On the relation between SUPG stabilization and GMRES convergence
for a convection-diffusion model problem

Jurjen Duintjer Tebbens
Institute of Computer Science

Academy of Sciences of the Czech Republic
joint work with

Jorg Liesen
TU Berlin

and

Zdenék Strako S
Institute of Computer Science

Academy of Sciences of the Czech Republic

SNAQOS, Liberec, January 29, 2008.



4’6/ 1. The convection-diffusion model problem

/

We consider a model problem that has been studied by many authors,
e.g. [Fischer, Ramage, Sylvester, Wathen - 1999], [Ernst - 2000], [Elman,
Ramage - 2001, 2002], [Liesen, Strakos - 2005]:

—vVPu+w-Vu=0 in Q=(0,1)x (0,1),
u=g¢g on  0f),

where

e v: scalar diffusion coefficient
o w = [0,1]*: velocity field (wind)
e ¢ : given by discontinuous inflow (Raithby) boundary conditions

1
u(z,0) =u(l,y) =1 for§§:r;§1 and 0 <y <1,

u(x,y) =0 elsewhere on 92
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/%’6/ 1. The convection-diffusion model problem

/

We use Streamline Upwind Petrov Galerkin (SUPG) discretization
([Brooks, Hughes - 1979]) to suppress non-physical oscillations. The idea
IS to add an artificial diffusion term in the local flow direction. The modified
coefficient matrix C' has the form

Cij = v(V;, Vi) + (w- Vi, bi) + 06 (w-V,,w- V),

where ¢,, j = 1,2,... are the bilinear finite element nodal basis functions
for an N by N grid with spacing h = 1/(N + 1) and (-, -) denotes the L?
Inner product on €.

Here, ¢ is the stabilization parameter. Stabilization parameters are chosen
as

for some positive tuning parameter 0 < 0 < 1.
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4’6/ 1. The convection-diffusion model problem

/

For linear finite element discretization in a one-dimensional constant
coefficient problem it can be shown that the choice

1 1 . h 1
0o = = | coth(P,) — — |, l.e. 0g= —— | coth(P}) — —
: 2( (F) Ph) : 2||w||( (F) Ph)

where P, = h/(2v) is the mesh Peclet number, yields the exact solution at
the node points [Brooks, Hughes - 1982].

In two dimensions one frequently uses the simplified value [Elman,
Ramage - 2001, 2002]

1 1 A h 1
So==(1—-=1], ie. dp=-—[1——
0 2( Ph)"e 0 2||w||( Ph>

In the following we call this choice of stabilization optimal stabilization.
Note that with large mesh Peclet numbers we have §y ~ 1/2.
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/%’6/ 1. The convection-diffusion model problem

/

Consider an example where we use

A 6 x 6 grid (linear system dimension 36)

The small diffusion coefficient v = 0.00025

Hence large Peclet number P, = 285 and optimal tuning parameter
0o = 0.498 close to 0.5

GMRES to solve the resulting linear systems

The zero initial guess

In addition to the optimal tuning parameter 6, = 0.498 we consider also

61 = 0.398, &2 =0.298, &5 =0.698, 4§ =0.798.
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GMRES for the convection-diffusion model problem
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GMRES for the convection-diffusion model problem
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GMRES for the convection-diffusion model problem
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4’6/ 1. The convection-diffusion model problem

/

The fact that GMRES converges worse for worse stabilization shows a

fascinating and rather lucky relation between discretization and behavior
of an iterative solver.

This fact has been observed in [Fischer, Ramage, Silvester, Wathen -
1999], but has not been fully explained. (Explanation of the behavior of

GMRES for §g has been more or less completed [Liesen, Strakos - 2005],
[DT - 2005].)

In this talk we offer an explanation. In particular, we will present lower
bounds for § # 4.
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/%’6/ 2. Properties of the system matrices

/

With the discrete sine transformation from [Liesen, Strakos - 2005],
system matrices A are block diagonal with tridiagonal Toeplitz blocks of

dimension N x N:
n Vo
b

(2)
Axr = ] L = . :ba

k ) Ly

where
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/%’6/ 2. Properties of the system matrices

/

Assuming P, = h/(2v) > 1 we can write the entries in simplified form as

)‘j p— 25th —|— O (I/),
h

Hi = —5th + §Cj + O (V),
h

’}/j = —5th — §Cj —+ O (I/),

where c; = 2 + cos jhm. Note that for 6y ~ 1/2 we have p; ~ 0.

