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1 Introduction

An important ingredient in development of effective methods for the solution of very large prob-
lems is identification of the algorithms that can solve some special cases with the optimal (i.e.
asymptotically linear) complexity. For example, the interior point methods were applied success-
fully to the solution of very large problems of nonlinear optimization with many constraints and
tens of thousands decision variables observing that the Hessian matrix with a special pattern of
the distribution of the nonzero elements may be decomposed with nearly linear complexity [7].

In this paper, we review our recent algorithm [2] for the solution of the convex equality con-
strained quadratic programming problems. This algorithm can be implemented in such a way
that, for the class of problems with the spectrum of the Hessian matrix in a given positive
interval, it can find approximate solutions at the cost proportional to that of the matrix-vector
multiplication. If applied to the class of problems with the sufficiently sparse Hessian and the
constraint matrix, then the algorithm is optimal.

We have tested our algorithms by solving the class of well conditioned problems of varying
dimensions with the quadratic form qt defined for t ∈ {2, 3, . . .} by the symmetric Toeplitz
matrix A = At of the order 2 ∗ t2 determined by the nonzero entries a11 = 12, a12 = a1,t = −1
and by the vectors b = bt defined by the entries bi = −1, i = 1, . . . , 2 ∗ t. Using the Gershgorin
theorem, it is easy to see that the eigenvalues λi of any At satisfy 8 ≤ λi ≤ 16. The equality
constraints were defined by the matrix C = Ct with t rows comprising 2 ∗ t2 entries which are
zeros except ci,t2−i+1 = 1 and ci,t2+i = −1, i = 1, . . . , t.

In the whole paper, q(x) = 1
2xT Ax− bT x will always denote a strictly convex quadratic function

defined on Rn, with the Hessian matrix ∇2q = A ∈ Rn×n symmetric positive definite and
x, b ∈ Rn. The eigenvalues of A will be denoted λi(A),

λmin(A) = λ1(A) ≤ . . . ≤ λn(A) = λmax(A) = ‖A‖.

The Euclidean norm and the A−energy norm of x will be denoted by ‖x‖ and ‖x‖A, respectively.
Thus ‖x‖2 = x>x and ‖x‖2

A = x>Ax. Analogous notation will be used for the induced matrix
norm.

2 Equality constrained problems

We shall start with the problem of finding the minimizer of the quadratic function q(x) subject
to the linear equality constraints, that is

minimize q(x) subject to x ∈ ΩE (2.1)
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with ΩE = {x ∈ Rn : Cx = d}, C ∈ Rm×n, and d ∈ Rm. We require neither that C is a full row
rank matrix nor m ≤ n, but we shall assume that d belongs to the range of C to guarantee that
ΩE is not empty. Our development is based on the augmented Lagrangian method [1] which
reduces (2.1) to a sequence of the problems of the form

minimize L(x, µk, ρk) subject to x ∈ Rp (2.2)

where
L(x, µk, ρk) = q(x) + (µk)T (Cx− d) +

ρk

2
‖Cx− d‖2 (2.3)

is known as the augmented Lagrangian function, µk = (µk
1, . . . , µ

k
m)T is the vector of the La-

grange multipliers for the equality constraints, and ρk is the penalty parameter. The precision of
the approximate solution xk of the auxiliary problems will be measured by the Euclidian norm
of the feasibility error and of the gradient of the augmented Lagrangian. The latter is always
denoted by g, so that

g(x, µ, ρ) = ∇xL(x, µ, ρ) = Ax− b + CT µ + ρCT (Cx− d). (2.4)

Our algorithm with the adaptive precision control reads as follows.

Algorithm 2.1. (Semi-monotonic augmented Lagrangians for equality constraints
(SMALE)
Given η > 0, β > 1, M > 0, ρ0 > 0, and µ1 ∈ Rm , set k = 0.
Step 1. {Inner iteration with adaptive precision control.}

Find xk such that

‖g(xk, µk, ρk)‖ ≤ min{M‖Cxk − d‖, η}. (2.5)

Step 2. {Update µ.}
µk+1 = µk + ρk(Cxk − d). (2.6)

Step 3. {Update ρ provided the increase of the Lagrangian is not sufficient.}
If k > 0 and

L(xk, µk, ρk) < L(xk−1, µk−1, ρk−1) +
ρk

2
‖Cxk − d‖2 (2.7)

then
ρk+1 = βρk, (2.8)

else
ρk+1 = ρk. (2.9)

Step 4. Set k = k + 1 and return to the Step 1.

