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1 Introduction

The GMRES method [14] ranks among the most popular methods to solve a large, sparse and
nonsymmetric linear system

Ax = b, (1)

where the matrix A ∈ Rn×n is nonsingular and b, x ∈ Rn. The kth GMRES iterate xk minimizes
the residual norm ‖b−As‖ over all elements s of the affine subspace

x0 +Kk(A, r0), (2)

where x0 is the initial guess, r0 = b−Ax0 and Kk(A, r0) is the kth Krylov subspace,

Kk(A, r0) ≡ span{r0,Ar0, . . . ,Ak−1r0}.

To compute iterates, the GMRES method exploits an orthogonal basis Vk of Kk(A, r0) satisfying

AVk = VkHk + ṽk+1e
T
k , (3)

where Hk ∈ Rk×k is upper Hessenberg and ṽk+1 is the unscaled (k + 1)st basis vector. Be-
cause of the residual minimizing property, GMRES convergence curves do not increase and,
in exact arithmetics, the solution is found after at most n steps. Although in practice we are
often interested only in a good approximation of the exact solution, in many applications the
system dimension is so large that even the computation of a satisfactory approximation is too
expensive for today’s high performance computers. This is due to the fact that in the GMRES
method computational and storage costs per iteration grow with the iteration number. A cur-
rently used remedy is restarting the method after a fixed, relatively small number of steps. As
GMRES residual norms do not increase, every restart brings us closer to the solution, or, in the
worst case, it leaves the approximation unchanged. The latter scenario is called stagnation and
represents the main drawback of restarted GMRES. Many techniques to overcome stagnation
have been proposed in the literature, for example augmentation of Krylov subspaces [9, 10],
implicit polynomial filtration [12] of Arnoldi vectors, deflation through preconditioning [2, 5],
exploitation of inner-outer cycles [13, 15]. In this contribution we describe an alternative strat-
egy to accelerate restarted GMRES. It is based on a specific rank one update of the system
matrix [3, 4].

2 A rank one updated system matrix

Consider the modified system matrix

Â := A− byT , (4)
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where b is the right hand side of (1) and y ∈ Rn is a free parameter vector. If we assume Â is
nonsingular, then with the Sherman-Morrison formula (see e.g. [8]), the solution x of (1) equals

x = A−1b = (Â + byT )−1b = Â
−1

b− yT Â
−1

b

1 + yT Â
−1

b
Â
−1

b. (5)

Computation of the right hand side of (5) involves solving the auxiliary system defined as

Âx̂ = b. (6)

Once a satisfactory approximation x̂k to the solution x̂ of (6) is found, we obtain the back-
transformed iterate x̄k for the original system (1) by approximating (5) as

x = A−1b = x̂− yT x̂

1 + yT x̂
x̂ =

1
1 + yT x̂

x̂ ≈ 1
1 + yT x̂k

x̂k ≡ x̄k ∈ x̂0 +Kk(Â, r̂0), (7)

provided yT x̂k 6= −1. Solving (1) with formula (7) makes sense when the residual norms of the
auxiliary system (6) converge faster than those of the original system. This is the case when
the Krylov subspaces of the auxiliary system have more favorable properties with regards to the
GMRES process. The kth Krylov subspace generated by Â equals

Kk(Â, r̂0) = Kk(A− byT , r̂0) = span{r̂0,Ar̂0 − (yT r̂0) b , . . . , (A− byT )k−1r̂0}.

There are good reasons for using the zero initial guess in GMRES processes [11]. With the initial
guesses x̂0 = 0 = x0,

Kk(Â, r̂0) = Kk(Â, b) = Kk(A, b) = Kk(A, r0), (8)

and consequently, iterates of the form (2) for (1) are taken from the same subspace as the back-
transformed iterates (7). As GMRES iterates are defined by their residual norm minimizing
property, this means that x̄k can never yield a smaller residual norm than xk. But with nonzero
initial guesses back-transformed iterates might yield residual norms that converge faster than
the ones obtained from the original iterates of the form (2).

When we apply the restarted GMRES method, then the initial guess of every restart cycle con-
sists of the approximation obtained from the previous cycle and is in general not zero anymore.
Hence the Krylov subspaces generated by (6) can differ from those belonging to (1) and we may
attempt to improve the spaces of (6) through special choices of the parameter vector y. This is
the main idea of our approach. Having found such an y, we restart GMRES applied to (6) until
we have found a satisfactory approximation x̂k of x̂ and we back-transform according to (7).

