Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Oliver Ernst

Computational Methods with Applications
Harrachov, CR, August 19–25, 2007
Collaborators

- Catherine Powell, David Silvester
 University of Manchester, School of Mathematics,
 Manchester, UK

- Ingolf Busch, Michael Eiermann, Elisabeth Ullmann,
 TU Bergakademie Freiberg,
 Freiberg, Germany

Support: DAAD/British Council
Outline

- Random fields and the Karhunen-Loève expansion
- Discretization of the covariance operator
- Solution of the discrete eigenvalue problem
- A numerical example
Random Fields
Formally

- stochastic process indexed by a spatial coordinate \(x \in D \subset \mathbb{R}^d, \) \(D \) bounded, i.e.,

- measurable function \(a : D \times \Omega \to \mathbb{R}, \) where \((\Omega, \mathcal{A}, P)\) is a given probability space

- For \(\omega \in \Omega \) fixed, \(a(\cdot, \omega) \) is a realization of the random field, i.e., a function \(D \to \mathbb{R}. \)

- For \(x \in D \) fixed, \(a(x, \cdot) \) is a random variable (RV) w.r.t. \((\Omega, \mathcal{A}, P)\).
Notation

\[
\langle \xi \rangle := \int_{\Omega} \xi(\omega) \, dP(\omega)
\]

expected value of RV \(\xi : \Omega \rightarrow \mathbb{R} \)

\[
\bar{a}(x) := \langle a(x, \cdot) \rangle
\]

mean of RF \(a \) at \(x \in D \)

\[
\text{Cov}_a(x, y) := \langle (a(x, \cdot) - \bar{a}(x))(a(y, \cdot) - \bar{a}(y)) \rangle
\]

covariance of RF \(a \) at \(x, y \in D \)

\[
\text{Var}_a(x) := \text{Cov}_a(x, x)
\]

variance of RF \(a \) at \(x \in D \)

\[
\sigma_a(x) := \sqrt{\text{Var}_a(x)}
\]

standard deviation of RF \(a \) at \(x \in D \)

\[
L_P^2(\Omega) := \{ \xi : \langle \xi^2 \rangle < \infty \}
\]

RV of second order
A RF is of second order, if \(a(x, \cdot) \in L^2_P(\Omega) \) for all \(x \in D \).

Theorem (Karhunen-Loève expansion). Given a second order RF \(a = a(x, \omega) \) with continuous covariance function \(c(x, y) := \text{Cov}_a(x, y) \), denote by \(\{(\lambda_m, a_m(x))\} \) the eigenpairs of the (compact) integral operator

\[
C : L^2(D) \to L^2(D), \quad (Cu)(x) = \int_D u(y) c(x, y) \, dy,
\]

there exists a sequence \(\{\xi_m\}_{m \in \mathbb{N}} \) of random variables with

\[
\langle \xi_m \rangle = 0 \forall m, \quad \langle \xi_m \xi_n \rangle = \delta_{m,n} \forall m, n
\]

such that the **Karhunen-Loève (KL) expansion**

\[
a(x, \omega) = \bar{a}(x) + \sum_{m=1}^{\infty} \sqrt{\lambda_m} a_m(x) \xi_m(\omega)
\]

(KL)

converges uniformly on \(D \) and in \(L^2_P \).
Note:

- Covariance functions $c(x, y)$ are continuous on $\overline{D} \times \overline{D}$ as well as symmetric and of positive type.
- Therefore covariance operators C are compact, hence spectra $\Lambda(C)$ consist of countably many eigenvalues accumulating at most at zero.
- Covariance operators are selfadjoint and positive semidefinite.

Analogy

Singular value expansion of integral operator

$$A : L^2(D) \to L^2_P, \quad f(x) \mapsto (Af)(\omega) := \int_D f(x)a(x, \omega) \, dx,$$

$$A^* : L^2_P \to L^2(D), \quad \xi(\omega) \mapsto (A^*\xi)(x) = \int_\Omega \xi(\omega)a(x, \omega) \, dP(\omega)$$

$$C = A^* A.$$
Common Covariance Models

\[\text{Cov}_a(x, y) = c(x, y) = c(\rho), \quad \rho = \|x - y\| \]

exponential
\[c(r) = \sigma^2 e^{-\rho/\ell} \]

Bessel
\[c(r) = \sigma^2 \frac{\rho}{\ell} K_1 \left(\frac{\rho}{\ell} \right) \]

Gaussian
\[c(r) = \sigma^2 e^{-\rho^2/\ell^2} \]

\(\ell > 0 \) is a measure of the “correlation length”, here \(\ell = 0.1, 1, 2 \).
Variance

For normalized eigenfunctions $a_m(x)$,

$$\text{Var}_a(x) = c(x, x) = \sum_{m=1}^{\infty} \lambda_m a_m(x)^2,$$

$$\int_D \text{Var}_a(x) \, dx = \sum_{m=1}^{\infty} \lambda_m \langle a_m, a_m \rangle_D = \text{trace } C.$$