In Step 1 we can use any convergent algorithm for minimizing the strictly convex quadratic
function such as the conjugate gradient method [1]. Algorithm 2.1 differs from those considered
by Hager [8] and Dostál, Friedlander and Santos [5] by the condition on the update of the
penalization parameter in Step 3.

Algorithm 2.1 has been proved to be correctly defined and to enjoy a kind of optimal convergence
of the feasibility error [2]. To present our optimality result related to the conjugate gradient
implementation of Step 1, let T denote any set of indices and assume that for any t ∈ T there
is defined a problem

minimize qt(x) s.t. x ∈ Ωt
E (2.10)
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with Ωt
E = {x ∈ Rnt : Ctx = 0}, qt(x) = 1

2xT Atx − bT
t x, At ∈ Rnt×nt symmetric positive

definite, Ct ∈ Rmt×nt , and bt, x ∈ Rnt .

Theorem 2.2. Let {xk
t }, {µk

t } and {ρt,k} be generated by Algorithm 2.1 for (2.10) with ‖bt‖ ≥
ηt > 0, β > 1, M > 0, ρt,0 = ρ0 > 0, µ0

t = 0. Let 0 < amin < amax and 0 < cmin < cmax be
given constants. Let Step 1 be implemented by the conjugate gradient method which generates
the iterates xk,0

t , xk,1
t , . . . , xk,l

t = xk
t for the solution of (2.10) starting from xk,0

t = xk−1
t with

x−1
t = 0, where l = lkt is the first index satisfying

‖g(xk,l
t , µk

t , ρk)‖ ≤ M‖Ctx
k,l
t ‖ (2.11)

or
‖g(xk,l

t , µk
t , ρk)‖ ≤ ε‖bt‖min{1, M}. (2.12)

Let the class of problems (2.10) satisfies

amin ≤ λmin(At) ≤ λmax(At) = ‖At‖ ≤ amax and cmin ≤ σmin(Ct) ≤ ‖Ct‖ ≤ cmax, (2.13)

where σmin(Ct) denote the least nonzero singular value of Ct. Then the following statements
hold:
(i) Algorithm 2.1 generates an approximate solution xkt

t of any problem (2.10) which satisfies

‖xk − x‖ ≤ ε‖bt‖ (2.14)

at O(1) matrix-vector multiplications by the Hessian of the augmented Lagrangian Lt for (2.10).
(ii) The images of the Lagrange multipliers CT µk are bounded and converge to CT µ, where µ
denotes any vector of Lagrange multipliers of the solution.
Proof: See [4].

We have implemented Algorithm 2.1 in Matlab and solved a class of problems of the varying
dimension defined in the introduction. We solved the problem with ηt = ‖bt‖, β = 10, ρ =
200,M = 1 and µ0 = 0 using the stopping criterium ‖gt(x, µ, ρ)‖ ≤ 10−5‖bt‖ and ‖Ctx‖ ≤
10−5‖bt‖. The results are in Table 2.1.

Table 1. Performance of the SMALE

Equality constrains cg Outer
=bandwidth Dimension n iterations iterations

10 200 25 4
50 5000 22 4

100 20000 18 3
250 125000 18 3
500 500000 17 3

We conclude that we can observe optimality in practice for well conditioned problems. More
numerical experiments and theoretical results may be found in [2, 4].
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3 Conclusions

Theoretical results concerning optimality of the recently proposed algorithms for equality con-
strained quadratic programming were presented and illustrated by numerical experiments. An
interesting feature of the presented algorithm is its capability to find the approximate solution
of the class of problems with the uniformly bounded spectrum of the Hessian matrix at O(1)
matrix-vector multiplications. No assumptions concerning regularity of solution are used and
the results are valid even for linearly dependent constraints. The results may be generalized to
bound and equality constrained problems [3, 6].
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