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In this contribution we analyze the numerical behavior of several minimum residual methods,
which are mathematically equivalent to the GMRES method. Two main approaches are com-
pared: the one that computes the approximate solution (similar to GMRES) in terms of a Krylov
space basis from an upper triangular linear system for the coordinates, and the one where the
approximate solutions are updated with a simple recursion formula. We show that a different
choice of the basis can significantly influence the numerical behavior of the resulting implemen-
tation. While Simpler GMRES [2] and ORTHODIR [4] are less stable due to the ill-conditioning
of the basis used, the residual basis is well-conditioned as long as we have a reasonable residual
norm decrease. These results lead to a new implementation, which is conditionally backward sta-
ble, and, in a sense they explain the experimentally observed fact that the GCR [3] (also known
as ORTHOMIN [4] or GMRESR [5]) method delivers very accurate approximate solutions when
it converges fast enough without stagnation.
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