For constant variance (e.g., stationary RF),

$$\text{Var}_a \equiv \sigma^2 > 0, \quad \sum_m \lambda_m = |D| \sigma^2.$$
Truncated KL Expansion

For computational purposes, KL expansion truncated after M terms:

$$a^{(M)}(x, \omega) = \bar{a}(x) + \sum_{m=1}^{M} \sqrt{\lambda_m} a_m(x) \xi_m(\omega).$$

Truncation error

$$\langle \|a - a^{(M)}\|_D^2 \rangle = \sum_{m=M+1}^{\infty} \lambda_m.$$

Choose M such that sufficient amount of total variance of RF is retained.
Eigenvalue Decay

Roughly: the smoother the kernel, the faster \(\{\lambda_m\}_{m \in \mathbb{N}} \to 0 \).

More precisely: if \(D \subset \mathbb{R}^d \), then if the kernel function \(c \) is

- piecewise \(H^r \) : \(\lambda_m \leq c_1 m^{-r/d} \)
- piecewise smooth : \(\lambda_m \leq c_2 m^{-r} \) for any \(r > 0 \)
- piecewise analytic : \(\lambda_m \leq c_3 \exp(-c_4 m^{1/d}) \)

for suitable constants \(c_1, c_2, c_3, c_4 \).

Note: piecewise smoothness of kernel also leads to bounds on derivatives of eigenfunctions \(a_m \) in \(L^\infty(D) \).

Proven e.g. in [Schwab & Todor (2006)], [Todor (2006)]
Galerkin Discretization

- \mathcal{T}_h admissible finite element triangulation of D
- finite dimensional subspace of piecewise polynomials

\[\mathcal{V}^h = \{ \phi : D \rightarrow \mathbb{R} : \phi|_T \in \mathcal{P}_k \ \forall T \in \mathcal{T} \} \subset L^2(D). \]

- Discrete eigenvalue problem: find pairs (λ^h_m, a^h_m) such that

\[(Ca^h_m, \phi) = \lambda^h_m (a^h_m, \phi) \quad \forall \phi \in \mathcal{V}^h, \quad m = 1, 2, \ldots \]

 corresponds to generalized matrix eigenvalue problem

\[Cx = \lambda Mx, \quad [C]_{i,j} = (C\phi_j, \phi_i), [M]_{i,j} = (\phi_j, \phi_i), \]

\[i, j = 1, 2, \ldots, N = \dim \mathcal{V}^h. \]

- C large and dense, M can be made diagonal using suitable basis.
Discretization Error

Discrete operator given by \(C_h = P_h C P_h \), \(P_h \) the \(L^2(D) \) orthogonal projection to \(\mathcal{V}^h \).

Discrete eigenpairs \(\{ (\lambda^h_m, a^h_m) \}_{m=1}^N \)

If covariance operator is piecewise smooth, then for any \(r > 0 \)

\[
0 \leq \lambda_m - \lambda^h_m \leq K_r \left(h^{2(k+1)} \lambda_{m-r}^1 + h^{4(k+1)} \lambda_{m-2r}^1 \right),
\]

\[
\| (I - P_h) a_m \|_{L^2(D)} \leq K_r \lambda_{m-r}^k h^{k+1}.
\]

[Todor (2006)]
Solution of Matrix Eigenvalue Problem

- Only fixed number of leading eigenpairs required, suggests restarted Krylov subspace technique.

 We use the Thick-Restart Lanczos (TRL) method [Simon & Wu (2000)].

 Idea: limit dimension of Krylov space to fixed m, save some desired approximate eigenpairs, generate new Krylov space which contains these retained approximations (restart).

- Krylov methods require inexpensive matrix-vector product.

 We obtain this by replacing C by a hierarchical matrix approximation \tilde{C}, for which matrix vector products can be computed in $O(N \log N)$ operations [Hackbusch (1999)].
Thick-Restart Lanczos Cycle

(1) Given Lanczos decomposition of Krylov space \(\mathcal{K}_m(A, v) \)

\[
AQ_m = Q_m T_m + \beta_{m+1} q_{m+1} e_m^\top, \quad Q_m = [q_1, \ldots, q_m], \quad Q_m^\top Q_m = I_m,
\]

(2) compute eigenpairs \(T_m y_j = \vartheta_j y_j, j = 1, \ldots, m \),

(3) select \(k < m \) Ritz vectors to retain, \(Y_k := [y_1, \ldots, y_k] \),

(4) set \(\hat{Q}_k := Q_m Y_k, \hat{T}_k := \hat{Q}_k^\top T_m \hat{Q}_k \) to obtain

\[
A \hat{Q}_k = \hat{Q}_k \hat{T}_k + \beta_{m+1} \hat{q}_{k+1} s^\top \quad \text{with} \quad \hat{q}_{k+1} = q_{m+1} \quad \text{and} \quad s := Y_k^\top e_m,
\]

