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1 Introduction

This contribution deals with the numerical solution of elliptic boundary value problems with
unilateral boundary conditions using a fictitious domain method. Any fictitious domain formu-
lation [2] extends the original problem defined in a domain ω to a new (fictitious) domain Ω with
a simple geometry (e.g. a box) which contains ω. The main advantage consists in possibility
to use a uniform mesh in Ω leading to a structured stiffness matrix. This enables us to apply
highly efficient multiplying procedures [6].

Fictitious domain formulations of problems with the classical Dirichlet or Neumann boundary
conditions lead after a finite element discretization typically to algebraic saddle-point systems.
For their solution one can use the algorithm studied in [3] that combines the Schur complement
reduction with the null-space method. The situation is not so easy for unilateral problems since
their weak formulation contains a non-differentiable projection operator. Fortunately, a resulting
algebraic representation is described by a system that is semi-smooth in the sense of [1] so that
a generalized Newton method can be applied. This method has been already used in [5] for
solving complementarity problems. In our case each Newton step relates to a mixed Dirichlet-
Neumann problem and therefore the algorithm from [3] can be used for solving inner linear
systems. Due to the superlinear convergence rate of the Newton iteration [1], the computations
are only slightly more expensive than the solution of pure Dirichlet or Neumann problems.

In this paper we compare two variants of the fictitious domain method. The first one enforces
unilateral conditions by Lagrange multipliers defined on the boundary γ of the original domain ω.
Therefore the fictitious domain solution has a singularity on γ that can result in an intrinsic
error of the computed solution. The second one uses an auxiliary boundary Γ located outside
of ω on which we introduce a new control variable in order to satisfy the conditions on γ. In
the second approach the singularity is moved away from ω so that the computed solution is
smoother in ω. We shall experimentally show that the discretization H1-error is significantly
smaller in this case. For more details we refer to [4, 3].

2 Fictitious domain formulations

We shall consider the following unilateral problem in a bounded domain ω ⊂ R2 with the
Lipschitz boundary γ:

−∆u + u = f in ω,

u ≥ g,
∂u

∂nγ
≥ 0,

∂u

∂nγ
(u− g) = 0 on γ,





(1)
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where f ∈ L2
loc(R2), g ∈ H1/2(γ) are given functions and ∂

∂nγ
stands for the normal derivative

of a function on γ. We assume a sufficiently regular (weak) solution to (1) so that ∂u
∂nγ

∈ L2
+(γ).

Then the unilateral condition in (1) is equivalent to

∂u

∂nγ
= P (

∂u

∂nγ
− ρ(u− g)),

onto L2
+(γ) and ρ > 0 is arbitrary but fixed.

Let us consider a bounded domain Ω having a simple shape such that ω ⊂ Ω and let us construct
a closed curve Γ ⊂ Ω surrounding ω. Instead of (1), we propose to solve the extended problem
in Ω called the fictitious domain formulation:

Find (û, λ) ∈ H1
0 (Ω)×H−1/2(Γ) such that

(û, v)1,Ω = (f, v)0,Ω + 〈λ, v〉Γ ∀v ∈ H1
0 (Ω),

∂û|ω
∂nγ

∈ L2(γ),

∂û|ω
∂nγ

= P (
∂û|ω
∂nγ

− ρ(û|ω − g)),





(2)

where (· , ·)k,Ω denotes the scalar product in Hk(Ω), k ≥ 0 integer (H0(Ω) := L2(Ω)), and 〈·, ·〉Γ
is the duality pairing between H−1/2(Γ) and H1/2(Γ). We distinguish two cases: (i) the non-
smooth variant of (2), if γ ≡ Γ; (ii) the smooth variant of (2), if dist(γ, Γ) > 0. In both cases
u = û|ω is the (weak) solution to (1), while û is the first component of the solution to (2) [4].

3 Semismooth Newton method

We shall use same notation for the discrete analogies of û, λ, f and g. The algebraic problem
resulting from a finite element discretization of (2) reads as follows:

F (y) = 0, (3)

where F : Rn+m 7→ Rn+m is defined by

F (y) :=

(
Aû−B>

Γ λ− f

G(û)

)
, y :=

(
û

λ

)
,

G(û) := Cγ û−max{0, Cγ û− ρ(Bγ û− g)}
and the max-function is understood componentwisely. Here, A ∈ Rn×n denotes the standard
stiffness matrix, Bγ , BΓ ∈ Rm×n are the Dirichlet trace matrices related to γ, Γ, respectively,
Cγ ∈ Rm×n is the Neumann trace matrix on γ and f ∈ Rn, g ∈ Rm.

