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The semi-coercive problem of a beam on a unilateral elastic subsoil of Winkler’s type is consid-
ered. The aim of this contribution is numerically illustrate some basic results of the problem,
which can be found in the articles [1] and [2]. Concretely, we are interested in dependence of the
problem solution on an external load, the error estimates of approximated solutions and the con-
vergence properties of used numerical methods subject to the load. The problem formulations
and the results are summarized in Section 1.

1 Semi-coercive problem with beam on unilateral elastic subsoil

Formulation of the problem. We consider a beam of the length l with free ends which is
situated in the interval Ω = (0, l), and assume that the beam is supported by a unilateral elastic
subsoil in the interval Ωs := (xl, xr), 0 ≤ xl < xr ≤ l. Such a subsoil is active only if the beam
deflects against it. Let E, I and q denote functions that represent, respectively, the Young’s
modulus of the beam material, the inertia moment of the cross-section of the beam and the
stiffness coefficient of the subsoil. The aim is to find the deflection w∗ of the axes of the beam
caused by the load of the beam.

The variational formulation of the problem has the form

(P )

{
find w∗ ∈ H2(Ω) : J(w∗) ≤ J(v) ∀v ∈ H2(Ω),
J(v) := 1

2 (a(v, v) + b(v−, v−))− L(v), v ∈ H2(Ω),

where
a(v1, v2) :=

∫

Ω
EIv′′1v′′2 dx, b(v1, v2) :=

∫

Ωs

qv1v2 dx

represent the work of the inner forces and the subsoil, respectively, and L ∈ (
H2(Ω)

)∗ represents
the work of the beam load.

Solvability and dependence on the load. Since the beam does not have fixed ends (it is
only laid on the subsoil), the problem solvability depends on the beam load. The existence and
uniqueness of the solution w∗ of the problem (P ) is ensured by the condition

F < 0 and xl < T < xr, (1)

where F := L(1) is the load resultant and T := L(x)/L(1) is the balance point of the load. The
condition (1) means that the load resultant is situated in Ωs and oriented against the subsoil.

To determine the dependence of the change of the problem (P ) solution on the change of the
load, we will consider the class Sδ,ξ,η of the loads L ∈ (

H2(Ω)
)∗ such that T ∈ (xl + δ, xr − δ),

F < −ξ < 0 and ‖L‖∗ ≤ η, with respect to positive parameters δ, ξ, η. Then there exists
a positive constant c which depends on the loads from Sδ,ξ,η only through the parameters δ, ξ, η
such that

‖w∗1 − w∗2‖2,2 ≤ c‖L1 − L2‖∗ ∀L1, L2 ∈ Sδ,ξ,η, (2)
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where w∗i = w∗i (Li) solves the problem (P ) with respect to the loads Li, i = 1, 2. Notice that
if δ → 0 or ξ/‖L‖∗ → 0 then c → +∞. Therefore the loads, for which the balance point T is
closed to the end points of the subsoil or the size of the load resultant is small with respect to(
H2(Ω)

)∗-norm of the load, will be called unstable.

Approximation of the problem. Let us define a partition τh, of the interval Ω = [0, l], with
the nodal points xj , j = 0, 1, . . . , N , and with the discretization parameter h. For a partition τh,
we will define the function space Vh ⊂ H2(Ω) of continuously differentiable and piecewise cu-
bic functions. The form b will be approximated by a numerical quadrature on each subsoiled
partition interval. Its approximation has a form

bh(v1, v2) :=
m∑

i=1

riv1(zi)v2(zi), v1, v2 ∈ H2(Ω),

where z1 < z2 < . . . < zm, are the points of the numerical quadratures and the coefficients ri

contain the products of the stiffness coefficients and weights of the numerical quadrature. From
a mechanical point of view, the subsoil is substituted by insulated “springs”.

The approximated problem corresponding to the partition τh will be denoted (Ph) and its so-
lution w∗h ∈ Vh. The solution w∗h is unique if the condition (1) holds and the discretization
parameter h is sufficiently small. It holds that w∗h → w∗ in H2(Ω) for h → 0. Moreover, if w∗

belongs to the sufficiently wide class of the functions from H4(Ω) and the numerical quadrature
is exact at least for polynomial of the first degree then the convergence order is two.

