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Consider an overdetermined linear approximation problem Ax ≈ b, where A is a real m by n matrix, b is
a real m-vector. In total least squares (TLS) this problem is solved by constructing minimal correction
to the vector b and the matrix A such that the corrected system is compatible,

min
g,E,x

‖[g, E]‖F subject to (A + E) x = b + g , (1)

see [3, 4]. If the TLS solution exists and it is unique, then it can be found from the scaled right singular
vector of the matrix [b, A] corresponding to its smallest singular value. Therefore TLS can be alternatively
formulated as

min
z=(−1,xT )T

‖ [b, A]z ‖22
‖z‖22

= min
x

‖ b−Ax ‖22
1 + ‖x‖22

; (2)

some recent applications of (2) can be found in [1, 7]. For more general optimization formulations of
TLS-related problems we refer to [2, 3, 4, 8].

Contrary to the standard least squares approximation problem, the (finite) solution of (1), (2) does
not always exist. That means that the TLS problem above is not for some data A, b correctly defined. In
this contribution we discuss the necessary and sufficient condition for the existence of the TLS solution
based on the so called core problem theory [5], and mention work on possible extensions of the analysis
to the multiple right hand sides case AX ≈ B, where B is a real m by d matrix [6].
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