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VŠB-Technical University of Ostrava

1 Introduction

The contact shape optimization problems is one of the computationally most challenging prob-
lems. The reason is that not only the cost function is a nonlinear implicit function of the design
variables, but that its evaluation requires also a solution of the highly nonlinear variational in-
equality which describes the equilibrium of a system of elastic bodies in mutual contact. Since
the cost function must be evaluated many times in the solution process, it is obvious that the
solution of contact problem is a key ingredient of any effective algorithm for the solution of
contact shape optimization problems.

The approach that we propose here is based on the Finite Element Tearing and Interconnecting
(FETI) domain decomposition method, which was originally proposed by Farhat and Roux [1]
for parallel solving of the linear problems described by elliptic partial differential equations. Its
key ingredient is decomposition of the spatial domain into non-overlapping subdomains that
are “glued” by Lagrange multipliers, so that, after eliminating the primal variables, the orig-
inal problem is reduced to a small, relatively well conditioned, typically equality constrained
quadratic programming problem that is solved iteratively. The time that is necessary for both
the elimination and iterations can be reduced nearly proportionally to the number of the pro-
cessors, so that the algorithm enjoys parallel scalability. Observing that the equality constraints
may be used to define so called “natural coarse grid”, Farhat, Mandel and Roux [2] modified the
basic FETI algorithm so that they were able to prove its numerical scalability, i.e. asymptotically
linear complexity.

If the FETI procedure is applied to an elliptic variational inequality, the resulting quadratic
programming problem has not only the equality constraints, but also the non-negativity con-
straints. Even though the latter is a considerable complication as compared with linear problems,
it seems that the FETI procedure should be even more powerful for the solution of variational
inequalities than for the linear problems. The reason is that FETI not only reduces the original
problem to a smaller and better conditioned one, but it also replaces for free all the inequali-
ties by the bound constraints [5]. Recently, Dostál and Horák [6] used the FETI method with
a natural coarse grid to develop a scalable algorithm for numerical solution of both coercive and
semicoercive variational inequalities.

In this talk, we exploit the parallel implementation of our scalable algorithm for contact problem
to the minimization of the the compliance of the system elastic bodies subject the volume
constraint and some additional constraints [7, 9, 10]. We start our exposition by recalling
some theoretical results and formulae for derivatives of the solution with respect to the design
variables. In particular, it turns out that the derivatives of the solution may be evaluated
by the solution of variational inequalities with the same operator as the state problem. After
identifying the subdomains with the bodies of the system and discretization, we describe our
Total FETI (TFETI, also all floating) method introduced independently in thesis by Of and
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by Dostál et al. [11]. TFETI based domain decomposition algorithm for the solution of the
resulting variational inequalities in two steps. First, using the duality theory, the problem to
find the minimum of the energy functional subject to the kinematically admissible displacements
is reduced to the contact interface. Then we exploit an efficient algorithm for the solution of
the quadratic programming problems with simple bounds and possibly some equalities. An
especially attractive feature of this approach is not only high precision of the gradient, but also
the fact that relatively expensive decomposition of the stiffness matrices of the subdomains is
carried out only once for each update of the design variables. Moreover, the decomposition
update concerns only the subdomains affected by the update and we usually have good initial
approximations for the solution.

2 Numerical experiments

We have tested our algorithm on the solution of a simple test problem. The problem was to
find the shape of the lower part of the upper body of the system of elastic bodies in Figure 1
so that the compliance of the system is minimal while the volume of the modified upper body
does not exceed the volume of the body in the original design. The system has been discretized
by the finite element method, so that the discretized system had 3444 nodal variables with
41 nodes in potential contact. The latter number is the number of dual variables for standard
FETI method. The Poisson ratio of both bodies was 0.3, the Young modulus of the upper
and the lower body was 210000MPa and 100000MPa, respectively. The distributed force with
density -1000MPa was acting on the upper surface of the upper body. The bodies were fixed on
the right and left in the x-direction, while zero y-displacements were prescribed on the bottom
boundary of the lower body. It was also required that the bodies do not penetrate in the reference
configuration. The design is controlled by vertical movement of six points that are uniformly
distributed on the lower boundary of the upper body. The problem has been preprocessed on the
system ODESSY developed on Aalborg University in Denmark. Example of resulting sensitivity
analysis is depicted on Figure 2.

Table 1 summarize results from solution of the state problem and semi-analytical design sen-
sitivity analysis for each design variable (DV). The first part presents the problem size and
number of conjugate gradient iterations of the classical FETI method. We can see that number
of dual variables were reduced from 41 Lagrange multipliers to 12 multipliers on active contact
interface for sensitivity analysis. The second part collects results from solution by Total FETI
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Figure 1: Definition of test problem.

ODESSY

Name: scont2

Date: Jul 18 2000 22:33

DSA of
Y Disp.

  5.376E-03

  4.963E-03

  4.549E-03

  4.135E-03

  3.722E-03

  3.308E-03

  2.894E-03

  2.481E-03

  2.067E-03

  1.653E-03

  1.240E-03

  8.260E-04

  4.124E-04

 -1.309E-06

 -4.150E-04

Figure 2: Sensitivity analysis for 5th design
variable.
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Sensitivity analysis
Method Data State problem DV1 DV2 DV3 DV4 DV 5 DV6
FETI Primal var. 3444 3444 3444 3444 3444 3444 3444

Dual var. 41 12 12 12 12 12 12
CG steps 61 7 8 8 8 8 7

TFETI Primal var. 3444 3444 3444 3444 3444 3444 3444
Dual var. 166 137 137 137 137 137 137
CG steps 108 32 32 30 30 30 36

Table 1: Comparison of classical FETI and Total FETI methods.

method. 125 Dirichlet boundary conditions were prescribed introducing dual variables. There-
fore also the dimension of dual problem was approximately four time larger than in the case of
the state problem and more than ten times larger in the case of sensitivity analysis. Although
the number of iterations is in the case of Total FETI method always greater than in the case
of classical FETI method, this number of iterations grows more slowly than dimension of dual
problem. This means that the spectra of the Total FETI operator is much more suitable for
solution by conjugate gradient based methods than in the case of classical FETI. In addition
the problematic identification of the defect and kernels of stiffness matrix, which is numerically
very unstable namely in the case of subdomains with different dimensions, is resolved very easily
with the a priori known kernels in the case of the Total FETI method.
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