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In this contribution we investigate numerical aspects of classification using
various implementations of Fisher’s linear discriminant analysis (FLDA). FLDA
is based on maximizing the ratio of between-group variance to within-group
variance of given variables. The maximization problem is frequently solved by
reducing it to the symmetric generalized eigenproblem defined by the between-
group and the within-group covariance matrices. Unfortunately, these matrices
are singular in classification tasks where the number of given variables exceeds
the number of objects for training. Consequently, efficient numerical solution
of the eigenproblem becomes a challenging problem (see, e.g. [1]) and several
techniques to handle the singularity have been proposed in the literature about
FLDA (see, e.g. [2]). In comparative studies of these techniques, however,
assessment of classification performance more or less discards numerical aspects
such as computational or storage costs.

We focus on the relation between implementation and performance of FLDA.
We give a comparison of a number of popular FLDA implementations including
detailed information about their numerical stability, storage costs, computa-
tional costs and estimation of computational error. Moreover, we provide nu-
merical examples by applying the discussed methods to a particular protein clas-
sification problem (see, e.g. [3]). The differences of classification performance
are striking. An implementation based on reduction to a classical eigenproblem
via Moore-Penrose pseudeoinverses outperforms all other strategies, including
the Support Vector Machines approach that is generally considered the most
powerful for the given data. We discuss some consequences of this observation
and possible extension to other types of problems and conclude with a brief
overview of relevant software.
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