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Department of Applied Mathematics, VŠB–Technical University of Ostrava

1 Introduction

Topology optimization, cf. [1], searches for an optimal distribution of material and void without
any restrictions on the structure of the design geometry. Shape optimization, cf. [3], tunes the
shape of the geometry, while the topology is fixed. We propose to proceed sequentially with the
optimal topology and shape design so that a coarsely optimized topology is the initial guess for
the following shape optimization. A necessary non-trivial step in between is an identification
and smooth approximation of the fuzzy shapes. A simultaneous topology and shape design was
studied, e.g., in [2]. An algorithm that couples topology and shape optimization was presented
in [7]. Here we aim at making this algorithm fast by using the adjoint sensitivity analysis to the
Newton-method for the governing nonlinear state equation and using a multigrid approach for
the shape optimization. Our results are also presented in [6].

2 Topology Optimization for 2-Dimensional Magnetostatics

Let Ω ⊂ R2 be a computational Lipschitz domain that is divided into a Lipschitz subdomain
Ωd ⊂ Ω, where the optimal distribution of the ferromagnetics and the air is going to be find,
and into a purely air Lipschitz subdomain Ω0 := Ω \ Ωd. Let further Q := {ρ ∈ L2(Ωd) :
0 ≤ ρ ≤ 1,

∫
Ωd

ρ̃(ρ) dx ≤ Vmax} be a set of admissible material distributions, where Vmax > 0

is a maximal possible area occupied by the ferromagnetics and where ρ̃ ∈ C 2((0, 1)) penalizes
the values of ρ ∈ (0, 1/2) to be close to 0 and the values of ρ ∈ (1/2, 1) to 1. Finally, let
J : H1(Ω) 7→ R be a cost functional. We consider the following topology optimization problem:

Find ρ∗ ∈ Q : J(u(ρ∗)) ≤ J(u(ρ)) ∀ρ ∈ Q (1)

with respect to the 2-dimensional nonlinear magnetostatic state problem
∫

Ω
ν0 grad(u(ρ)) · grad(v) dx +

∫

Ωd

ρ̃(ρ) (ν(‖grad(u(ρ))‖) − ν0)grad(u(ρ)) · grad(v) dx

=

∫

Ω
Jv dx ∀v ∈ H1

0 (Ω),

(2)

where ν ∈ C2((0,∞)) denotes a nonlinear material reluctivity of the ferromagnetics, ν0 is the
vacuum reluctivity constant and J ∈ L2(Ω) is a current density. Note that in general, one has
to pose an additional regularization of the topology ρ to avoid the so-called checkerboard effect.
However, we are merely interested in a coarsely discretized problem, which is well-posed.

2.1 Nonlinear State Sensitivity Analysis

When solving the problem (1), we use a nested approach, i.e. for a given design we eliminate
the nonlinear state equation (2). The latter is discretized by the finite element method using
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the linear Lagrange nodal elements on triangles, which reads as follows:

A(u(ρ),ρ) · u(ρ) = f , (3)

where A is the assembled reluctivity matrix, f is the right-hand side vector, u is the solution
vector and ρ is the element-wise constant material function.

The problem (3) is solved by the Newton method. However, the optimization needs to evaluate
the gradients of the cost functional with respect to ρ. To this goal we derived an adjoint algo-
rithm to the Newton method. Both are depicted below.

Newton method

Given ρ

i := 0
Solve A(0,ρ) · u0 = f
f0 := f −A(u0,ρ) · u0

while ‖f i‖/‖f‖ > prec do
i := i + 1
Solve A′

u
(ui−1,ρ) · wi = f i−1

Find τ i : ‖f i(τ i)‖ < ‖f i−1‖
ui := ui−1 + τ iwi

f i := f −A(ui,ρ) · ui

Store wi and τ i

end while
Store ui and k := i
Calculate objective J(ui,ρ)

Adjoint Newton method

Given ρ, k, uk, {wi}k
i=1 and {τ i}k

i=1

λ := J ′
u
(uk,ρ)

ω := 0
for i := k, . . . , 1 do

ui−1 := ui − τ iwi

Solve A′
u
(ui−1,ρ)T · η = λ

ω := ω + τ iGρ(ui−1,wi,ρ)T · η
λ := λ + τ iGu(ui−1,wi,ρ)T · η

end for
Solve A(0,ρ)T · η = λ
dJ(uk(ρ),ρ)

dρ
:= ω + Hρ(u0,ρ)T · η + J ′

ρ
(uk,ρ)

The sensitivity information of the system matrix is involved in

Gρ(u,w,ρ) := −

[
∂A′

u
(u,ρ)

∂ρ1
·w, . . . ,

∂A′
u
(u,ρ)

∂ρm

·w

]
−

[
∂A(u,ρ)

∂ρ1
· u, . . . ,

∂A(u,ρ)

∂ρm

· u

]
,

Gu(u,w,ρ) := −

[
∂A′

u
(u,ρ)

∂u1
·w, . . . ,

∂A′
u
(u,ρ)

∂un

·w

]
−A′

u
(u,ρ),

Hρ(u,ρ) := −

[
∂A(0,ρ)

∂ρ1
· u, . . . ,

∂A(0,ρ)

∂ρm

· u

]
,

where A′
u
(u,ρ) is the linearization of the nonlinear system matrix.