(5) extend \(\text{span}\{\hat{q}_1, \ldots, \hat{q}_{m+1}\} \) to Krylov space of order \(m \) with Lanczos-type decomposition

\[
A \hat{Q}_m = \hat{Q}_m \hat{T}_m + \beta_{m+1} \hat{q}_{m+1} e_m^\top
\]
After restart cycle, projection \hat{T}_m of A on new Krylov space in

$$A\hat{Q}_m = \hat{Q}_m\hat{T}_m + \hat{\beta}_{m+1}\hat{q}_{m+1}e_m^\top$$

has the form

$$\hat{T}_m = \begin{bmatrix}
\hat{T}_k & \hat{\beta}_m s \\
\hat{\beta}_m s^\top & \hat{\alpha}_{k+1} & \hat{\beta}_{k+1} \\
& \ddots & \ddots \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \hat{\beta}_m & \hat{\alpha}_m
\end{bmatrix}.$$

Note: Leading $k \times k$ block is diagonal.
Remarks:

- Mathematically equivalent to implicitly restarted Lanczos method and other augmented Krylov techniques, but more efficient.
- Takes advantage of symmetry (ARPACK uses full recurrences).
- Projected matrix \widehat{T}_k readily available ($= \text{diag}(\vartheta_1, \ldots, \vartheta_k)$).
- Eigenvector residual norms from coordinate calculations (like in standard symmetric Lanczos).
- Well-known reorthogonalization techniques can be incorporated.
- For covariance problem: no shift-invert techniques required.
- **Note:** Need efficient matrix-vector product.
Hierarchical Matrix Approximation

Idea: (recall survey in Monday’s plenary talk of W. Hackbusch)

- Partition dense matrix into square blocks of 2 types
 - near field blocks: computed and stored as usual
 - far field blocks: approximated by matrix of low rank UV^\top, computed by interpolation of kernel, store factors U, V.

- blocks correspond to clusters of degrees of freedom, i.e., clusters of supports of Galerkin basis functions

- block for pair of clusters s, t in near field if admissibility condition
 \[
 \min\{\text{diam}(D_s), \text{diam}(D_t)\} \leq \eta \text{ dist}(D_s, D_t)
 \]
 satisfied by associated domains, η is the admissibility parameter.
Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Harrachov 2007
Remarks:

- “Algebraic variant” of fast multipole method
- Admissibility parameter η scales with correlation length.
- Necessary smoothness requirements satisfied for all common covariance kernels.
- Resulting data-sparse representation of discretized integral operator can be applied to a vector in $O(N \log N)$ operations (for N DOF).
- Need efficient quadrature for near field.

An optimal approximation must thus balance the errors due to

- truncation of the KL series,
- Galerkin error in approximation $a^h_m \approx a_m$, $\lambda^h_m \approx \lambda_m$
- Lanczos approximation of discrete eigenpairs
- hierarchical matrix approximation $\tilde{C} \approx C$
Numerical Example

Bessel covariance kernel
\[
c(x, y) = \frac{\|x - y\|}{\ell} K_1 \left(\frac{\|x - y\|}{\ell} \right), \quad x, y \in D = [-1, 1]^2.
\]

Discretization: piecewise constant functions w.r.t. triangular mesh on \(D \)

Hierarchical matrix parameters:
- interpolation polynomial degree: 4
- admissibility constant: \(\eta = 1/\ell \)
- minimal block size: 62

Computations: MATLAB R2007a, Intel Xeon 5160, 3 GHz, 16 GB RAM
- calls to HLib-1.3 library (MPI Leipzig) via MEX
Some modes \((\ell = 0.5)\)
Performance of TRL

<table>
<thead>
<tr>
<th>ℓ</th>
<th>N</th>
<th># evs</th>
<th>% variance</th>
<th>m</th>
<th>restarts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>402</td>
<td>36</td>
<td>94.99</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1608</td>
<td>36</td>
<td>95.66</td>
<td>44</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6432</td>
<td>36</td>
<td>95.87</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>25728</td>
<td>36</td>
<td>95.88</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>102912</td>
<td>36</td>
<td>95.51</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>402</td>
<td>10</td>
<td>95.30</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1608</td>
<td>10</td>
<td>95.46</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6432</td>
<td>10</td>
<td>95.50</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>25728</td>
<td>10</td>
<td>95.51</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>102912</td>
<td>10</td>
<td>95.51</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>402</td>
<td>4</td>
<td>95.30</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1608</td>
<td>4</td>
<td>96.06</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6432</td>
<td>4</td>
<td>96.10</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>25728</td>
<td>4</td>
<td>96.10</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>102912</td>
<td>4</td>
<td>96.11</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Timings

generation of hierarchical matrix approximation

eigenvalue calculation

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques
Harrachov 2007
Conclusions

- Covariance eigenvalue problem challenging due to its size
- Can exploit regularity of covariance kernels
- Lanczos combined with hierarchical matrix approximation promising
- Becomes intractable for very small correlation lengths (too many relevant modes)

Ongoing Work

- more careful tuning of hierarchical matrix approximation parameters
- multiple eigenvalues (symmetries in the domain)
- extend optimal quadrature techniques to 3D
- higher order FE approximation