The algebraic form of the problem (Ph) will be denoted by (P) and has the form

(P)

{
find w∗ ∈ Rn : J(w∗) ≤ J(w) ∀w ∈ Rn,

J(w) := 1
2(Kw, w)n + 1

2 (D(Bw)−, (Bw)−)m − (f, w)n,

where n = 2N + 2, u−i := min{0, ui}, i = 1, 2, . . . , m, u ∈ Rm, and K ∈ Rn×n, f ∈ Rn,
D ∈ Rm×m, B ∈ Rn×m are, respectively, the stiffness matrix, the load vector, the diagonal
matrix containing coefficients ri and the matrix, which transforms the function values and
the values of the first derivatives at the nodal points xj , j = 0, 1, . . . , N , onto the points zi,
i = 1, . . . , m. The problem (P) can be equivalently rewritten as a non-linear system of the
equations:

find w∗ ∈ Rn : Kw∗ + BT D(Bw∗)− = f.

Let the matrix R ∈ Rn×2 given by the functions 1 and x represent all polynomials from P1.
Notice that KR = 0. Let us denote G := BR ∈ Rm×2 and e := RT f = (F, FT )T ∈ R2.

Descent direction method with and without projection. We will also define two families
of auxiliary problems. First one is created by the linear problems with bilateral elastic “springs”.
The concrete problem of this family is specified by a choice of the springs. The choice will be
represented by the diagonal matrix A ∈ Rm×m containing the numbers 0 and 1:

(PA) find w = w(A) ∈ Rn : (K + BT DAB)w = f,

The second family is created by the non-linear problems specified by a vector v ∈ Rn:

(Pv) find c = c(v) ∈ R2 : GT D(Bv + Gc)− = e.

For the vector v ∈ Rn, we will define the diagonal matrix A(v) ∈ Rm×m such that (A(v))ii = 1
if (Bv)i < 0, otherwise (A(v))ii = 0.

The following algorithms are based on a descent direction method without and with projection.
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Algorithm 1
Initialization

w(0) = 0,
A(0) = {1, . . . ,m}.

Iteration k = 0, 1, . . .

s(k), w(k) + s(k) solves (PA(k)
),

α(k) = arg min
0≤α≤1

J(w(k) + αs(k)),

w(k+1) = w(k) + α(k)s(k),
A(k+1) = A(w(k+1)).

Algorithm 2
Initialization

w(0) = Rc(0), c(0) solves (P0),
A(0) = A(w(0)),

Iteration k = 0, 1, . . .

s(k), w(k) + s(k) solves (PA(k)
),

α(k) = arg min
0≤α≤1

J(w(k) + αs(k)),

w̃(k) = w(k) + α(k)s(k),
c(k), c(k) solves (Pw̃(k)

),
w(k+1) = w̃(k) + Rc(k),
A(k+1) = A(w(k+1)).

If we denote wh,k ∈ Vh as a function corresponding to the vector w(k), which is generated
by one of these algorithms, then the sequence {wh,k}k converges uniformly (with respect to
sufficiently small h) to the solution w∗h of the problem (Ph) in H2(Ω) for both algorithms due
to the condition (1).

Algorithm 2 contains the step, where the problem (Pv) is solved in, contrary to Algorithm 1.
The problem (Pv) represents the projection P of the space Rm onto the set

Λ := {λ ∈ Rm | λ ≤ 0, GT Dλ = e}

with respect to the scalar product (D., .)m in Rm, since P (Bv) = (Bv + Gc)−, where c =
c(v) ∈ R2 solve the problem (Pv). Therefore the vectors (Bw(k))− belong to Λ, where w(k) are
generated by Algorithm 2. Since it also holds that (Bw∗)− ∈ Λ, the vectors w(k) have some
common properties, given by the properties of Λ, as the unknown vector w∗. For example,
the diameter of the set Λ is small for unstable loads. Thus, the vectors w(k) are closed to
the vector w∗ and we can expect the better convergence property for Algorithm 2 than for
Algorithm 1.

2 Numerical Examples

In this section, some theoretical results of the problem and the numerical methods will be
illustrated on numerical examples. In all the examples, we will consider the beam of the length
l = 1 m and the equidistant partition with 10 ∗ 2j , j = 1, 2, . . ., elements. We use the following
stopping criterion:

‖r(k)‖n

‖f‖n
≤ 10−8, r(k) := f −Kw(k) −BT DB(w(k))−

and the numerical quadratures, which are respectively denoted NQ1, NQ2, NQ3:
∫ 1

−1
φ(ξ) dξ ≈ 2φ(0),

∫ 1

−1
φ(ξ) dξ ≈ φ(−1) + φ(1),

∫ 1

−1
φ(ξ) dξ ≈ φ(−

√
3/3) + φ(

√
3/3).