3 Sequential Coupling of Topology and Shape Optimization

We will use the optimal topology design as the initial guess for the shape optimization. The
first step towards a fully automatic procedure is a shape identification, which we are doing by
hand for the moment. The second step we are treating now is a piecewise smooth approximation
of the shapes by Bézier curves or patches. Let ρopt ∈ Q be an optimized discretized material
distribution. Recall that it is not a strictly 0-1 function. Let p1, . . . ,pn denote vectors of
Bézier parameters of the shapes α1(p1), . . . , αn(pn) which form the interface between the air
and ferromagnetic subdomains Ω0(α1, . . . , αn) and Ω1(α1, . . . , αn), respectively, i.e. Ω1 ⊂ Ωd,
Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅. Let further pi and pi denote the lower and upper bounds,

respectively, and let P :=
{
(p1, . . . ,pn) | pi ≤ pi ≤ pi for i = 1, . . . , n

}
be the set of admissible

Bézier parameters. We solve the following least square fitting problem:

min
(p1,...,pn)∈P

∫

Ωd

(
ρopt − χ(Ω1 (α1(p1), . . . , αn(pn)))

)2
dx, (4)
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Figure 1: Approximation of Bézier shapes by the refined control polygon

where χ(Ω1) is the characteristic function of Ω1.

When solving (4) numerically, one encounters the problem of intersection of the Bézier shapes
with the mesh on which ρopt is elementwise constant. In order to avoid it we use the property
that the Bézier control polygon converges quite fast, see Fig. 1, to the shape under a refinement
procedure. Then the integration in (4) is replaced by a sum over the elements and we deal
with intersecting the mesh with a polygon. Note that our least square functional is not twice
differentiable whenever a shape touches the grid. This is still acceptable for the quasi-Newton
optimization method that we apply.

4 Multilevel Shape Optimization

With the previous notation, the shape optimization problem under consideration is as follows:

Find (p∗
1, . . . ,p

∗
n) ∈ P : J(u(p∗

1, . . . ,p
∗
n)) ≤ J(u(p1, . . . ,pn)) ∀(p1, . . . ,pn) ∈ P (5)

subject to the 2-dimensional nonlinear magnetostatics

∫

Ω0(α1(p1),...,αn(pn))

ν0 grad(u(p1, . . . ,pn)) · grad(v) dx

+

∫

Ω1(α1(p1),...,αn(pn))

ν(0)grad(u(p1, . . . ,pn)) · grad(v) dx =

∫

Ω
Jv dx ∀v ∈ H1

0 (Ω),

(6)

Concerning the finite element discretization throughout the optimization, we use a moving grid
approach. The control design nodes interpolate the Bézier shape and the remaining grid nodes
displacements are given by solving an artificial discretized linear elasticity problem with the
nonzero Dirichlet boundary condition along the design shape. Then, we develop a fairly similar
adjoint algorithm for the shape sensitivity analysis as in case of topology optimization.

Perhaps, the main reason for solving the coarse topology optimization as a preprocessing is that
we get rid of a large number of design variables in cases of fine discretized topology optimiza-
tion. Once we have a good initial shape design, we will proceed the shape optimization in a
multilevel way in order to speed up the algorithm as much as possible. We propose to couple
the outer quasi-Newton method with the nested conjugate gradient method preconditioned by a
geometric multigrid (PCG), as depicted in the algorithm below, in which Al(p1, . . . ,pn) denotes
the reluctivity matrix assembled at the l-th level.
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Figure 2: Topology optimization: (a) initial design; (b) coarsely optimized design ρopt

Table 1: Multilevel shape optimization

level design outer Newton state nested CG total time
variables iterations variables iterations (numerical differentiation)

1 19 7 1098 27s
2 40 8 4240 3 3min 9s
3 82 8 16659 4–5 29min 14s
4 166 8 66037 4–5 3h 37min 42s

Newton iterations coupled with nested multigrid PCG

Given pinit
1 , . . . ,pinit

n

Discretize at the first level −→ h1,A1(pinit
1 , . . . ,pinit

n )
Solve by a quasi-Newton method and the nested direct solver −→ p1

1, . . . ,p
1
n

Store the first level preconditioner C1 :=
[
A1(p1

1, . . . ,p
1
n)

]−1

for l = 2, . . . do
Refine hl−1 −→ hl

Prolong pl−1
1 , . . . ,pl−1

n −→ pl,init
1 , . . . ,pl,init

n

Solve by a quasi-Newton method and the nested multigrid solver −→ pl
1, . . . ,p

l
n

Store the l–th level preconditioner Cl

end for

5 Numerical Results

We consider a problem depicted in Fig. 2 (a). The aim is to find a distribution of the ferro-
magnetic core so that the field grad(u) is homogeneous in the area Ωm. The coarsely optimized
topology of the quarter of the geometry is depicted in Fig. 2 (b). Then, we approximated the
boundary of the black domain by three Bézier curves and proceeded with the multilevel shape
optimization. The performance of the algorithm can be seen from Table 1. The computational
times should be divided by the number of design variables, as we have not implemented the
adjoint method for the shape sensitivity analysis yet. The final result is depicted in Fig. 3 (a)
and it is very similar to the existing geometry of the so-called O-Ring electromagnet, see Fig. 3
(b).

So, we have just mathematically approved the well-known fact that round geometries of electro-
magnets are superior. Next, we will use the machinery e.g. to an optimal design of a shielding of
an AC transformer, where the engineers have hardly any knowledge about a proper result. Con-
cerning the mathematics, we will employ an algebraic multigrid preconditioner, an adaptivity
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Figure 3: Multilevel shape optimization: (a) optimized geometry; (b) the O-Ring electromagnet

refinement with respect to the cost functional and 3-dimensional problems.
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[3] Haslinger J., Neittaanmäki P.: Finite Element Approximation for Optimal Shape, Material
and Topology Design. Wiley, Chinchester (1997)
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[5] Lukáš, D.: On solution to an optimal shape design problem in 3-dimensional magnetostatics.
Appl. Math. 49:5, 24 pp. (2004)
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