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Let A be a nonzero n by k real matrix, and b be a nonzero real n-vector. Consider estimating x from
the linear approximation problem

Ax ≈ b , (1)

where the uninteresting case is for clarity of exposition excluded by the natural assumption b 6⊥ R(A), that
is AT b 6= 0. Here we do not primarily deal with A square nonsingular and solving linear algebraic equations.
We allow A rectangular of an arbitrary nonzero rank, and assume that the data A, b contain redundant
and/or irrelevant information, and are possibly also corrupted by noise.

In a sequence of papers [1, 2, 3] it was proposed to orthogonally transform the the original data b, A into
the form

P T

[

b AQ
]

=

[

b1 A11 0

0 0 A22

]

, (2)

where P−1 = P T , Q−1 = QT , b1 = β1e1, and A11 is a lower bidiagonal matrix with nonzero bidiagonal

elements. The matrix A11 is either square, when (1) is compatible, or rectangular, when (1) is incompatible.
The matrix A22, and the corresponding block row and column in (2), can be nonexistent. The original
problem is in this way decomposed into the approximation problem

A11x1 ≈ b1 , (3)

and the remaining part A22x2 ≈ 0. It was proposed to find x1 from (3), set x2 = 0, and substitute for the
solution of (1)

x ≡ Q

[

x1

0

]

. (4)

The (partial) upper bidiagonalization of [b, A] described above has remarkable properties, see [3, Theo-
rems 2.2, 3.2 and 3.3].

• First, the lower bidiagonal matrix A11 with nonzero bidiagonal elements has full column rank and its
singular values are simple. Consequently, any zero singular values or repeats that A has must appear
in A22.

• Second, A11 has minimal dimensions, and A22 has maximal dimensions, over all orthogonal transfor-
mations giving the block structure in (2), without any additional assumptions on the structure of A11

and b1.
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• Finally, all components of b1 = β1e1 in the left singular vector subspaces of A11, that is, the first
elements of all left singular vectors of A11 (multiplied by β1 6= 0), are nonzero.

Alternative proofs based on the relationship between the Golub-Kahan bidiagonalization, the symmetric
Lanczos tridiagonalization and properties of Jacobi matrices were given in [6].

In the approach represented by (1)–(4), the data b, A are fundamentally decomposed. The necessary and
sufficient information for solving the problem (1) is given by b1, A11. All irrelevant and repeated information
is filtered out to A22. The problem (3) is therefore called a core problem within (1).

The core problem formulation can be used to solve least squares, scaled total least squares and data
least squares problems. The core problem solutions are identical to the minimal 2-norm solutions of all
formulations of the (scaled) total least squares problem with the single right hand side [4]. It gives the
minimum norm solution determined by the algorithm of Golub and Van Loan [5], [4, Theorem 3.7, p. 58],
if it exists. If such a solution does not exist, then the core problem approach gives the nongeneric minimum
norm (scaled) total least squares solution described by Van Huffel and Vandewalle [4, Theorem 3.12, p. 72].
In this way, one simple and efficient approach can be applied to different classes of problems.

In our contribution we will review the theory, mention recent applications of the core problem formula-
tion, and outline the status of investigation of several open questions.

This work has been supported by the National Program of Research ”Information Society” under project
1ET400300415, and by the Institutional Research Plan AVOZ10300504.
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