The eigenvalues of the whole matrix are given by

ijz)\j+21/uj7jcoskh7r, 1§],]€§N
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/%’6/ 2. Properties of the system matrices
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/%’6/ 2. Properties of the system matrices

/

The eigenvectors of T); are given by

sin kh )

1
2

: 1 —
Wg,5 = diag (C& 7C5 7"‘7C5

N
2

N . b
) : ) Cs = — = 215 ""O(V)a
Y 1 + 55
sin Nkh

with1 <k < N.
Lemma 1 The condition number s of the eigenvector basis formed of
eigenvectors wy ; ,1 < k,j < N, equals

1—N
2

1 — L
1
L+ 55

o=

For §p ~ 1/2 we obtain a huge . The matrix with the worst conditioned
eigenvector basis gives the best GMRES convergence !
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/%’6/ 3. Analysis for the (n — 1)st step

/

Let As be the system matrix with tuning parameter 9. We will use the
well-known equality (e.g. [Ipsen - 2000])

Irill = || €T - [bs, Asbs, ..., Akbs) ||

and an analysis similar to [Liesen, Tichy - 2004]. For £k = n — 1 the
Moore-Penrose pseudo-inverse translates to

[bs, Asbs, ..., AT bs] T = [bs, Asbs, ..., A§ ™ bs] "
Let the spectral decomposition of As be
As = WsXsW5

and write the right hand side in the eigenvector basis as

g=1
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/%’6/ 3. Analysis for the (n — 1)st step

/

We have
A5 by = WsOs(a¥, ..., 00)"
where ©5 =diag (64, ...,6,). Hence

Y

[bs, Asbs, ..., AZ " bs] = W50 Ms,

where Mj is the Vandermonde matrix who's ith row is (1,05, 07,...,0%).

79" 7

For the one but last residual norm we obtain

[rnill = || €F - [bs, Asbs, .. Akbs] M| = || e My roz Wt

First we take a closer look at the matrix ©; 'W!. This matrix is also block
diagonal, ©; ' W, ' = diag(©@7 ' W, ..., 05 WH).
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/%’6/ 3. Analysis for the (n — 1)st step

/

The matrix W(S_1 has block diagonal structure; every single block contains
an eigenvector matrix of the form

1
2

_N 1 — L
W, = diag (¢; ,¢5 0, ..., ¢ 2V, Vi =sin(jihm), (5 = 2+ O(v).

1+ 55
Let the part of the right hand side corresponding to block j have the
entries p1, ..., py. We have, exploiting V! = 25V,
b
o [ ) = 2 v (SN = i g
j « o —N_I_l g 5767°'°75 o o —N_i_l ,01,5 ' '..
PN PN =1 sin ¢ N hr

Hence if ©; is the diagonal matrix whose entries are the components of
the right hand side in the eigenvector basis I7;, then
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/%’6/ 3. Analysis for the (n — 1)st step

N ; N ; ! 1 N
@j—le—l = diag <Z piCs sindhm, .. ., Zpigf sinith) Vidiag (¢;, (s, .-, (57 )
1=1 1=1
| RN N1
= — Vg (1.6 GGy 7 )
P1
where
~ (i B p1 sin(ikh)
(Vg(]))i,k — ~ — .
SN Gy T pmsin(imh)
Note that |(5| = | 25 | < 1 and hence the denominators in (V(J)) 4 are

restricted to the flrst few summands. With Raithby boundary conditions
the effect is even emphasized because p; > p;, ¢ # 1, in many blocks =

_ pisin(ikhn)

p1 sin(ihm)
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4’6/ 3. Analysis for the (n — 1)st step

/Kle ) (1 0 ... 0)
—5E 10 ... 0
05 Wy~ " . ==

P1

where % IS the first component of the right hand side corresponding to
P1
block j.

From this form it can be seen that the matrix 6)5‘114/5‘“L IS only slightly
dependent on the choice of 9. In particular, it seems the influence of the
conditioning of the eigenvector matrix Wy is eliminated by taking into
account the right hand side through the matrix ©;.

J. Duintjer Tebbens, J. Liesen, Z. Strako$

16



/%’6/ 3. Analysis for the (n — 1)st step

/

Having analyzed ©; "W " in

Irnall = || €T - M 'O W

we proceed with e] - M. Itis well known there exist exact formulaes for

the entries of inverses of Vandermonde matrices (e.g. [Muir - 1960]),

Hk;él Ok Hk;ﬁQ Ok Hk;én Ok

ey My~ = (=D <Hk751(01 — Ok) 7 Hk#Q(UQ — o)) o Hk#n(an

The behavior of the expression on the right can be explained with the
following two lemma’s.

Lemma 2. The difference between two eigenvalues of block T’; is

1
ojk — 01 =c1 (24 cosjhm)/1— 152 (cos khm — cos lhm) .

[l ok
k;,gi(o'i_o'k)

— OCQ.

