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1 Introduction

In [11, 12] Liesen and Strakoš considered, similarly to [3, 4, 5, 6, 7], the following convection-
diffusion model problem

−ν∇2u + w · ∇u = 0 in Ω = (0, 1)× (0, 1), u = g on ∂Ω, (1)

where ν is a scalar diffusion coefficient and w is the velocity field. Using the Streamline Upwind
Petrov Galerkin (SUPG) discretization [8, 1, 10, 6, 7], the coefficient matrix for the discretized
system takes the form

Ã = νAd + Ac + δ̂As, (2)

where Ad = 〈∇φj ,∇φi〉 represents the diffusion term, Ac = 〈w · ∇φj , φi〉 represents the convec-
tion term, and As = 〈w · ∇φj , w · ∇φi〉 is a stabilization term added to suppress nonphysical
oscillations. Here φj , j = 1, 2, . . . , are the bilinear finite element nodal basis functions for an N
by N grid with spacing h = 1/(N + 1) and 〈·, ·〉 denotes the L2 inner product on Ω. To obtain
efficient stabilization the parameter δ̂ is usually chosen in what has been shown to be a near
optimal way for one dimensional problems and what appears to be a reasonable way for higher
dimensional problems as well [3, 4], namely as

δ̂0 =
δ0h

‖w‖ , where δ0 =
1
2

(
1− 1

Ph

)
, (3)

and Ph ≡ h‖w‖/(2ν) is the mesh Peclet number. We will refer to δ0 as to the optimal tuning
parameter and to discretization with δ̂ = δ̂0 in (2) as to optimal stabilization. Also, any choice
of δ̂ in (2) that we consider will be of the form δ̂ = δh

‖w‖ for some tuning parameter δ.

In [7] it has been observed that the linear systems arising with optimal stabilization are in general
more rapidly solved by the GMRES method than systems corresponding to weaker or stronger
stabilization. This seems to be true for different choices of the velocity field w and different
boundary conditions. In our talk we will point out a way to explain this phenomenon in the
special case of a vertical wind w = [0, 1]T . In this case, it is possible to bring system matrices
to a very convenient form with the help of the discrete sine transformation introduced in [12].
This form yields a spectral decomposition that can be exploited in a convergence analysis based
on the following equality for GMRES residual norms (see, e.g. [9]),

‖rk‖ =
∥∥∥ eT

1 · [r0, Ar0, . . . , A
kr0]+

∥∥∥
−1

, (4)

where A is the transformed matrix, r0 the right hand side, e1 is the first column of the identity
matrix and X+ denotes the Moore-Penrose pseudoinverse of a matrix X.
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2 The linear systems

In this section we show how we can transform, with a vertical wind w = [0, 1]T , system matrices
to block diagonal form with tridiagonal Toeplitz blocks. We also give formulaes for the entries
and the eigenvalues of the system matrix (2) in dependency of the tuning parameter δ. With the
help of these formulaes we will be able to explain why the convergence of GMRES with optimal
stabilization is faster than with weaker or stronger stabilization.

Using the vertical line ordering for equations and unknowns, the N2 by N2 system matrix takes
the form

AV = AV (h, ν, δ) = νK ⊗M + M ⊗ ((ν + δh)K + G) , (5)

see, e.g., [2, Section 1.1] and [6, pp. 1081 and 1089]. Here

M =
h

6
(S + 4I + ST ), K =

1
h

(−S + 2I − ST ), G =
1
2
(−S + ST ), (6)

where I is the identity and S = [e2, . . . , eN , 0] is the down shift matrix, are the N by N mass, stiff-
ness and gradient matrices of the one dimensional constant coefficient convection-diffusion equa-
tion discretized on a uniform mesh using linear elements. The symmetric tridiagonal Toeplitz
matrices M and K can be diagonalized by the same matrix of eigenvectors [12]. Denoting this
matrix with U we transform the system matrix AV through

(U ⊗ I)AV (U ⊗ I) = ν(UKU)⊗M + (UMU)⊗ ((ν + δh)K + G) ≡ A. (7)

Elementary algebra shows that A is a block-diagonal matrix consisting of N nonsymmetric
tridiagonal Toeplitz blocks Tj , each of size N by N ,

A = diag(T1, . . . , TN ), Tj = γj S + λjI + µj ST , j = 1, . . . , N, (8)

for more details see [3], [4] and [12]. In [12] we find exact expressions, in dependency of the
tuning parameter δ, of the entries of Tj , namely

3λj = 2δhcj + 2ν
(
4− ωj

2

)
, (9)

−3µj = δhcj + ν(1 + ωj)− h

2
cj , (10)

−3γj = δhcj + ν(1 + ωj) +
h

2
cj , (11)

where cj = 2 + cos jπh and ωj = 2 cos jπh. We consider convection dominated problems and
hence assume that the mesh Peclet number satisfies Ph À 1 (with w = [0, 1]T , this means ν ¿ h).
In addition, we consider tuning parameters δ of the same order of magnitude as δ0 ≈ 1/2. Hence
ν ¿ δh is a realistic assumption. Suppose we have scaled the matrix A by −1/3, then according
to (9)-(11) the entries of the scaled matrix are given by

λj = −2δhcj +O (ν), µj = δhcj − h

2
cj +O (ν), γj = δhcj +

h

2
cj +O (ν). (12)

In our analysis we will exploit these simplified expressions of system matrix entries (note that
GMRES convergence speed is invariant under scaling of the system matrix).

As for eigenvalues, the eigenvalues of tridiagonal Toeplitz matrices are well-known; for the
matrix Tj they are given by

σjk = λj + 2
√

µjγj cos khπ, 1 ≤ j, k ≤ N, (13)
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see [12]. Now it easy to derive, by substituting (12) in (13), the following convenient expression
for the eigenvalues in dependence of δ,

σjk = 2δhcj

(
−1 +

√
1− 1

4δ2
+O(ν) cos khπ

)
, 1 ≤ j, k ≤ N. (14)

Using this eigenvalue formula we will show that the eigenvalues of the system matrix are extre-
mely close with optimal stabilization but grow away from each other as soon as the chosen
stabilization is weaker or stronger. We will explain, with the help of (4), that these growing
eigenvalue distances are the main reason for convergence delay with non-optimal stabilization.
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