The equation (3) is nonsmooth due to the presence of the max-function. Fortunately, it is
semismooth in the sense of [1] and, therefore, the semismooth Newton method can be used. It is
well-known that the Newton iterations converge superlinearly and that they are equivalent with
an active-set type algorithm [5]. To this end we denote M := {1, 2, . . . , m} and, for S ⊆M, we
define the diagonal matrix D(S) by

D(S) = diag(s1, . . . , sm) with si =

{
1, i ∈ S,

0, i /∈ S.
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Algorithm ASM (Active-Set Method)

(0) Set k := 0 and choose ρ > 0, εu > 0 (εu = 10−5). Initialize u0 ∈ Rn and λ0 ∈ Rm.
(1) Define the inactive and active sets by:

Ik := {i ∈M : Cγ,iu
k − ρ(Bγ,iu

k − gi) ≤ 0},
Ak := {i ∈M : Cγ,iu

k − ρ(Bγ,iu
k − gi) > 0}.

(2) Solve: (
A −B>

Γ

D(Ik)Cγ + ρD(Ak)Bγ 0

)(
uk+1

λk+1

)
=

(
f

ρD(Ak)g

)
.

(3) Set err(k) := ‖uk+1 − uk‖/‖uk+1‖. If err(k) ≤ εu, return û := uk+1.
(4) Set k := k + 1 and go to step (1).

This algorithm has the finite terminating property provided that all linear systems in the step (2)
are solved exactly. Numerical experiments however show that an inexact implementation is more
efficient. In order to maintain the finite terminating property, we drive the precision control in
solving inner linear systems adaptively [4].

4 Numerical experiments

We illustrate the efficiency of the presented method on the slightly modified problem:

−∆u = 0 in ω,

u = gd on γd,
∂u

∂nγ
= 0 on γ0,

∂u

∂nγ
= gn on γn,

u ≥ g,
∂u

∂nγ
≥ 0,

∂u

∂nγ
(u− g) = 0 on γc,





(4)

with ω = {(x, y) ∈ R2|(x−0.5)2/0.42 +(y−0.5)2/0.22 < 1}, γ = γd∪γ0∪γn∪γc, gd = 2 sin(2ϕ),
gn = −10 and g = 5 sin(2ϕ)(r2 + r(cosϕ + sinϕ) + 0.5)1/2 − 1.5, where (ϕ, r) denotes the polar
coordinate. In the fictitious domain formulation we take Ω = (0, 1)×(0, 1); see Figures 1, 2. Our
discretization is based on the piecewise bilinear approximation of u over a uniform rectangulation
of Ω with a stepsize h and on the piecewise constant approximation of the normal derivative,
the Lagrange multiplier and the control variable, respectively, over partitions of γ, Γ with
a stepsize H. The curve Γ is constructed by shifting γ three h units in the direction of the
outward normal vector nγ and H/h = 5.

In Tables 1, 2 we report the number of primal variables (n), the number of active (mA = |A|)
and inactive (mI = |I|) control variables, the number of outer (Newton) iterations, the total
number of inner (BiCGSTAB) iterations, the computational time and the errors of approximate
solutions in the indicated norms (the comparisons are done with respect to the reference solution
computed on the fine mesh with h = 1/2048). From the errors, we determine the convergence
rate of fictitious domain approaches.
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Figure 1: Geometry.
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Figure 2: Obstacle g.

Step h n/mA/mI out./
P

inn. its. C.time[s] ErrL2(ω) ErrH1(ω) ErrL2(γ)

1/128 16641/4/8 8/46 0.8 4.8687e-003 2.3282e-001 2.5526e-002
1/256 66049/7/17 11/92 5.2 2.5485e-003 1.6791e-001 1.1830e-002
1/512 263169/14/36 9/123 46.7 1.4337e-003 1.8603e-001 6.6737e-003
1/1024 1050625/28/72 9/242 355.9 5.3726e-004 1.3110e-001 2.8188e-003

Convergence rates: 1.0369 0.2338 1.0362

Table 1: Non-smooth fictitious domain formulation (γ ≡ Γ).

Step h n/mA/mI out./
P

inn. its. C.time[s] ErrL2(ω) ErrH1(ω) ErrL2(γ)

1/128 16641/4/8 6/40 0.7 6.9482e-003 3.2016e-001 2.7923e-002
1/256 66049/7/17 7/52 3.3 2.4280e-003 1.5623e-001 1.1746e-002
1/512 263169/14/36 8/95 37.0 1.3418e-003 7.1610e-002 5.1939e-003
1/1024 1050625/28/72 9/189 284.5 8.1896e-004 4.4756e-002 2.7937e-003

Convergence rates: 1.0110 0.9641 1.1141

Table 2: Smooth fictitious domain formulation (γ 6≡ Γ).
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