3 Convergence of the rank one updated system

We now concentrate on the choice of the parameter vector y in (4). A good choice will yield
an auxiliary system (6) whose residual norms converge faster than those of the original system
when restarted GMRES is applied. In addition, back-transformation with (7) should not cause a
serious loss of quality. We briefly discuss two classes of choices of y, connected with two different
classes of system matrices.

If the matrix A is normal, convergence can be related to eigenvalues and we may design a
parameter vector that eliminates convergence hampering eigenvalues. The following result has
been proved in [4].
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Theorem 3.1 Let the matrix B ∈ Rl×l and the vector c ∈ Rl be such that the Krylov subspace
Kl(B, c) has full dimension and let {θ1, . . . , θl} be a set of real and complex conjugate values.
Then there exists a vector z ∈ Rl such that B− czT has the eigenvalues θ1, . . . , θl.

The proof, which was inspired by the proof of the main result in [7], shows that prescription of
the spectrum of the modified system matrix (4) is too expensive for a large system dimension n.
The eigenvalues of the small Hessenberg matrix Hk = VT

k AVk from (3), however, approximate
the eigenvalues of A. Moreover, the spectrum of the Hessenberg matrix Ĥk = VT

k ÂVk =
Hk −VT

k byTVk generated by GMRES applied to (6) with x̂0 = 0, approximates the spectrum
of Â. Hence with Theorem 3.1 we can prescribe the eigenvalues of Ĥk, and presume that the
eigenvalues of Â are close. Using this strategy, one has to assure that the rank one matrix
byT does not remove A too far from normality, otherwise it is not certain anymore whether a
,,harmless” spectrum has any positive influence on convergence [7].

In the nonnormal case, it is in general not clear what properties of A and r0 cause restarted
GMRES to converge slowly or even to stagnate. It has been proved that given a non-increasing
sequence of real values and a set of real and complex conjugate values, there exists a class of
right hand sides and matrices whose spectrum is the set of real and complex conjugate values
such that GMRES applied to linear systems with these matrices and right hand sides yields a
sequence of residual norms equal to the given sequence of real values [1, 6, 7]. In the special
case of a system matrix of the form Â = A− byT we can choose y such that Â belongs to the
class of matrices generating a given convergence speed [3, 4]:

Theorem 3.2 Let f0 ≥ f1 ≥ f2 . . . ≥ fk > 0, k < n, be a non-increasing sequence of real values
with ‖b‖ = f0 and let us choose the initial guess x̂0 = 0 to solve the system (6) with system
matrix Â = A − byT . If the Krylov subspace Kk(A, b) has full dimension, then there exists at
least one y ∈ Rn such that the residual vectors r̂j obtained by application of the GMRES method
to the system (6) satisfy

‖r̂j‖ = fj , 0 ≤ j ≤ k.

The proof is based on the observation that the convergence speed of GMRES depends on the
subspaces ÂKj(Â, b) = (A− byT )Kj(A− byT , b), see [6], which we can modify with the para-
meter vector y. We propose to apply Theorem 3.2 by defining an auxiliary system whose first
k residual norms converge faster than the corresponding norms of the original system. When
restarting this auxiliary system we might expect that also the first k iterations (or possibly even
more) of every restart cycle converge fast and that back-transformation with (7) accelerates the
original restarted process, or even overcomes its stagnation.

4 Open Questions

The techniques mentioned in the previous section have shown to be able to overcome stagnation
of restarted GMRES in many numerical experiments. When we try to modify the spectrum of
normal matrices, the succeeding of our approach depended essentially on the quality of the used
approximate eigenvalues. This holds in fact for many other GMRES accelerating techniques
too. One has to carefully compare these with our strategy to be able to say which of them is
fastest, most stable, least demanding with regards to storage costs, etc...

When matrices are further from normal and when we use the more heuristical idea of prescribing
initial residual norms, it is less clear why the one stagnation can be overcome but the next could
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not. In particular, the influence of the choice of initial residual norms on the quality of the
back-transformation has to be better understood. In addition, we were surprised to notice
that the strategy worked especially well for many linear systems arising from discretized partial
differential equations, but we are not able to say why this is so.
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