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Core problems in Ax =~ b — analysis of the total least squares problem revisited
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At the last Householder meeting, Chris Paige presented a plenary lecture titled Bidiagonaliza-
tion and Approzimate Linear Systems [3]. By suggesting a talk on a complementary topic, we
risk the impression that we are going to repeat ourselves. We believe that we have a good reason
for taking this risk. The recent results, which complement our understanding from 2002, revise
and extend, to our opinion, the analysis of the total least problem essentially started in [1] and
then extensively developed in [2] and elsewhere, see [7], [5], [4].

Consider determining x from the real linear system
Az ~b, A anonzeron by k matrix, b a nonzero n-vector. (1)
It will simplify matters, and nothing will be lost, if we just consider the TLS problem for (1)

TLS distance = n}Ein |lg,E]llr subjectto (A+E)z=b+g. (2)
g7 7m

Golub and Van Loan [1] analyzed this problem (in a more general setting using weights and
scaling parameters, which are for simplicity not considered here). In a nutshell, the constraint
in (2) is equivalent to

(1b, 4] + g, ) [ o ] ~0.

This suggest that the TLS solution is determined by the smallest perturbation of [b, A] which
makes it rank defficient. If the right singular vector corresponding to the smallest singular value

of [b, A] has nonzero first component, then scaling it so that the first component is —1 gives the
TLS solution.

If the smallest singular value of [b, A] is repeated, and if a corresponding right singular vector
with nonzero first component can still be found, then the TLS problem lacks a unique solution.
Golub and Van Loan [1, pp. 885-886], and later Van Huffel and Vandewalle [2, Thm. 3.7, p. 58],
showed how to single out a unique minimum 2-norm TLS solution in this case.

If no right singular vector corresponding to the smallest singular value of [b, A] has nonzero
first component, then the analysis and algorithm of Golub and Van Loan cannot be used, and
the TLS solution (2) does not exist. Van Huffel and Vandewalle pointed out [2, § 3.4, p. 71]
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that in this case some directions in the column space of A are not at all correlated with the
observation vector b; and in a regression sense, these directions are of no value in “predicting the
response” b. To handle this, Van Huffel and Vandewalle define the “nongeneric” TLS problem
and solution [2, Defn. 3.2, p. 68] by adding an additional restriction that [g, E] be orthogonal
to some right singular vectors of [b, A] with zero first components. In [2, Thm. 3.12, p. 72] it is
shown how to obtain such a solution, and the comments following that indicate how to compute
the minimum 2-norm solution. The analysis of Van Huffel and Vandewalle is accurate and it
covers all possible cases. It is, however, very complicated. Moreover, because it is based on
comparison of the SVDs of both [b, A] and A, it identifies the different cases only after the SVD
decompositions are computed, which has negative effects on the cost and possibly also on the
numerical properties of existing algorithms.

We offer a completely different approach to both analysis and computation of the TLS problem
based on the concept of a core problem.

Suppose, for a moment, that some [13, fl] has the form
T by || A
[b A]:llH 11‘0]_ 3)

00 | =
Then the approximation problem A% ~ b can be viewed as two independent approximation
problems

Appmy = by, Axnze=0, iﬁ:li;] (4)

Clearly, A9 has no effect on “predicting” by, the problem Agsxs = 0 has the meaningful solution
2o = 0 and only A1121 = by need be solved. Since the Frobenius norm is unitarily invariant,
the previous considerations fully apply (with a proper change of variables) to any [b, A] which
can be orthogonally transformed, as in

[0 A] =P [b]4Q], P'=P", Q7'=q", (5)

to the form (3).

Paige explained in the lecture corresponding to [3] that for any [b, A] the transformation (5)
leading to (3) is realized by the Golub and Kahan orthogonal bidiagonalization of [b, A]. He
suggested, but did not prove, that this gives minimally dimensioned [b11, A11] and maximally di-
mensioned Asy (which may possibly be nonexistent), see [4], [5]. We call minimally dimensioned
[b11, A11] a core problem.

Definition 1 We say Aj121 = by is a core problem in Az = b if [by, A11] is minimally dimen-
sioned (or Agy is mazimally dimensioned) subject to (5), (3).

Summarizing, the Golub and Kahan orthogonal bidiagonalization reveals for any [b, A] the
hidden structure (5), (3). In our contribution we prove that it indeed gives a core problem for



any [b, A]. In other words, we show that any unwanted and redundant information which is
not useful for finding the solution of (1) is in this way removed to Ag, while [b1, A11] contains
only the information which is necessary for the solution process. We prove that the solution

0
minimum 2-norm solution of all formulations of TLS in [2].

r=0Q [ 1 ] constructed from the solution of the core problem is theoretically identical to the

The suggested approach is simple and effective. It clearly reveals the hidden structure of
useful, irrelevant and redundant information contained in the data [b, A] before any SVD is
computed. Although many implementation details still need to be worked out, the simplicity of
the proposed solution process suggests that it might also have some numerical advantages over
the algorithms described in [2]. Furthermore, the concept of core problems is fundamental, and
might also be useful in other areas such as handling ill-posed problems.

Although in this abstract we restricted ourselves to the TLS problem (2), our results revise our
understanding of both the theory and computations in all forms of linear least squares problems
with a single right hand side. The full text of the paper [6] will be submitted elsewhere.
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