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1 Introduction

The GMRES method of Saad and Schultz is a very popular iterative method for solving systems
of linear algebraic equations Ax = b. Starting from an initial guess x0, this method computes
the initial residual r0 = b − Ax0 and a sequence of iterates x1, x2, . . ., so that the kth residual
rk ≡ b−Axk satisfies

‖rk‖ = min
p∈πk

‖p(A) r0‖ , (1)

where πk denotes the set of polynomials of degree at most k and with value one at the origin
and ‖ · ‖ denotes the Euclidean norm. For simplicity we consider that x0 = 0 and ‖b‖ = 1.

The GMRES convergence behavior has been investigated for many years, but a complete under-
standing still remains elusive. A general approach is to replace the complicated minimization
problem (1) by another one that is easier to analyze and that, in some sense, approximates
the original problem (1). Natural bounds on the GMRES residual norm arise by excluding the
influence of initial residual r0 (in our case equal to b),

‖rk‖ = min
p∈πk

‖p(A)b‖ (GMRES)

≤ max
‖b‖=1

min
p∈πk

‖p(A)b‖ (worst-case GMRES) (2)

≤ min
p∈πk

‖p(A)‖ (ideal GMRES). (3)

The bound (2) corresponds to the worst-case GMRES behavior and represents a sharp upper
bound, i.e. a bound that is attainable by the GMRES residual norm. In this sense, (2) is the
best bound on ‖rk‖ that is independent of b. Despite the independence of b, it is not clear in
general, which properties of A influence the bound (2). Finally, (2) can be bounded by the ideal

GMRES approximation (3), that represents a matrix approximation problem.

To justify the relevance of the bound (3), several researchers tried to identify cases in which (2)
is equal to (3). The best known result of this type is that (2) is equal to (3) whenever A is
normal [4, 5]. Despite the existence of some counterexamples [2, 8], it is still an open question
whether (2) is equal or close to (3) for larger classes of nonnormal matrices. To understand the
more complicated cases of nonnormal matrices that stem from practical problems, one needs
first to understand the relevant “simple” cases. In this talk we concentrate on the case of a
Jordan block, a prototype of a nonnormal matrix. Understanding of this case appears to be
a prerequisite for the analysis of other classes of nonnormal matrices, particularly the general
triangular Toeplitz matrices, for which some results were obtained by Faber et al. [2].
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2 Results (see [7])

Consider the n by n Jordan block,
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. . . 1
λ













, λ ∈ R , λ > 0 . (4)

In our analysis we concentrate on ideal GMRES steps k such that k divides n. In these steps,
we discover a special structure behind the convergence of ideal GMRES that allows to prove
interesting results. For such k we show that (2) is equal to (3) if A = Jλ. Our main tool is
the equivalence between the kth step of ideal GMRES for Jλ ∈ R

n×n and the first step of ideal
GMRES for Jλk ∈ R

n/k×n/k, which allows us to characterize the ideal GMRES related quantities
in these steps k. In particular, the exact form of the kth ideal GMRES polynomial ϕk that solves

‖ϕk(Jλ)‖ = min
p∈πk

‖p(Jλ)‖

is given by

ϕk(z) = α+ β (λ− z)k,

where α and β are some particular real numbers that depend on λ, k and n. The ideal GMRES
approximation ‖ϕk(Jλ)‖ is bounded by

λ−k cos
(

π
n/k+1

)

≤ ‖ϕk(Jλ)‖ ≤ λ−k,

whenever λk > cos( π
n/k+1

), and

‖ϕk(Jλ)‖ = 1

for 0 ≤ λk ≤ cos( π
n/k+1

).

We also extend previous results obtained by Greenbaum at al. [2] about the polynomial numerical
hull Hk(Jλ) of degree k for the Jordan block Jλ. It is known that Hk(Jλ) is a circle around λ
with radius rk,n. When k divides n, we show that

rk,n =

[

cos

(

π

n/k + 1

)]1/k

.

3 Summary

For a Jordan block Jλ, we are able to characterize the ideal GMRES related quantities and prove
equality of bounds (2) and (3) in the steps k such that k divides n. Our numerical experience
indicates that (2) is equal to (3) for each k, if A is a Jordan block. The generalization of our
results for each k remains the subject of further work.
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