td>c03</td>
<td>2'609'611</td>
<td>1'633'014</td>
<td>7'828'833</td>
<td>250</td>
</tr>
<tr>
<td>c04</td>
<td>6'164'270</td>
<td>3'870'848</td>
<td>18'492'810</td>
<td>593</td>
</tr>
<tr>
<td>c05</td>
<td>12'038'629</td>
<td>7'560'250</td>
<td>36'115'887</td>
<td>1'157</td>
</tr>
<tr>
<td>c06</td>
<td>20'766'855</td>
<td>13'064'112</td>
<td>62'300'565</td>
<td>1'859</td>
</tr>
<tr>
<td>c07</td>
<td>32'983'631</td>
<td>20'745'326</td>
<td>98'950'893</td>
<td>3'172</td>
</tr>
<tr>
<td>c08</td>
<td>49'180'668</td>
<td>30'966'784</td>
<td>147'542'004</td>
<td>4'732</td>
</tr>
<tr>
<td>c09</td>
<td>70'042'813</td>
<td>44'091'378</td>
<td>210'128'439</td>
<td>6'737</td>
</tr>
<tr>
<td>c10</td>
<td>96'003'905</td>
<td>60'482'000</td>
<td>288'011'715</td>
<td>9'235</td>
</tr>
<tr>
<td>c12</td>
<td>104'512'896</td>
<td>165'834'762</td>
<td>497'504'286</td>
<td>15'953</td>
</tr>
<tr>
<td>c14</td>
<td>165'962'608</td>
<td>263'271'435</td>
<td>789'814'305</td>
<td>25'327</td>
</tr>
<tr>
<td>c15</td>
<td>204'126'750</td>
<td>323'887'399</td>
<td>971'662'197</td>
<td>31'155</td>
</tr>
<tr>
<td>c16</td>
<td>247'734'272</td>
<td>392'912'120</td>
<td>1'178'736'360</td>
<td>37'798</td>
</tr>
</tbody>
</table>
Weak scalability of plain ML preconditioning (Cray XT3)

<table>
<thead>
<tr>
<th>CPUs</th>
<th>input</th>
<th>repart.</th>
<th>assembly</th>
<th>precond.</th>
<th>solution</th>
<th>output</th>
<th>total</th>
<th>iters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.25</td>
<td>2.28</td>
<td>6.25</td>
<td>8.58</td>
<td>28.9</td>
<td>0.10</td>
<td>47.3</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>1.27</td>
<td>3.84</td>
<td>6.64</td>
<td>9.03</td>
<td>31.0</td>
<td>0.52</td>
<td>52.3</td>
<td>53</td>
</tr>
<tr>
<td>27</td>
<td>2.00</td>
<td>4.18</td>
<td>7.03</td>
<td>9.67</td>
<td>34.2</td>
<td>0.78</td>
<td>57.9</td>
<td>56</td>
</tr>
<tr>
<td>64</td>
<td>3.65</td>
<td>4.20</td>
<td>7.12</td>
<td>10.1</td>
<td>32.6</td>
<td>1.33</td>
<td>58.9</td>
<td>53</td>
</tr>
<tr>
<td>125</td>
<td>5.03</td>
<td>4.78</td>
<td>7.26</td>
<td>15.9</td>
<td>32.7</td>
<td>2.33</td>
<td>68.0</td>
<td>52</td>
</tr>
<tr>
<td>216</td>
<td>8.23</td>
<td>4.92</td>
<td>7.26</td>
<td>15.9</td>
<td>32.3</td>
<td>3.81</td>
<td>72.5</td>
<td>51</td>
</tr>
<tr>
<td>343</td>
<td>9.58</td>
<td>5.27</td>
<td>7.38</td>
<td>16.1</td>
<td>31.6</td>
<td>5.25</td>
<td>75.2</td>
<td>49</td>
</tr>
<tr>
<td>512</td>
<td>17.3</td>
<td>5.39</td>
<td>7.29</td>
<td>17.0</td>
<td>30.2</td>
<td>8.03</td>
<td>85.3</td>
<td>47</td>
</tr>
<tr>
<td>729</td>
<td>21.0</td>
<td>6.18</td>
<td>7.36</td>
<td>24.0</td>
<td>30.2</td>
<td>11.0</td>
<td>99.8</td>
<td>45</td>
</tr>
<tr>
<td>1000</td>
<td>17.9</td>
<td>7.68</td>
<td>7.76</td>
<td>19.8</td>
<td>31.8</td>
<td>21.0</td>
<td>106.0</td>
<td>45</td>
</tr>
</tbody>
</table>

