On fundamentals of total least squares problems

Iveta Hnětynková ${ }^{\dagger}$ and Martin Plešinger ${ }^{\ddagger}$ and Zdeněk Strakoš ${ }^{\dagger}$
\dagger Faculty of Mathematics and Physics, Charles University, and Institute of Computer Science, Academy of Sciences, Czech Republic, hnetynkova@cs.cas.cz, strakos@cs.cas.cz
\ddagger Faculty of Mechatronics, Technical University of Liberec, and Institute of Computer Science, Academy of Sciences, Czech Republic, mata@cs.cas.cz

Keywords : total least squares, minimization formulation, core problem

Consider an overdetermined linear approximation problem $A x \approx b$, where A is a real m by n matrix, b is a real m-vector. In total least squares (TLS) this problem is solved by constructing minimal correction to the vector b and the matrix A such that the corrected system is compatible,

$$
\begin{equation*}
\min _{g, E, x}\|[g, E]\|_{F} \quad \text { subject to } \quad(A+E) x=b+g \tag{1}
\end{equation*}
$$

see $[3,4]$. If the TLS solution exists and it is unique, then it can be found from the scaled right singular vector of the matrix $[b, A]$ corresponding to its smallest singular value. Therefore TLS can be alternatively formulated as

$$
\begin{equation*}
\min _{z=\left(-1, x^{T}\right)^{T}} \frac{\|[b, A] z\|_{2}^{2}}{\|z\|_{2}^{2}}=\min _{x} \frac{\|b-A x\|_{2}^{2}}{1+\|x\|_{2}^{2}} \tag{2}
\end{equation*}
$$

some recent applications of (2) can be found in [1, 7]. For more general optimization formulations of TLS-related problems we refer to $[2,3,4,8]$.

Contrary to the standard least squares approximation problem, the (finite) solution of (1), (2) does not always exist. That means that the TLS problem above is not for some data A, b correctly defined. In this contribution we discuss the necessary and sufficient condition for the existence of the TLS solution based on the so called core problem theory [5], and mention work on possible extensions of the analysis to the multiple right hand sides case $A X \approx B$, where B is a real m by d matrix [6].

Acknowledgment: This work has been supported by the National Program of Research "Information Society" under project 1ET400300415, and by the Institutional Research Plan AV0Z 10300504. The research of I. Hnětynková is a part of the research project MSM 0021620839 financed by MSMT.

References

[1] Bjorck, A., "QR factorization of the Jacobian in some structured nonlinear least squares problems", TLS and Errors-in-Variables Modeling, Kluwer Ac. Pub., pp. 225-234, (2002).
[2] Golub, G. H., "Some modified matrix eigenvalue problems", SIAM Rev., 15, pp. 318-344, (1973).
[3] Golub, G. H. and Van Loan, C. F., "An analysis of the total least squares problem ", SIAM J. Numer. Anal., 17, pp. 883-893, (1980).
[4] Van Huffel, S., and Vandewalle, J., "The total least squares problem: computational aspects and analysis ", SIAM, Philadelphia, 1991.
[5] Paige, C., and Strakoš, Z., "Core problems in linear algebraic systems", SIAM J. Matrix Anal. Appl., 27, pp. 861-875, (2006).
[6] Plešinger, M., and Hnětynková, I., and Sima, D. M., and Van Huffel, S., and Strakoš, Z., "The total least squares problem and reduction of data in $A X \approx B "$, work in progress.
[7] Sima, D. M., and Van Huffel, S., and Golub, G. H., "Regularized total least squares based on quadratic eigenvalue problem solvers ", BIT, 44, pp. 793-812, (2004).
[8] Watson, G. A., "Numerical methods for linear orthogonal L_{p} approximation", IMA J. Numer. Anal., 2, pp. 275-287, (1982).