Comparison of the algorithms. Let EI = 5 ∗ 105 Nm2, xl = 0.1 m, xr = 0.9 m and
q = 2∗107 Nm−2. At the end points 0, l of the beam, we will consider the point loads F0 and Fl.
In Example 1, we choose F0 = −5000 N , Fl = −5000 N and F0 = −5000 N , Fl = −1000 N in
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Example 2. The load is stable in Example 1, since the balance point T of the load lies in the
central part of the subsoil, contrary to Example 2. Dependence of the number of outer iterations
on the number of elements of the partition is shown in Table 1. The quadrature NQ3 is used.

Ex. 1 40 80 160 320 640 1280
ALG1 4 3 4 4 4 4
ALG2 3 3 3 3 3 3

Ex. 2 40 80 160 320 640 1280
ALG1 6 6 7 8 7 8
ALG2 2 2 2 2 2 2

Table 1: Numbers of outer iterations in dependence on the numbers of elements.

Notice that the number of outer iterations does not depend on refinement of the partition for
both algorithms. In Example 1, the numbers of outer iterations are practically the same for
both algorithms, contrary to Example 2, which justifies the theoretical result.

Dependence of the solution on the load. We investigate the influence of the small change
of the load on the change of the solution of the problem (P) in three examples. The load is
stable in Example 1 and unstable in Examples 2 and 3. Concretely, we evaluate the ratio

c :=
‖w1−w2‖A

‖w1‖A

‖f1−f2‖n

‖f1‖n

, ‖v‖2
A := (Av, v)n, A = K + BT DB,

where the vectors f1, f2 represent the loads and the vectors w1, w2 the corresponding solutions.

Let EI = 20 Nm2, xl = 0.2 m, xr = 0.8 m and q = 1.2 ∗ 106 Nm−2. We use the equidistant
partition with 80 elements and the numerical quadrature NQ3. We consider three constant
loads P1, P2, P3, which are situated respectively in the intervals (0 m, 0.1 m), (0.4 m, 0.6 m) and
(0.9 m, 1 m) in all the examples. The concrete values of the load and their small changes (in
brackets) are in Table 2.

P1 [Nm−1] P2 [Nm−1] P3 [Nm−1]
Ex. 1 -100 (-1) 0 -100 (-1)
Ex. 2 -100 0 -450 (-1)
Ex. 3 100 -110 100 (+1)

Table 2: Loads and their changes.

The ratios c are respectively 1.00, 25.83 and 44.53 for these examples, which shows that the
relative small changes of the unstable loads can cause the relative large changes of the solutions
(Examples 2,3), contrary to the stable load (Example 1).

Convergence properties of the numerical quadratures. Let EI = 1 Nm2, xl = 0.2 m,
xr = 0.8 m, q = 1 Nm−2 and let the load density have a form

f(x) =




−384

(
x− 1

2

)2 + 32, x ∈ (0, 1
5) ∪ (2

5 , 3
5) ∪ (4

5 , 1),

−16
15

(
x− 1

2

)6 + 4
3

(
x− 1

2

)4 − 385
(
x− 1

2

)2 + 148816
15000000 + 32, x ∈ (1

5 , 2
5) ∪ (3

5 , 4
5).

Then the exact solution of the problem (P ) is a function

w(x) = −16
15

(
x− 1

2

)6

+
4
3

(
x− 1

2

)4

−
(

x− 1
2

)2

+
148816

15000000
.
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Notice that w ∈ H4(Ω). For numerical quadratures NQ1, NQ2, NQ3 and different partitions,
the terms

‖w − wh‖2,2/h2, ‖v‖2
2,2 :=

∫ 1

0
(v′′)2 dx +

∫ 4/5

1/5
v2 dx and |w − wh|0,2/h2, |v|20,2 :=

∫ 1

0
v2 dx

are evaluated. The approximated values of the terms are described in Table 3.

‖w − wh‖2,2/h2 10 20 40 80 160
NQ1 1.0422 1.0606 1.0651 1.0663 1.0666
NQ2 1.0423 1.0606 1.0652 1.0663 1.0664
NQ3 1.0422 1.0606 1.0651 1.0663 1.0666

|w − wh|0,2/h2 10 20 40 80 160
NQ1 0.0575 0.0577 0.0577 0.0577 0.0585
NQ2 0.1559 0.1351 0.1289 0.1302 0.1388
NQ3 0.0005 0.0001 0.0000 0.0000 0.0017

Table 3: Error estimates of the quadratures in dependence on the number of elements.

The results confirm that the order of convergence is two for this example for all the quadratures.
The quadratures NQ1, NQ2 are exact for polynomials of the first degree, the quadrature NQ3

is exact for polynomials of the third degree. While the values of the first term are quite similar
for all the quadratures, the values of the second term are smaller for NQ3 than for NQ1 or NQ2.
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