Problem size $n \approx \#\text{ CPUs} \times 295'143$

Convergence criterion: $\| \mathbf{b} - A\mathbf{x}_k \| \leq 10^{-5} \| \mathbf{b} - A\mathbf{x}_0 \| = 10^{-5} \| \mathbf{b} \|$.

Measurements by Uche Mennel (Inst. Comput. Science, ETH Zurich)
Weak scalability of plain ML preconditioning (cont’d)
Weak scalability of matrix-free preconditioning (Cray XT3)

<table>
<thead>
<tr>
<th>name</th>
<th>CPUs</th>
<th>t_{prec}</th>
<th>t_{solve}</th>
<th>t_{total}</th>
<th>n_{it}</th>
<th>χ</th>
<th>m_{prec}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c02</td>
<td>8</td>
<td>52.7</td>
<td>207.9</td>
<td>306.1</td>
<td>66</td>
<td>15</td>
<td>459</td>
</tr>
<tr>
<td>c04</td>
<td>16</td>
<td>73.5</td>
<td>198.4</td>
<td>415.6</td>
<td>58</td>
<td>16</td>
<td>437</td>
</tr>
<tr>
<td>c05</td>
<td>35</td>
<td>76.0</td>
<td>170.0</td>
<td>356.8</td>
<td>53</td>
<td>16</td>
<td>474</td>
</tr>
<tr>
<td>c07</td>
<td>85</td>
<td>82.1</td>
<td>192.4</td>
<td>436.9</td>
<td>53</td>
<td>17</td>
<td>505</td>
</tr>
<tr>
<td>c08</td>
<td>144</td>
<td>84.9</td>
<td>170.7</td>
<td>404.7</td>
<td>53</td>
<td>18</td>
<td>480</td>
</tr>
<tr>
<td>c09</td>
<td>183</td>
<td>104.0</td>
<td>188.9</td>
<td>476.5</td>
<td>52</td>
<td>16</td>
<td>517</td>
</tr>
<tr>
<td>c10</td>
<td>260</td>
<td>137.9</td>
<td>185.5</td>
<td>466.3</td>
<td>53</td>
<td>17</td>
<td>487</td>
</tr>
<tr>
<td>c12</td>
<td>460</td>
<td>155.6</td>
<td>185.6</td>
<td>479.9</td>
<td>53</td>
<td>18</td>
<td>507</td>
</tr>
<tr>
<td>c15</td>
<td>860</td>
<td>152.6</td>
<td>199.8</td>
<td>608.0</td>
<td>53</td>
<td>17</td>
<td>516</td>
</tr>
<tr>
<td>c16</td>
<td>1024</td>
<td>212.2</td>
<td>203.9</td>
<td>725.0</td>
<td>53</td>
<td>17</td>
<td>444</td>
</tr>
</tbody>
</table>

Convergence criterion: $\|b - Ax_k\| \leq 10^{-5}\|b - Ax_0\| = 10^{-5}\|b\|$.

Measurements by Cyril Flaig (Inst. Comput. Science, ETH Zurich)
Matrix-free weak scalability (cont’d)
Weak scalability of matrix-free preconditioning (Blue Gene/L)