= for §p ~ 1/2 we have o, — o;; ~ 0 and ‘H
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4’6/ 3. Analysis for the (n — 1)st step

/

Lemma 3. The product of a pair of eigenvalues o5, and o satisfying
k+ 1= N +1 equals

oik - 01 = ci (2 + cosjhm)? (1 — (1 — %) cos” khw) :
The function |0, (9) - 0;(9)| is slightly decreasing in é.

We obtain for the function

m(8) = e - M; | = '(

the following behavior:
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4’6/ 3. Analysis for the (n — 1)st step
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The function m(d) = |le] - M, || with N = 6.
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4’6/ 3. Analysis for the (n — 1)st step

/

All together, we have

lroa| =t = || el - My tes W]

(pgl)E \ (1 0 ... O\
I 0 ...

0

Q

e; - My ! g | , E=

P1

We can show that convergence is indeed governed by |le] - M;!||. Hence
the main reason for convergence delay by step n — 1 with non-optimal
stabilization are the relatively large distances between eigenvalues.

An example where eigenvalues do govern convergence behavior even
when eigenvectors are extremely ill-conditioned, i.e. matrices are highly
non-normal!
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4’6/ 4. Bounds for the general step

/

In practice GMRES processes will often have converged before step

n— 1. Forastep kK — 1 < n — 1 we must deal with

Il =t = | el - [bs, Asbs, . . .,A’g_lbg]JrH —

+
I
7 (1)

, (1)

and explicit formulae for the entries of the Vandermonde inverse M; "

cannot be exploited.

As a tool to explain the behavior of (1) we will use the UL-decomposition

of M~! = UL [Golub, van Loan - p. 186]:

)

Lij=]] (6i=o)™" =

I=1,l#j
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/%’6/ 4. Bounds for the general step

(! )
1 1
01—09 02—01

L = 1 1 1 :
(c1—02)(01—03) (02—01)(02—03) (03—01)(03—02)

\ 5 : )

Ui =¢€j—i(01,...,0-1), where ek(al,...,al)zg Oy " Opy o Oy =

(1 —0 0109 — 010903 .. \
1 —09 — 01 0109 + 0103 + 0203
U = 1 —01 — 09 — 03 :
1
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/%’6/ 4. Bounds for the general step

+ +
_ I 1
lrell = =] e - <W5@5M5 <(;€>> = | ef - <W5@5L5 1U5 ! (5))
I i A\
— e’if . <W5@5L61 <0k> (Ué(k))1> — e,{ . U(gk) <W5@5L51 (;))

where U(gk) denotes the left upper k£ x k block of Us.

With
k—1
k )
UY=L —or.01- 09y, ()P [ o)
7j=1

we have isolated eigenvalue products. To isolate important eigenvalue
differences in Ls we use a scaling matrix Hgk):
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/%’6/ 4. Bounds for the general step

/

With an ordering of eigenvalues such that the largest entries of Ls are on
the diagonal, let

k

H( ) — = diag(Ls) = | diag(1, H o1 — 0y, H oy — H lok—1 — 0j])

j#1 J7#2 J#k—l
Now, with s,,,;, denoting the minimal singular value,

1 —1

* +
J (1
Irull = |ler - <W5@5M5 <§>> =€t - U§k) <W5@5L5 ! <;>>
A
= el U5 <W5@5L51H((5n) <Ok>>

> Smin <W5@5L 1H(n)< )) H I U(k) H(k)H
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GMRES for the convection-diffusion model problem
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GMRES for the convection-diffusion model problem
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GMRES for the convection-diffusion model problem
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/%’6/ 4. Bounds for the general step

/

We can extend to the less accurate but more descriptive bound

el > smn <W5@6L 1H<”>< ))\161 v |

—1
> T U |

(n)y—1 L a—1—1—1
> o)z ley i

We have seen before that ©5 "W ' is nearly independent from the choice

of 5. The matrix (Hg”))—lL(; IS just a lower triangular matrix with ones on
its diagonal and entries with a slow decay when moving away from the

diagonal. Essential is that He{ : ng) Hgk)H where

(k) 1 1 1
lI;7 =diag | 1, = , —3 e ) =%
Hj;él o1 — 03] Hj;éZ |02 — 0] Hj;ékz—l |ok—1 — 0}

IS heavily decreasing when growing away from J,; hence the main reason
for convergence delay are again growing distances between eigenvalues.
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GMRES for the convection-diffusion model problem

10°

Red: d2, green: &1, yellow: 55, blue: ;.

J. Duintjer Tebbens, J. Liesen, Z. Strako$



’ 4. Bounds for the general step

GMRES for the convection-diffusion model problem
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GMRES for the convection-diffusion model problem
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4’6/ 5. Conclusions

Thank you for your attention.
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