<table>
<thead>
<tr>
<th>CPUs</th>
<th>input</th>
<th>repart.</th>
<th>assembly</th>
<th>precond.</th>
<th>solution</th>
<th>output</th>
<th>total</th>
<th>iters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.33</td>
<td>2.50</td>
<td>1.60</td>
<td>27.5</td>
<td>113</td>
<td>1.80</td>
<td>149</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>1.40</td>
<td>6.60</td>
<td>3.00</td>
<td>45.2</td>
<td>116</td>
<td>3.50</td>
<td>179</td>
<td>86</td>
</tr>
<tr>
<td>27</td>
<td>2.30</td>
<td>7.10</td>
<td>3.20</td>
<td>51.5</td>
<td>113</td>
<td>3.80</td>
<td>185</td>
<td>80</td>
</tr>
<tr>
<td>64</td>
<td>2.40</td>
<td>7.10</td>
<td>3.30</td>
<td>53.6</td>
<td>124</td>
<td>4.00</td>
<td>199</td>
<td>86</td>
</tr>
<tr>
<td>125</td>
<td>5.20</td>
<td>7.60</td>
<td>3.70</td>
<td>55.7</td>
<td>122</td>
<td>4.00</td>
<td>202</td>
<td>81</td>
</tr>
<tr>
<td>216</td>
<td>3.72</td>
<td>8.00</td>
<td>3.42</td>
<td>65.6</td>
<td>119</td>
<td>4.10</td>
<td>207</td>
<td>79</td>
</tr>
<tr>
<td>343</td>
<td>5.81</td>
<td>8.60</td>
<td>3.50</td>
<td>66.0</td>
<td>119</td>
<td>4.20</td>
<td>211</td>
<td>77</td>
</tr>
<tr>
<td>512</td>
<td>7.12</td>
<td>9.10</td>
<td>3.60</td>
<td>67.5</td>
<td>118</td>
<td>4.75</td>
<td>214</td>
<td>75</td>
</tr>
<tr>
<td>729</td>
<td>7.50</td>
<td>10.40</td>
<td>3.60</td>
<td>70.5</td>
<td>118</td>
<td>4.64</td>
<td>216</td>
<td>74</td>
</tr>
<tr>
<td>1000</td>
<td>9.78</td>
<td>12.03</td>
<td>3.67</td>
<td>87.0</td>
<td>126</td>
<td>4.70</td>
<td>248</td>
<td>77</td>
</tr>
</tbody>
</table>

Convergence criterion: \(\|b - Ax_k\| \leq 10^{-5}\|b - Ax_0\| = 10^{-5}\|b\|\).

Measurements by Costas Bekas (IBM Research Zurich)
Matrix-free weak scalability on BG/L (cont’d)
Human bone problems

Distal part (20% of the length) of the radius in a human forearm.
Human bone problems (cont’d)

Fixed problem size $n = 14'523'162$.

<table>
<thead>
<tr>
<th>p</th>
<th>12</th>
<th>20</th>
<th>40</th>
<th>58</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>110.4</td>
<td>116.2</td>
<td>82.7</td>
<td>70.2</td>
</tr>
<tr>
<td></td>
<td>951.6</td>
<td>699.6</td>
<td>311.3</td>
<td>182.8</td>
<td>185.3</td>
<td>163.1</td>
<td>125.2</td>
</tr>
</tbody>
</table>

Total CPU time in seconds required to solve the problem using matrix-ready (top) and matrix-free preconditioners (bottom) on p processors. The symbol † indicates failure to run because of lack of memory.
Human bone problems (cont’d)
Upshot on algebraic multigrid for μFE problems

1. If enough memory: assemble K and use “standard” smoothed aggregation with Chebyshev or symmetric Gauss-Seidel smoothers, diameter-3 aggregates.

2. If not enough memory: prepare K to be applied with EBE approaches, use matrix-free multigrid with Chebyshev smoother for level 0, use aggressive coarsening (50 to 200 nodes per aggregate on level 0).

Both approaches available through ML; see
Conclusions

- Our C++ code, ParFE, is a parallel highly scalable FE solver for bone structure analysis based on PCG with aggregation multilevel preconditioners, see http://parfe.sourceforge.net/
- On the CRAY XT3, all phases but the I/O scale very well
- For \(\gg 1000 \) processors, ParMETIS computes imbalanced partitions that can cause memory problems (as tested on 4K cpus on BG/L)
- Smoothed aggregation preconditioner not too sensitive to jumps in coefficients. (Results from problem sets not shown)
- The 200M degrees of freedom test is solved in less than 100 seconds on the Cray XT3
- The 1 billion degrees of freedom test is solved in about 12 minutes using pcg with matrix-free AMG preconditioning.
References I

